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We study continuous-time random walks (CTRW) with power-law distribution of waiting times under resetting
which brings the walker back to the origin, with a power-law distribution of times between the resetting events.
Two situations are considered. Under complete resetting, the CTRW after the resetting event starts anew, with a
new waiting time, independent of the prehistory. Under incomplete resetting, the resetting of the coordinate does
not influence the waiting time until the next jump. We focus on the behavior of the mean-squared displacement
(MSD) of the walker from its initial position, on the conditions under which the probability density functions
of the walker’s displacement show universal behavior, and on this universal behavior itself. We show, that the
behavior of the MSD is the same as in the scaled Brownian motion (SBM), being the mean-field model of the
CTRW. The intermediate asymptotics of the probability density functions (PDF) for CTRW under complete
resetting (provided they exist) are also the same as in the corresponding case for SBM. For incomplete resetting,
however, the behavior of the PDF for CTRW and SBM is vastly different.
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I. INTRODUCTION

Recently, there is a splash of interest in statistical prop-
erties of different stochastic processes under resetting, when a
random process is interrupted by a resetting event, and restarts
anew from prescribed initial conditions. The interest in these
kinds of processes is nurtured by their abundance in nature
and by their importance in search (see [1] for the review). The
situation is mostly exemplified by a time-dependent position
of a particle which performs some kind of random motion
and returns to the origin on the resetting event. The random
motion under stochastic resetting can thus be considered as
the interplay of two distinct random processes: the resetting
process, a point process on the real line representing the time
axis, and particle’s motion between the resetting events, the
displacement process.

The waiting time distribution function between two reset-
ting events can be exponential [2], deterministic (the most
effective one for the search processes) [3], power-law [4], or
of other type [3,5–7]. Most studies treat the resetting as an in-
stantaneous event [1], but also the situations when some time
is needed for the particle to come back to the initial position
were considered [8–13]. The first study of resetting has been
devoted to Brownian motion [2] as a displacement process;
later the discussion has been generalized for other types
of motion, such as Lévy flights [14,15], Lévy walks [16],
scaled Brownian motion (SBM) [17,18], and continuous-time
random walks (CTRW) [19–23]. This last situation is the topic
of the present work.

CTRW is a process, when the time of the next step of
a random walk is chosen according to a certain probabil-
ity distribution [24,25]. The applications of CTRW range
from charge carrier motion in disordered semiconductors
[26] to earthquake modeling [27,28], biology [29], and eco-
nomics [30,31]. The properties of CTRW with an exponential

waiting time density ψ (t ) = re−rt correspond to normal dif-
fusion [24], with the mean-squared displacement (MSD)
〈x2(t )〉 growing linearly in time, but the properties of CTRW
with a power-law waiting time probability density func-
tion (PDF) ψ (t ) ∼ t−1−α (with 0 < α < 1) are quite dif-
ferent, giving rise to a slower, subdiffusive behavior with
〈x2(t )〉 ∝ tα . The properties of such subdiffusive CTRW un-
der Poissonian resetting were recently considered in Ref. [23],
providing a nice introduction to the problem of resetting
in CTRW.

On the mean-field level some properties of CTRW (for
example, its aging) resemble those of subdiffusive scaled
Brownian motion (SBM), a diffusion process with the time-
dependent diffusion coefficient D(t ) ∼ tα−1 and the mean-
squared displacement (MSD) 〈x2(t )〉 ∼ tα [32]. The SBM is a
Markovian process, while CTRW is a non-Markovian (semi-
Markovian) one. Both random processes, the CTRW and the
SBM are processes with nonstationary increments. However,
in SBM this nonstationarity is modeled via the explicit time
dependence of the diffusion coefficient, while the CTRW,
being of the renewal class, lacks explicit time dependence of
its parameters. Therefore, some properties of the processes
(for example, their behavior under confinement) differ [33].
SBM can be used in order to describe the dynamics of granular
gases [34–37].

The nonstationarity of increments of the displacement pro-
cess leads to two different situations under resetting, which
were indistinguishable if the increments of the displacement
process were stationary. The first one corresponds to the
case when the memory on the course of the displacement
process preceding the resetting event is fully erased, and
the second one to the case when this memory is partially
retained: The dynamics of the underlying process can be either
rejuvenated after resetting or not influenced by the resetting

2470-0045/2020/101(6)/062117(14) 062117-1 ©2020 American Physical Society

https://orcid.org/0000-0002-4646-2417
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.101.062117&domain=pdf&date_stamp=2020-06-11
https://doi.org/10.1103/PhysRevE.101.062117


ANNA S. BODROVA AND IGOR M. SOKOLOV PHYSICAL REVIEW E 101, 062117 (2020)

of the coordinate. We will refer to the first case as the one
of complete resetting, while the second case will be referred
to as the case of incomplete resetting. In SBM these two
situations correspond to the cases when the time-dependent
diffusion coefficient D(t ) also resets to the initial value D(0)
together with the coordinate of the particle [17], or remains
unaffected by the resetting events [18]. In CTRW the first
assumption corresponds to a situation when the resetting
interrupts the waiting period between the jumps, and, after
the resetting, a new waiting time is chosen independently
from the prehistory of the process. The second assumption
implies that the waiting period started before the resetting
event is not interrupted by the resetting. These two cases
has been investigated and compared for the CTRW with
exponential resetting [23]. In the current study we investigate
the behavior of subdiffusive CTRW under resetting process
with power-law distribution of times between the resetting
events, compare the results with such for SBM, and discuss
similarities and differences between the behavior of CTRW
and its mean-field model. We show that the behavior of the
MSD in both processes is similar. Considerable similarities
are also found in the intermediate asymptotic behavior of
the probability density functions (PDFs) of both processes
under complete resetting, while for incomplete resetting
CTRW shows additional fluctuation effects leading to strong
differences in PDFs.

The further structure of the work is as follows: In Sec. II we
define the models and introduce the notation. The behavior
of the MSD is then discussed in Sec. III. The properties of
the intermediate asymptotics of the PDFs and the conditions
under which these can be observed are discussed in Sec. IV.
The conclusions follow in Sec. V.

II. MODEL

A. Continuous-time random walks

A standard (“wait-first”) CTRW starts at x = 0 at time
t0 (in a situation without resetting this is typically put to
zero) with the waiting time [38]. Other variants of the CTRW
include the walks starting from a jump (similar to the cor-
responding correlated model of [39]), the walks anticipating
the next jump after the observation time t (“oracle” walk),
and other clustered models [40]. The CTRW by itself may
be considered as an interplay (subordination) of two distinct
random processes: The parent process, being a simple random
walk with discrete steps, and the directing process (subordi-
nator, operational time) defining the random number of steps
the parent process made up to the physical time t . In this
work we will consider resetting of the classical Scher-Montoll
wait-first scheme, although the jump-first variant will appear
at intermediate steps of our discussion.

Although general expressions may be obtained in a
Fourier-Laplace domain, like it was done in Ref. [23], these,
for the case when the resetting times follow a power-law
distribution, are difficult to analyze. Therefore, for getting
asymptotic expressions for PDFs we will use the real space
and time domain approach, relying on the asymptotic form
of the CTRW’s PDFs. Therefore, the methods applied in the
present work differ considerably from those used previously.

We study power-law distribution of the CTRW steps:

ψ (t ) = αtα
0

(t0 + t )1+α
. (1)

Here t0 is the characteristic time of the power-law decay
connected with the median value mt of the waiting time
via m = (21/α − 1)t0. The survival probability �(t ) gives the
probability that no stepping occurs between 0 and t :

�(t ) = 1 −
∫ t

0
ψ (t ′)dt ′ =

∫ ∞

t
ψ (t ′)dt ′. (2)

For the power-law distribution of the waiting times it scales
also according to the power law:

�(t ) = tα
0

(t0 + t )α
. (3)

It is convenient to switch between the time and the Laplace
domains. The Laplace transform of the resetting PDF is

ψ̃ (s) =
∫ ∞

0
ψ (t ) exp(−ts)dt, (4)

and the Laplace transform of the survival probability can be
expressed via ψ̃ (s) as

�̃(s) = 1 − ψ̃ (s)

s
. (5)

For α < 1 the asymptotics of the Laplace transform of �(t ) is
�(s) � �(1 − α)sα−1tα

0 , and ψ (s) � 1 − �(1 − α)sαtα
0 . The

probability density ψn(t ) that the nth resetting event happens
at time t satisfies the renewal equation [24]:

ψn(t ) =
∫ t

0
ψn−1(t ′)ψ (t − t ′)dt ′, (6)

and the sum of all ψn(t ) gives the rate of resetting events at
time t :

μ(t ) =
∞∑

n=1

ψn(t ). (7)

Its Laplace transform yields

μ̃(s) =
∞∑

n=1

ψ̃n(s) = ψ̃ (s)

1 − ψ̃ (s)
. (8)

The stepping rate for α < 1 is given by

μ(s) � 1

�(1 − α)
(st0)−α,

μ(t ) � sin πα

π
t−α
0 tα−1, (9)

in the Laplace domain and in the time domain, respectively.
For α > 1 (the case which would correspond to normal

diffusion for CTRW without resetting) we have

μ(t ) = β − 1

τ0
. (10)

B. Complete and incomplete resetting

As we already mentioned, two situations are considered. In
the first one, after a resetting the CTRW process starts anew,
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FIG. 1. The event diagrams of CTRW under complete [case (1)]
and under incomplete [case (2)] resetting. The renewal events of the
CTRW are denoted by black and gray filled squares; the renewals of
the resetting process are denoted by empty circles. The difference
between the two situations is that the time of the last renewal of
the resetting process before the observation is the time of the (new)
beginning of the wait-first CTRW in case (1), and the aging time of
the CTRW in case (2). The new beginning of the CTRW in case (1)
is denoted by a larger empty square (there is no jump taken at this
time), and the time 	t = t − tr corresponds to the observed duration
of the wait-first CTRW. In case (2) the time of the last resetting is the
aging time for the CTRW, and the first jump of the CTRW takes place
at time t1, denoted by a larger black square. The observed duration of
the jump-first CTRW 	t ′ corresponds to t − t1.

from a new waiting time which is independent of the prehis-
tory of the process (complete resetting). This case corresponds
to the first model of Ref. [23] and will be denoted as case
(1) in the text and in figures. The case of incomplete resetting
[case (2)] corresponds to the second model of Ref. [23]. In this
case the coordinate of the walker is set to zero under resetting,
which, however. does not interrupt the waiting period. In this
case the memory on the beginning of the waiting period of the
CTRW is not erased.

The event diagrams, showing the temporal order of jumps
of CTRW and resetting events for the two models are dis-
played in Fig. 1 and elucidate the notation used. Thus, in
case (1) a wait-first (standard) CTRW starts anew at time of
the last resetting event tr . The total duration of the observed
part of the CTRW (which is the time interval between the
last resetting event at tr and the time t at which the position
of the walker is measured) is equal to 	t = t − tr . For the
case (2) of incomplete resetting, the resetting time falls into
a waiting time between the two steps of the CTRW (or in
the very first waiting time between the preparation and the
first step), which is not interrupted by the resetting event.
In this case we consider a jump-first CTRW starting at this
forward recurrence time of a CTRW following the time of the

last resetting. The total duration of the observed part of this
jump-first CTRW is then 	t ′ = t − tr − t f . Since the time tr
of the last resetting event now corresponds to the aging time
of the CTRW, the waiting time for the first step in CTRW
after resetting will typically be longer than in the previous
case due to aging effects [24], provided the second moment
of the waiting time is large enough or diverges.

C. Power-law resetting

The waiting time PDF of the resetting process will be
denoted by φ(t ) and is distributed according to the power-law
distribution function,

φ(t ) = βτ
β

0

(τ0 + t )1+β
. (11)

Here τ0 is the characteristic time of the power-law decay
connected with the median value mτ of the resetting time via
mτ = (21/β − 1)τ0. The survival probability �(t ) gives the
probability that no resetting event occurs between 0 and t ,

�(t ) =
∫ ∞

t
φ(t ′)dt ′. (12)

For the power-law distribution of waiting times it also scales
according to the power law:

�(t ) = τ
β

0

(τ0 + t )β
. (13)

For the case of the power-law PDF it is convenient to switch
between the time and the Laplace domains. The rate of
resetting events at time t may be obtained analogously to the
stepping rate of the CTRW. For β < 1 the resetting rate is time
dependent and is given by

κ (s) � 1

�(1 − β )
(sτ0)−β,

κ (t ) � sin πβ

π
τ

−β

0 tβ−1, (14)

in the Laplace domain and in the time domain, respectively.
For β > 1 the rate of resetting events stagnates for long t

and is given by

κ (t ) = 1

〈t〉 = β − 1

τ0
, (15)

with 〈t〉 being the mean waiting time between two resetting
events.

III. MEAN NUMBER OF STEPS AND THE MSD

A. MSD of free CTRW

The MSD in a free CTRW is proportional to the mean
number of steps [24],

〈x2(t )〉 = a2〈n(t )〉, (16)

where a2 is the mean-squared displacement in a single step.
The mean number of steps performed up to time t can be
obtained as the integral of the stepping rate [Eq. (7)]:

〈n(t )〉 =
∫ t

0
μ(t ′)dt ′. (17)
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For α < 1 it is equal to

〈n(t )〉 = sin πα

πα

(
t

t0

)α

, (18)

and for α > 1

〈n(t )〉 � (α − 1)
t

t0
. (19)

Both expressions hold for t 	 t0.
The coefficient of anomalous diffusion Kα is normally

defined via

〈x2(t )〉 = 2Kαtα, (20)

so that for α < 1

Kα = 1

2

sin πα

πα

a2

tα
0

, (21)

and for α > 1 the (normal) diffusion coefficient reads

Kα = K1 = α − 1

2

a2

t0
. (22)

B. MSD of CTRW with resetting

For a nonbiased CTRW with resetting the mean-squared
displacement, both for the aged and for the nonaged situation,
is proportional to the mean number of steps made during the
observation time [41],

〈x2(t )〉 = a2〈〈n1,2(	t )〉〉, (23)

where a2 is the mean-squared length of the step, and the
indices 1 and 2 denote the complete and incomplete resetting
(see Fig. 1). The double average on the right-hand side of
Eq. (23) is taken over the realizations of the directing process
of the CTRW (i.e., over the CTRW waiting times), and over
the duration 	t of the period between the last resetting and
the observation time. For given tr (or 	t), the mean numbers
of steps n1(	t ) for the complete resetting (the average over
all possible realization of the waiting times of the directing
process of the CTRW) is given by

〈n1(	t )〉 = 〈n(	t )〉, (24)

with 〈n(	t )〉 given by Eq.(17). For the incomplete resetting
we have for the same single average [see Fig. 1, panel (2)],

〈n2(	t )〉 = 〈n(t )〉 − 〈n(tr )〉. (25)

The double means we are interested in are obtained by averag-
ing these means over the distribution of 	t or tr . For the first
case of complete resetting we obtain

〈〈n1(	t )〉〉 =
∫ t

0
〈n(	t )〉p1(	t |t )d	t . (26)

Here 〈n1(	t )〉 is given by Eq. (18) for α < 1 and by Eq. (19)
for α > 1. For the second case of incomplete resetting we get

〈〈n2(	t )〉〉 = 〈n(t )〉 −
∫ t

0
〈n(tr )〉p2(tr |t )dtr . (27)

The PDF p2(tr |t ) of the last resetting before the observation at
time t is given by

p2(tr |t ) = κ (tr )�(t − tr ). (28)

The meaning of this equation is that the κ (tr )dtt defines the
probability to have a resetting event between tr and tr + dtr ,
and �(t − tr ) the survival probability that no resetting event
took place afterwards [Eq. (13)]. The distribution of the
duration of the part of CTRW observed after the resetting
	t = t − tr follows by the change of variables:

p1(	t |t ) = κ (t − 	t )�(	t ). (29)

The information about mean number of steps also will be
important for Sec. IV. The calculation of the probability
distribution functions is performed under the assumption that
this number of steps is large. Only under this condition the
universal (not dependent on microscopic parameters) interme-
diate asymptotics can appear.

C. Mean number of steps for 0 < β < 1

The distribution of 	t at given t for complete resetting
(case 1) is given by inserting Eq. (14) and Eq. (13) into
Eq. (29) and for longer 	t gets independent from τ0:

p1(	t |t ) � sin πβ

π
(t − 	t )β−1	t−β. (30)

For case 2 of the incomplete resetting the distribution of the
aging time tr for given t is given by the similar expression,

p2(tr |t ) � sin πβ

π
(tr )β−1(t − tr )−β. (31)

1. Subdiffusion with 0 < α < 1

For the subdiffusive CTRW with complete resetting we
insert Eq. (18) and Eq. (30) into Eq. (26) and obtain after
straightforward algebra,

〈〈n1(	t )〉〉 =
(

t

t0

)α sin πα

πα

sin πβ

π
B(β, 1 + α − β ). (32)

For the subdiffusive CTRW with incomplete resetting we
introduce Eq. (18) and Eq. (31) into Eq. (27) and get

〈〈n2(t )〉〉 = sin πα

πα

(
t

t0

)α[
1 − sin πβ

π
B(α + β, 1 − β )

]
.

(33)

The fact that resetting with 0 < β < 1 does not change the
power-law behavior in MSD is analog to the observation for
SBM.

2. Normal diffusion with α � 1

Let us consider at first the case of the complete resetting.
Inserting Eq. (19) and Eq. (30) into Eq. (26) we get

〈〈n1(	t )〉〉 = α − 1

t0

sin πβ

π

∫ t

0
	t1−β (t − 	t )β−1d	t .

(34)
Changing the variable of integration to ξ = 	t/t we obtain

〈〈n1(	t )〉〉 = α − 1

t0

sin πβ

π
tB(β, 2 − β ), (35)

where the beta function,

B(β, 2 − β ) =
∫ 1

0
ξβ−1(1 − ξ )1−βdξ, (36)
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is equal to

B(β, 2 − β ) = πβ

sin πβ
. (37)

In such a way we get

〈〈n1(	t )〉〉 = β(α − 1)
t

t0
. (38)

For the incomplete resetting substitution of Eq. (19) and
Eq. (31) into Eq. (27) surprisingly leads to the same result,

〈〈n2(	t )〉〉 = 〈〈n1(	t )〉〉 = β(α − 1)
t

t0
. (39)

In both cases the mean number of steps grows with obser-
vation time, so that for these cases the intermediate asymp-
totics in x discussed in the next section indeed appear at long
times.

D. Mean number of steps for β > 1

In this case the rate of resetting events is time independent,
so that

p1(	t |t ) = β − 1

τ
1−β

0

1

(τ0 + 	t )β
, (40)

and

p2(tr |t ) = β − 1

τ
1−β

0

1

[τ0 + t − tr]β
. (41)

1. Subdiffusion with 0 < α < 1

In case of complete resetting we introduce Eq. (18) and
Eq. (40) into Eq. (26) and get

〈〈n1(	t )〉〉 = t−α
0

sin πα

πα

β − 1

τ
β−1
0

tα−β+1I1(α, β; z), (42)

where ξ = 	t/t , z = τ0/t , and the integral,

I1(α, β; z) =
∫ 1

0
ξα (z + ξ )−βdξ, (43)

will repeatedly appear in our calculations, and its asymptotic
behavior in different domains of parameters is discussed in
Appendix A. For α > β − 1 the function I1(α, β; z) tends to a
constant [see Eq. (A7) in Appendix A] and at large t we have

〈〈n1(	t )〉〉 � t−α
0 τ

β−1
0

β − 1

2 + α − β

sin πα

πα
tα−β+1. (44)

For α < β − 1 and for large t the behavior is different;
Eq. (A8) and the MSD stagnates:

〈〈n1(	t )〉〉 � C

(
τ0

t0

)α

, (45)

with

C = sin πα

πα
(β − 1)B(α + 1, β − α − 1). (46)

The stagnant number of steps is large only if τ0 	 t0. Only in
this case any universal behavior of the PDF can be anticipated.

On the other hand, for the incomplete resetting we substi-
tute Eq. (18) and Eq. (41) into Eq. (27) and introduce new
variables z = τ0/t and ζ = 1 − tr/t :

〈〈n2(t )〉〉 = sin πα

πα

(
t

t0

)α
(

1 − t1−β β − 1

τ
1−β

0

I0

)
. (47)

The integral,

I0 =
∫ 1

0
(1 − ζ )α (z + ζ )−βdζ , (48)

diverges at lower limit for z → 0. Close to this limit the first
multiplier in the integrand can be set to unity and therefore

I0 �
∫ 1

0
(z + ζ )−βdζ � z1−β

β − 1
= τ

1−β

0

t1−β (β − 1)
. (49)

In contrast to the case β < 1, the second term in the brackets
in Eq. (47) converges to unity for t → ∞, and the main
asymptotics of the expression comes from subleading terms.
The reason is that for β > 1 the PDF p(tr |t ) is very strongly
peaked at tr ≈ t , and the difference between tr and t is
typically small.

The way to circumvent the calculation of the subleading
terms is as follows. Introducing 	t = t − tr we now may
expand the expression Eq. (25) with substitution from Eq. (18)
in 	t and write

〈n2(	t )〉 � sin πα

π
t−α
0 tα−1	t . (50)

Performing the average over the distribution of 	t , Eq. (40),
and introducing the variable z = τ0/t , we get

〈〈n2(t )〉〉 = sin πα

π

tα−1

tα
0

β − 1

τ
1−β

0

t2−β I1(1, β; z), (51)

where the integral I1 is defined in terms of Eq. (43). According
to Eq. (A7) we thus get for β < 2,

〈〈n2(t )〉〉 = sin πα

π
t−α
0 τ

β−1
0

β − 1

2 − β
t1+α−β . (52)

Depending on the relation between α and β this may be a
decaying or a growing function of t . Thus, for α > β − 1,
〈〈n(t )〉〉 grows at longer times monotonically, and the typical
number of steps will be large. In the opposite case the number
of steps would decay at longer times, and can be large only in
the intermediate time domain,

t � (
tα
0 τ

β−1
0

) 1
β−1−α = τ0

(
τ0

t0

) α
β−1−α

. (53)

Noting that our asymptotic discussion is only valid for
t0, τ0 � t , the necessary condition of the existence of large
〈〈n(t )〉〉 is

t0, τ0 � τ0

(
τ0

t0

) α
β−1−α

, (54)

which would hold for t0 � τ0.
For β > 2 we have

sin πα

π

tα−1

tα
0

β − 1

τ
1−β

0

t2−βz2−βB(2, β − 2) = C1
tα−1

tα
0 τ0

, (55)
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TABLE I. Conditions for 〈〈n(t )〉〉 	 1.

β α Complete Incomplete
resetting resetting

0 < β < 1 All α t 	 τ0, t0 t 	 τ0, t0

(asymptotic) (asymptotic)
1 < β < 2 α > β − 1 t 	 τ0, t0 t 	 τ0, t0

(asymptotic) (asymptotic)
α < β − 1 τ0 	 t0 τ0 	 t0

(all t) τ0 � t � τ0( τ0
t0

)
α

β−1−α

(transient)
2 < β α < 1 τ0 	 t0 τ0 	 t0

(all t) τ0 � t � τ0( τ0
t0

)
α

1−α

(transient)
α > 1 τ0 	 t0 τ0 	 t0

(all t) (all t)

which is a decaying function of t . To get the intermediate
domain in which 〈〈n(t )〉〉 	 1 together with t0, τ0 � t one
again needs to choose τ0 	 t0.

2. Normal diffusion with α � 1

For the case α > 1 we have for complete resetting,

〈〈n1(t )〉〉 = α − 1

t0

β − 1

τ
1−β

0

∫ t

0

	t

(τ0 + 	t )β
d	t . (56)

Changing the variable of integration to ξ = 	t/t and taking
z = τ0/t leads to

〈〈n1(t )〉〉 = α − 1

t0

β − 1

τ
1−β

0

t2−β I1(1, β; z), (57)

where the integral I1 is defined in terms of Eq. (43). The result
depends on whether 1 < β < 2 or β > 2. For β < 2 Eq. (A7)
applies with

〈〈n1(t )〉〉 = α − 1

t0

β − 1

(3 − β )τ 1−β

0

t2−β. (58)

For β > 2 we have for z → 0,

〈〈n1(t )〉〉 = B(2, β − 2)(α − 1)(β − 1)
τ0

t0
, (59)

i.e., 〈〈n1(t )〉〉 tends to a constant which is large provided τ0 	
t0.

For the incomplete resetting we obtain the same result,
〈〈n2(t )〉〉 = 〈〈n1(t )〉〉.

E. Asymptotic of the mean number of steps

Table I represents the time domains in which the mean
number of steps is much larger than unity. Here the notation is
as follows: If 〈〈n(t )〉〉 → ∞ in the limit t → ∞, the behavior
is called asymptotic. In other cases 〈〈n(t )〉〉 	 1 only when
τ0 	 t0. This may take place at any value of t provided it is
large enough, t 	 t0, τ0, or only in some domain of t bounded
from above. In the first case we will say that the behavior is

FIG. 2. The time dependence of the MSD in different do-
mains of parameters α and β for complete and for incomplete
resetting. Note that these dependencies are the same as for the
mean-field model, the scaled Brownian motion (SBM) [17,18]. The
case of complete resetting corresponds to the renewal [17], and
the case of incomplete resetting to the nonrenewal [18] cases for
the SBM.

062117-6



CONTINUOUS-TIME RANDOM WALKS UNDER POWER-LAW … PHYSICAL REVIEW E 101, 062117 (2020)

FIG. 3. Typical trajectories for CTRW with power-law waiting
time density for jumps and the power-law distribution of waiting
times for resetting (incomplete resetting case). The parameters are
β = 0.5, α = 0.5, τ0 = 1.

independent of t , and in the second case that the behavior is
transient. These results will be of use in Sec. IV.

F. Mean-squared displacement: numerical results

After 〈〈n1,2(t )〉〉 are found, the behavior of the MSD 〈x2(t )〉
follows from Eq. (16). The overview of all possible regimes
of the MSD is provided in Fig. 2.

The analytical results for the MSD are confirmed by the
numerical simulations. For each realization of the process we
generate random numbers si distributed according to Eq. (1)
for the CTRW waiting times and random numbers ri dis-
tributed according to Eq. (11) for the resetting waiting times.
We take t0 = 1, corresponding to Kα = 0.318 [according to
Eq. (21)]. The values of τ0 differ in different simulations and
are given explicitly in the captions or in the legends. The times
of steps are then obtained as t1 = s1, tn = tn−1 + sn, and the
procedure is stopped when tn exceeds the maximal simulation
time T . The resetting times rn are generated in a similar
manner. In the simulation of the CTRW the time, starting from
t = 0, is increased by an amount of 	t , and it is checked,
whether a jump, or the resetting event falls in the correspond-
ing time interval. In the first case the walker performs the
jump with the length 	x = 1 either to the right or to the left
with equal probability. In the second case the coordinate of the
walker is set to zero. Figure 3 displays three trajectories for the
CTRW with power-law waiting time density and power-law
resetting in the case of incomplete resetting. The simulations
reported in other figures are performed with 105 walkers.

In Fig. 4 we show the simulation results for the MSD for
both complete and incomplete resetting in a broad domain of
parameters. These simulations confirm that the corresponding
asymptotics are the same as in the scaled Brownian motion;
see Ref. [17] for the renewal case, corresponding to complete
resetting, and Ref. [18] for the nonrenewal case (incomplete
resetting).

(a)

(b)

.

.
.

.

.

FIG. 4. Mean-squared displacement 〈x2(t )〉 for CTRW with the
power-law waiting time density with α = 0.5 and power-law reset-
ting with τ0 = 100 and (a) β = 5, (b) β = 0.5, 1.4, 1.5, and 1.6.
Dashed lines show the corresponding theoretical asymptotics.

IV. PROBABILITY DENSITY FUNCTIONS

A. Asymptotic forms of the CTRW Green’s functions

The standard variant of the CTRW is the Scher-Montroll
“wait-first” scheme, starting from the waiting time. The PDF
in the coordinate-time representation is

Pw(x, t ) =
∞∑

n=0

Pn(x)χn(t ), (60)

where Pn(x) is the position after n steps in a simple random
walk, and χn(t ) is the probability that exactly n steps are taken
up to the time t . The functions χn take a very simple form in
the Laplace domain,

χn(s) = ψn(s)
1 − ψ (s)

s
, (61)

and the functions Pn(x) in the Fourier domain read Pn(k) =
λn(k), where λ(k) is the characteristic function of the displace-
ment distribution in a single step. The PDF of the walker’s
position in the Fourier-Laplace representation for this scheme
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is given by

pw(k, s) = 1

1 − λ(k)ψ (s)

1 − ψ (s)

s
. (62)

Another scheme, the “jump-first” one, differs only in the fact
that the walk starts not from a waiting time but from a jump at
t = 0, so that

Pj (x, t ) =
∞∑

n=0

Pn+1(x)χn(t ), (63)

and

p j (k, s) = λ(k)

1 − λ(k)ψ (s)

1 − ψ (s)

s
. (64)

Assuming the steps to be symmetric and to have the finite
second moment (λ(k) � 1 − a2k2/2) and the waiting times to
follow a power law, ψ (s) � 1 − �(1 − α)tα

0 sα , we get in both
cases the lowest order in k and s (i.e., in the continuous limit of
long times and large scales) the same asymptotic expression,

p(k, s) = sα−1

k2
[
a2/2�(1 − α)tα

0

] + sα
. (65)

The combination K̃α = a2/2�(1 − α)tα
0 of the specific param-

eters of the walk is related to the coefficient of the anomalous
diffusion Kα defined in Eq. (21), K̃α = �(α)Kα . The limiting
form of the Green’s function of CTRW is given by the inverse
Fourier-Laplace transform of Eq. (65), and reads

G1,2(x, t ) = Pw, j (x, t ) = 1

2
√

K̃αtα
Mα/2

(
|x|√
K̃αtα

)
, (66)

with

Mα/2(y) =
∞∑

n=0

(−y)n

n!�[−αn/2 + (1 − α/2)]
(67)

being the Mainardi function; see Appendix B. For large |x|
compared to

√
K̃αtα/2 the function G(x, t ) shows a squeezed

exponential tail [Eq. (B8)]. For small |x| compared to
√

K̃αtα/2

the function G(x, t ) shows the cusp at zero which disap-
pears only in the Gaussian case α = 1. The asymptotic form,
Eq. (66), applies when the number of steps performed during
time t is large.

Thus, for |x| � Ktα/2 the Green’s function tends to
G(0, t ) = C1	t−α/2, while for |x| 	 Ktα/2 the leading
asymptotics of the Green’s function is

G(x, t ) � C2t− α
2(2−α) |x| 2α−2

2(2−α) exp

(
C3

|x| 2
2−α

t
α

2−α

)
. (68)

We will never need the exact form of the Green’s function but
only its similarity form, Eq. (65), combined with the fact that
the Mainardi function is rapidly decaying at infinity.

According to our discussion accompanying Fig. 1, the
PDFs of the CTRW under resetting P(x, t ) is given by
mixtures of the PDFs (Green’s functions) of the CTRW
G1,2(x,	t ) of the wait-first or jump-first CTRW in cases (1)
and (2), respectively. These Green’s functions are weighted
with the probability density p(	t |t ) of the observed duration
of the corresponding walk 	t , conditioned on the observation

time t in case (1) or with the probability density of the
time 	t ′ elapsed between the first step of the walk after the
resetting and the end of the observation, p2(	t ′|t ) (vide infra).
Thus,

P1(x, t ) =
∫ t

0
G1(x,	t )p1(	t |t )d	t, (69)

and

P2(x, t ) =
∫ t

0
G2(x,	t ′)p2(	t ′|t )d	t ′. (70)

Let us assume that the PDF p(	t |t ) = p1,2(	t |t ) of the
CTRW duration 	t (or 	t ′) follows a power law in some
domain of 	t , i.e., possesses an intermediate asymptotics,

p(	t |t ) = A(t )	t−γ , (71)

with γ > 0 in the domain tmin � 	t � t . Then the corre-
sponding intermediate asymptotics of P(x, t ) will be

P(x, t ) = A(t )
∫ t

0
d	t 	t−γ 1

2
√

K̃α	tα/2

×Mα/2

(
|x|√

K̃α	tα/2

)
. (72)

Introducing the scaling variable,

ξ = |x|√
K̃α	tα/2

, (73)

we rewrite the last expression as

P(x, t ) = A(t )K̃
γ−1
α

α |x|−1− 2(γ−1)
α

×
∫ ∞

|x|√
K̃α tα/2

ξ
2(γ−1)

α Mα/2(ξ )dξ . (74)

The existence of the intermediate power-law asymptotics in
x (i.e., of the universal behavior for |x| �

√
K̃αtα/2) corre-

sponds to situations when the integral stays convergent when
its lower limit tends to zero, i.e., for 2(γ − 1)/α > −1, or, in
other words, for

γ > 1 − α

2
. (75)

In the opposite case the integral for small |x| is dominated
by its behavior on the lower limit of integration, where
the Mainardi function tends to a constant, so that P(x, t ) ∝
constA(t )t1−γ−α/2x0, i.e., develops a flat top. Therefore the
intermediate power-law asymptotics of the PDF exists for
γ > 1 − α/2 and is given by

P(x, t ) ∝ A(t )|x|−1− 2(γ−1)
α . (76)

The far asymptotics of large |x| follows (up to power-law
prefactors) the squeezed exponential wing of the Mainardi
function.

B. Equations for the distributions of observed walk duration

The PDF of 	t in the case of the complete resetting is given
by Eq. (29) with its two special cases, Eqs. (30) and (40). The
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final results follow from the observations that for 	t � t in
case (1) for β < 1,

p1(	t |t ) � sin πβ

π
tβ−1	t−β, (77)

so that A(t ) ∼ tβ−1 and γ = β, and

p1(	t |t ) � β − 1

τ
1−β

0

	t−β, (78)

so that A(t ) = const τβ−1
0 and γ = β for β > 1.

The distribution of the duration 	t ′ of the jump-first
CTRW in case (2) of incomplete resetting was not considered
yet. This CTRW starts after the forward recurrence time
t f = t1 − tr after the resetting event, so that its duration is
	t ′ = t − t1.

Given tr (which is the aging time of the aged CTRW), the
distribution of the forward recurrence time t f is given by [24]

ψ1(t f |tr ) = sin πα

π

(
tr
t f

)α 1

tr + t f
. (79)

The duration 	t ′ of the following “jump-first” CTRW is
	t ′ = t − (tr + t f ) if the sum tr + t f does not exceed t , and is
zero otherwise. Let us first fix tr and calculate the conditional
PDF p(	t ′|tr, t ):

p(	t ′|tr, t ) =
∫ t−tr

0
dt f δ[	t ′ − (t − tr − t f )]ψ1(t f |tr )

+ δ(	t ′)
∫ ∞

t−tr

ψ1(t f |tr )dt f

= sin πα

π

(
tr

t − tr − 	t ′

)α 1

t − 	t ′

+ δ(	t ′)
∫ ∞

t−tr

ψ1(t f |tr )dt f , (80)

where δ(x) is the Dirac delta function. The weight of this δ

term, the integral I (t − tr ) = ∫ ∞
t−tr

ψ1(t f |tr )dt f , is the proba-
bility that no steps of CTRW were done after resetting. Now
we average the expression Eq. (80) over tr which has to lay
between 0 and t − 	t ′ if 	t ′ is nonzero:

p2(	t ′|t ) =
∫ t−	t ′

0
p(	t ′|tr, t )pr (tr |t )dtr

=
∫ t−	t ′

0

sin πα

π

(
tr

t − tr − 	t ′

)α 1

t − 	t ′ pr (tr |t )dtr

+ δ(	t ′)
∫ t

0

[∫ ∞

t−tr

ψ1(t f |tr )dt f

]
pr (tr |t )dtr . (81)

The term with zero steps contributes to the overall normaliza-
tion and corresponds to a delta peak at the origin in the total
PDF. This term does not influence the wings of the PDF. We
will denote the weight of the δ function in the last line by R.

The explicit form of R for β < 1 is

R = sin πα

π

sin πβ

π

×
∫ t

0
tβ−1
r (t − tr )−β

∫ ∞

t−tr

tα
r t−α

f (tr + t f )−1dtrdt f . (82)

We note that the conditional PDF ψ1(t f |tr ),
Eq. (79), is normalized for any tr , and therefore∫ t

0 pr (tr |t )[
∫ ∞

0 ψ1(t f |tr )dt f ]dtr = 1. Note that the integrand
of the second integral in Eq. (82) is non-negative, so that∫ ∞

t−tr

tα
r t−α

f (tr + t f )−1dt f �
∫ ∞

0
tα
r t−α

f (tr + t f )−1dt f , (83)

and therefore R � 1, so that the whole double integral has to
be convergent (except for the limiting cases α = 1 or β = 1
when the trigonometric prefactors vanish). On the other hand,
introducing the new variables ξ = tr/t and η = t f /t we see
that

R = t0 sin πα

π

sin πβ

π

×
∫ 1

0
ξβ−1(1 − ξ )−β

[∫ ∞

1−ξ

ξαη−α (ξ + η)−1dη

]
dξ .

(84)

The integral in this expression converges, as we have seen
above, is positive, and depends only on parameters α and β,
but not on t . Therefore the weight of the δ peak tends to a
constant in the course of time.

For β > 1 the qualitative result is the same, but the discus-
sion is slightly different. Now

pr (tr |t ) � 1

β − 1

τ
β−1
0

(τ0 + t − tr )β
, (85)

so that

R = 1

β − 1

sin πα

π
τ

β−1
0

×
∫ t

0
(τ0 + t − tr )−β

∫ ∞

t−tr

tα
r t−α

f (tr + t f )−1dtrdt f .

(86)

Denoting ζ = τ0/t we write

R = 1

β − 1

sin πα

π
ζβ−1

×
∫ 1

0
(1 + ζ − ξ )−β

∫ ∞

1−ξ

ξαη−α (ξ + η)−1dηdξ . (87)

Now we note that this expression is bounded from above
(since R � 1) and would tend to zero only if the double
integral in the last expression converges or diverges slower
than ζ 1−β for ζ → 0. Now we introduce the new variable
z = η/ξ in the inner integral, and write

R = 1

β − 1

sin πα

π
ζβ−1

×
∫ 1

0
(1 + ζ − ξ )−β

[∫ ∞

ξ−1−1
z−α (1 + z)−1dz

]
dξ . (88)

The ζ dependence of the whole integral is dominated by the
behavior of the integrand for ξ → 1 when the internal integral
tends to a constant,∫ ∞

0
z−α (1 + z)−1dz = π

sin[(1 − α)π ]
, (89)
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and therefore∫ 1

0
(1 + ζ − ξ )−β

∫ ∞

1−ξ

ξαη−α (ξ + η)−1dηdξ

� π

(β − 1) sin[(1 − α)π ]
ζ 1−β, (90)

so that for t → ∞,

R → 1

β − 1

sin πα

π

π

(β − 1) sin[(1 − α)π ]

= 1

(β − 1)2

sin πα

sin π (1 − α)
, (91)

i.e., again tends to the constant. The δ peak only disappears
for β → ∞ and for exponential resetting.

The main integral [the second line in Eq. (81)] is awkward,
but we can still distill the general time dependence (up to
prefactors). To do so we note that the intermediate asymp-
totics appears when for t0 � 	t ′ � t the function p2(	t ′|t )
possesses a power-law asymptotics p2 ∼ A(t )	t ′−γ .

a. β < 1. For this case we have

p(	t ′|t ) =
∫ t−	t ′

0
p(	t ′|tr, t )p2(tr |t )dtr

=
∫ t−	t ′

0

sin πα

π

(
tr

t − tr − 	t ′

)α

× 1

t − 	t ′
sin πβ

π
tβ−1
r (t − tr )−βdtr

+ Rδ(	t ′). (92)

Thus,

p(	t ′|t ) = sin πα sin πβ

π2

1

t − 	t ′

∫ t−	t ′

0

×(t − 	t ′ − tr )−αtα+β−1
r (t − tr )−βdtr

+ Rδ(	t ′). (93)

The intermediate asymptotic power-law behavior in the
wing of the PDF may appear if for long t the PDF p(	t ′|t )
shows a power-law behavior for t0 � 	t ′ � t , in which the δ

peak does not play a role. To distill the power-law dependence
on 	t ′ we introduce in Eq. (93) new variables z = 	t ′/t and
ξ = tr/t and rewrite the integral as

p(	t ′|t ) = sin πα sin πβ

π2
t−1 1

1 − z

×
∫ 1−z

0
(1 − z − ξ )−αξα+β−1(1 − ξ )−βdξ .

(94)

Now we investigate the behavior of the integral for z → 0.
This behavior depends on whether α + β < 1 or α + β >

1. In the first case the integral converges and tends to a
constant value. This corresponds to γ = 0. In the second case
it shows a divergence at its upper limit. Since this limit is
approximately unity, we can set the second multiplier in the
integrand to unity and simplify the expression:

p(	t ′|t ) � C × t−1
∫ 1−z

0
(1 − z − ξ )−α (1 − ξ )−βdξ . (95)

Now we introduce the new variable of integration ζ = 1 −
z − ξ and write

I =
∫ 1−z

0
(1 − z − ξ )−α (1 − ξ )−βdξ

=
∫ 1−z

0
ζ−α (z + ζ )−βdζ

= 1

1 − α
(1 − z)1−αz−β

2F1

(
β, 1 − α, 2 − α; −1 − z

z

)
;

(96)

see Eq. (1.2.4.3) of Ref. [42]. Now we apply the Pfaff trans-
formation,

2F1(β, 1 − α, 2 − α; x)

= (1 − x)−1+α
2F1

(
1 − α, 2 − α − β; 2 − α;

x

x − 1

)
,

(97)

so that (for z → 0)

I→ 1

1 − α
z1−α−β

2F1(1 − α, 2 − α − β; 2 − α; 1) ∼ z1−α−β.

(98)

The value of the corresponding hypergeometric function is

2F1(1 − α, 2 − α − β; 2 − α; 1) = �(2 − α)�(α + β − 1)

�(1)�(β )
(99)

(note that α + β − 1 > 0 is exactly the condition under which
this asymptotic value is attained), so that

p(	t ′|t ) � sin πα sin πβ

π2

�(2 − α)�(α + β − 1)

�(1)�(β )

× t−1

(
	t ′

t

)1−α−β

, (100)

which corresponds to our power law with A(t ) ∝ t−α−β and
γ = α + β − 1.

b. β > 1. For the case β > 1 we have

p2(	t ′|t ) �
∫ t−	t ′

0

sin πα

π

(
tr

t − tr − 	t ′

)α

× 1

t − 	t ′
1

β − 1

τ
β−1
0

(τ0 + t − tr )β
dtr . (101)

Now we again introduce z = 	t ′/t , ζ = τ0/t , and ξ = tr/t
and obtain

p2(	t ′|t ) � t−1 sin πα

π (β − 1)

ζ β−1

1 − z

×
∫ 1−z

0

ξα

(z + 1 − ξ )α (ζ + 1 − ξ )β
dξ . (102)

We are interested in the asymptotic z dependence of this
expression for z → 0. We note that at z = 0 the integral stays
convergent, however, the interesting condition is z 	 ζ . For
both small z and ζ the integral is dominated by the behavior of
the integrand at the upper bound, where, due to the restriction
z 	 ζ , we can neglect ζ in the second multiplier in the
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TABLE II. Intermediate asymptotics of random walk duration.

Kind of resetting A(t ) γ Restrictions

Complete tβ−1 β β < 1
τ

β−1
0 β β > 1
t−1 0 β < 1, α + β < 1

Incomplete t−α−β α + β − 1 β < 1, α + β > 1
τ

β−1
0 tα−1 α + β − 1 β > 1

denominator; take ξα ≈ 1 in the numerator and change the
integration variable to y = 1 − ξ :

I =
∫ 1−z

0

ξα

(z + 1 − ξ )α (ζ + 1 − ξ )β
dξ

≈
∫ 1

z
(z + y)−α (ζ + y)−βdy. (103)

Now, close to the lower bound the first term is simply z−α

and in the second one the small regularizing term ζ can be
neglected, so that

I ≈ z−α

∫ 1

z
y−βdy � 1

β − 1
z1−α−β. (104)

Putting this in the expression for p2 we get

p2(	t ′|t ) � t−1 sin πα

π (β − 1)2
ζ β−1z1−α−β

= sin πα

π (β − 1)2
τ

β−1
0 tα−1	t ′1−α−β, (105)

and get our power-law expression with A(t ) ∝ τ
β−1
0 tα−1, and

γ = α + β − 1 like in the previous case.
The overall results for the intermediate asymptotics of

P1,2(	t ′|t ) are summarized in Table II.
The inspection of this table allows us to tell under which

conditions we can await the power-law intermediate behavior
of the PDF, when we remember that this only appears for
γ > 1 − α/2 [Eq. (75)]. Thus, for β < 1 the intermediate
asymptotics in the complete resetting is observed only for
β > 1 − α/2, otherwise the flat top of the PDF immediately
merges with its squeezed exponential tail. For incomplete
resetting with α + β < 1 it does not exist at all (one has a delta
peak connected to the wing), and for α + β > 1 the condition
to observe the intermediate asymptotics is β > 2 − 2

3α (under
which condition the inequality α + β > 1 holds automatically
for all α < 1).

C. Final results

For a complete resetting the final results are as follows: The
intermediate asymptotics exists for β > 1 − α

2 , and reads

P(x, t ) ∼
{

tβ−1|x|−1− 2(β−1)
α for β < 1

|x|−1− 2(β−1)
α for β > 1.

(106)

This behavior is exactly the same as for SBM with the
corresponding exponent of the anomalous diffusion α (see
Ref. [17]). Note that for β > 1 and α < β − 1 the universal

FIG. 5. Classification of intermediate asymptotic behaviors of
P(x, t ) as a function of x for CTRW under resetting for 0 < α < 1.
The lower, white region corresponds to the domain of parameters
α, β where the intermediate power-law behavior does not occur.
The intermediate triangular domain (yellow online) corresponds to
the values of parameters when the power-law behavior in |x| is
observed at long times. The gray domains correspond to the cases
when this behavior is observed only for τ0 	 t0 either at all times
(left) or only transiently (right). The hatched domains correspond to
situations when the intermediate |x| asymptotics is observed for β <

1. The types of behavior are: Domain 1 p(x, t ) ∼ tβ−1|x|−1− 2(β−1)
α ,

domain 2 p(x, t ) ∼ |x|−1− 2(β−1)
α , domain 3 p(x, t ) ∼ t−α−β |x| 2(1−β )

α −3,
and domain 4 p(x, t ) ∼ τ

β−1
0 tα−1|x| 2(1−β )

α −3.

form of the PDF is only transient (i.e., visible only at interme-
diate times) and only exists for τ0 	 t0.

For incomplete resetting the intermediate asymptotics is
visible only for β > 2 − 3

2α and reads

P2(x, t ) ∼
{

t−α−β |x| 2(1−β )
α

−3 for β < 1

τ
β−1
0 tα−1|x| 2(1−β )

α
−3 for β > 1.

(107)

We have to stress that the universal form of the Green’s
functions based on taking only the lowest order contribution
in k is only applicable if the corresponding PDF is broad
enough, i.e., typical value of |x| is much larger than a. This
implies that the number of steps of CTRW made during
the time t must be large. The typical number of steps is of
the order of 〈〈n(t )〉〉, whose behavior was already discussed
in Sec. III.

Note that for incomplete resetting the corresponding
behavior represents a decaying function of |x|, which is
“switched” between the delta peak at the origin and the
squeezed exponential tail, starting late. This behavior differs
from the one observed in SBM both with respect to the
existence of the δ peak and with respect to the presence
of the α dependence in the corresponding power law. Both
features are connected with the fact that the first step of the
CTRW after resetting follows very late after the resetting
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.

.

FIG. 6. Probability density function for CTRW with power-law
densities for waiting times and for resetting times under complete
resetting. The parameters are as follows: α = 0.5, β = 1.5, t0 =
1 and τ0 = 1000, t = 1000. The wing of the distribution scales
according to p(x) ∼ x−1−2β/α+2/α , corresponding to domain 2 in
Fig. 5.

event. This is a true fluctuation effect, which is not cap-
tured by the mean-field SBM description. Note that since
the prefactor of |x| explicitly depends on time the situation
is always nonstationary. In this case again the universal
asymptotic behavior in the case α < β − 1 is only observable
for t0 � τ0.

The overview about intermediate power-law asymptotics
of the PDFs is given in Fig. 5. The examples of such asymp-
totics as seen in numerical simulations are given in Figs. 6
and 7.

. .

FIG. 7. Probability density function for CTRW with power-law
densities for waiting times and for resetting times under incomplete
resetting at t = 1000. The parameters are the same as in Fig. 6: α =
0.5, β = 1.5, t0 = 1, τ0 = 1000. The wing of the distribution now
scales according to p(x) ∼ x−3−2β/α+2/α corresponding to domain 4
in Fig. 5.

V. CONCLUSIONS

We have studied subdiffusive continuous-time random
walks (CTRWs) with power-law resetting. We have consid-
ered the incomplete resetting, when the waiting period of
CTRW is unaffected by the resetting event and complete
resetting, when the waiting period starts anew at the resetting
event. We have shown that the behavior of MSD in CTRW
under resetting is the same as for subdiffusive SBM under the
same conditions which reflects the fact that SBM can serve as
a mean-field approximation for the CTRW for both cases. The
PDF of displacements in CTRW under complete resetting is
similar to such for the renewal SBM [17]. The fact that for
both SBM and CTRW with complete resetting the forms of
the MSD and PDF are similar is highly nontrivial (note that
the free SBM is a Gaussian process, while the free CTRW
possesses the PDF with a cusp and stretched-Gaussian tails).
On the contrary, for the CTRW with incomplete resetting the
behavior of the PDF of displacements differs considerably
from the one for SBM [18] due to fluctuation effects con-
nected with the distribution of the waiting time for the first
jump of CTRW after resetting.

APPENDIX A: ASYMPTOTIC PROPERTIES OF THE
INTEGRAL, GIVEN BY Eq. (43)

At several places of our calculations [e.g., Eq. (43)] the
integrals of the form,

I1(α, β; z) =
∫ 1

0
yα (z + y)−βdy, (A1)

with α > −1 and different values of parameter β appear, for
which we are typically interested in their asymptotics when
z → 0.

This integral is essentially given by a hypergeometric
function [see Eq. (1.2.4.3) of [42]]:

I1(α, β; z) = (1 + α)−1z−β
2F1(1 + α, β; 2 + α; −z−1).

(A2)
To get the asymptotic behavior of this function we can apply
Pfaff transformation to transform the function of the argument
x = −z−1 which tends to infinity to a function of the argument

x
x−1 = −z−1

−z−1−1 = 1
z+1 which tends to unity and use the special

value of the hypergeometric function at unity given by the
Gauss theorem:

2F1(a, b; c; 1) = �(c)�(c − a − b)

�(c − a)�(c − b)
, (A3)

which holds for

Rec > Re(a + b). (A4)

There are two such Pfaff transformations:

2F1(a, b; c; x) = (1 − x)−b
2F1

(
b, c − a; c;

x

x − 1

)
, (A5)

and

2F1(a, b; c; x) = (1 − x)−a
2F1

(
a, c − b; c;

x

x − 1

)
, (A6)

with the first one being useful for α > β − 1 [when the con-
dition Eq. (A4) for the transformation of the hypergeometric
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function in Eq. (A2) holds], and the second one for the
opposite case α < β − 1. Applying the first transformation
we get for α > β − 1,

I1(α, β; z) � z0 1

2 + α − β
, (A7)

i.e., tends to a positive constant.
The second transformation which applies for α < β − 1

gives

I1(α, β; z) � z1+α−β 1

1 + α

�(2 + α)�(β − α − 1)

�(1)�(β )

= z1+α−βB(α + 1, β − α − 1), (A8)

i.e., I1(α, β; z) behaves as z1+α−β .

APPENDIX B: THE MAINARDI FUNCTION

Let us start from our Eq. (65):

p(k, s) = sα−1

k2K̃α + sα
, (B1)

and perform the inverse transforms. We first perform the
inverse Fourier transform by noting that

F−1 1

k2 + 1
= 1

2
e−|x|. (B2)

Therefore,

p(x, s) = 1

2

s
α
2 −1√
K̃α

exp

(
− |x|√

K̃α

s
α
2

)
. (B3)

Now we expand the exponential and perform term-per-term
inverse Laplace transform, noting that

L−1sγ = 1

�(−γ )
t−γ−1 (B4)

(for γ not being a non-negative integer). Therefore we obtain

p(x, t ) = 1

2
√

K̃α

∞∑
n=0

(
− |x|√

K̃α

)n

× 1

n!�
[ − nα

2 + (
1 − α

2

)] t− (n+1)α
2

= 1

2
√

K̃αtα/2

∞∑
n=0

1

n!�
[ − nα

2 + (
1 − α

2

)]
(

− |x|√
K̃αtα/2

)n

.

The series in this asymptotic form represents a known special
function [43]:

pw, j (x, t ) = 1

2
√

K̃αtα/2
Mα/2

(
|x|√

K̃αtα/2

)
, (B5)

with

Mα/2(y) =
∞∑

n=0

(−y)n

n!�
[ − nα

2 + (1 − α
2 )

] = �−α/2,1−α/2(y)

(B6)
being the Mainardi function, and �a,b(y) being the Write
function.

The asymptotic behavior of p(x, t ) for small |x| follows im-
mediately from the series expansion of the Mainardi function.
For all α < 1 the function p(x, t ) (as a function of x) shows the
cusp at zero which disappears only in the Gaussian case α = 1
when all terms of odd orders disappear due to the divergence
of the Gamma functions of whole nonpositive arguments, and
M1/2(y) = π−1/2 exp(−y2/4).

The asymptotic form of the Mainardi function [43] for
large y is

Mα/2(y) � Aya exp(−byc), (B7)

with

A = [2π (2 − α)2α/(2−α)α(2−2α)/(2−α)]−1/2,

a = 2α − 2

2(2 − α)
,

b = (2 − α)2α/(2−α)αα/(2−α),

c = 2

2 − α
.

Thus, for |x| large compared to
√

K̃αtα/2 the leading asymp-
totics of function p(x, t ) is

p(x, t ) � C1K̃
− 1

2(2−α)
α t− α

2(2−α) |x| 2α−2
2(2−α) exp

(
C2

|x| 2
2−α

K̃
1

2−α
α t

α
2−α

)
,

(B8)
with constants C1 and C2 deriving from the previous expres-
sions.
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