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For the fermionic or bosonic oscillator fully coupled to several heat baths with mixed statistics, the analytical
expressions for the occupation numbers are derived within the non-Markovian quantum Langevin approach.
Employing two or three heat baths and the Ohmic dissipation with Lorenzian cutoffs, the role of statistics of the
system and heat baths in the dynamics of the system is studied.
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I. INTRODUCTION

The environmental effect on a quantum system is an impor-
tant subject of the theory of open quantum systems [1–22].
In practice, a quantum system is often coupled to several
reservoirs, like in the case of cavity quantum electrodynam-
ics [23], Jaynes-Cummings lattices [24], photon-ion inter-
faces [25], ion chain systems [26], and phonon-induced spin
squeezing [27]. An example of collective motion in a bosonic
quantum system coupled with two bosonic reservoirs [28,29]
is the attenuation of single-mode field inside the resonator
which has two different partially transparent mirrors [28].
Because the losses in these mirrors are different, one can
consider them as two reservoirs. They consist of a large
number of phonon-type modes excited in mirrors. An example
of a fermionic system is the single-quantum-dot in fermionic
environments [30]. It can be in the strong Coulomb blockage
regime, so that only one electron is allowed therein. Two
electric leads act as two fermionic heat baths. It might be that
the quantum system and reservoirs have different statistics,
fermionic or bosonic. An example of collective motion in
surrounding of several thermostats with different statistics is
the fusion of nuclei in a stellar medium. Fusion occurs in the
relevant collective coordinate. One thermostat is connected
with the nucleon degrees of freedom of the nuclei. Other ther-
mostats can be associated with electromagnetic and pressure
fields. This description allows us to take effectively into con-
sideration the effects associated with the internal structure of
interacting nuclei and with the properties of medium. Another
example is the formation of atomic (nuclear) molecule in the
external electromagnetic field. The effects of the electron (nu-
cleon) degrees of freedom and the electromagnetic field can
be effectively described by means of appropriate thermostats.
So, there are many physical problems which can be solved
by dividing the total system into the open system coupled to
several heat baths.

In Ref. [31], we considered the case of FC (“fully cou-
pled”) oscillator modeling fermionic (bosonic) collective sys-
tem coupled with one bosonic (fermionic) heat-bath. We have
used the quadratic mixed fermionic-bosonic Hamiltonians for
the collective and internal systems with a linear coupling,
Ohmic dissipation with Lorenzian cutoffs, and presented the
detailed analysis of the role of the fermionic statistics (in
the comparison with the bosonic one) in the collective mo-
tion. For the fermionic collective system plus fermionic bath
(shortly, fermionic-fermionic), fermionic-bosonic, bosonic-
bosonic, and bosonic-fermionic systems, the master equations
and the analytical expressions for the collective occupation
numbers were derived. As shown, at large coupling strengths
or low temperatures the asymptotic occupation numbers for
the fermionic, bosonic, and mixed systems noticeably de-
viate from the corresponding Fermi-Dirac or Bose-Einstein
values. For the systems with bosonic bath, the friction and
diffusion coefficients oscillate in time [31]. In Ref. [29],
for the collective bosonic (fermionic) oscillator and several
internal bosonic (fermionic) heat baths, i.e., b-b-...-b (f-f-...-f),
coupled linearly (FC couplings), the analytical expression
for the collective occupation number was derived with the
non-Markovian quantum Langevin approach. The asymptotes
of the fermionic and bosonic occupation numbers were found.
The time-dependent transport coefficients of the master equa-
tions for the collective occupation number were obtained
as well. In the case of Ohmic dissipation with Lorenzian
cutoffs, the possibility of reduction of the system with several
heat baths to the system with one heat bath was analytically
demonstrated. In bosonic and fermionic cases, the statistics
of a particle in the effective bath differs from the original
ones and can not be taken anymore as either bosonic or
fermionic. In the Marokovian limit, the coupling to several
bosonic baths is reduced to the coupling to one bosonic bath
in which the effective temperature is a weighted average
of the temperature of the original baths. As well as for
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the fermionic case, the inverse temperature is the weighted
average of the inverse temperatures of different original
baths.

The aim of the present work is to extend the results
of Refs. [29,31] and consider the case of FC oscillator
modeling fermionic (bosonic) quantum system coupled with
several bosonic and/or fermionic heat baths. Note that the
systems with mixed statistics of baths were not considered
in Refs. [28–30]. In the contrast to the present work and
Ref. [29], the rotating wave approximation (RWA) couplings
were employed in Refs. [28,30]. In the present work, we use
the quadratic mixed fermionic-bosonic Hamiltonians for the
system and heat baths with a linear FC, and we present a
detailed analysis of the role of fermionic and bosonic statistics
in the dynamics of system. The FC contains the resonant and
nonresonant terms [2]. The fluctuation-dissipation relation is
satisfied for the FC-oscillator. Note that the interest in con-
sidering fermionic baths is growing up due to the possibility
to create and manipulate fermionic systems in condensed
matter, atomic, and nuclear physics [17,18]. For the system
fully coupled to several baths, we will check if it might
always reach a stationary asymptotic limit. Our aim is to
find the condition for the oscillation of asymptotic occupation
number. This interesting asymptotic behavior can be proposed
for practical use, for example, to increase the channels and
speed of communication lines and to control some states for
recording data in quantum computers.

In Sec. II, the formalism is presented and the expressions
for the master equations and the occupation numbers are
obtained. To our knowledge, it is shown for the first time that
the baths of different statistics can be used to obtain non-
stationary asymptotic occupation numbers. The asymptotic
occupation numbers are discussed. For the systems with two
baths with the same and mixed statistics and with three baths
with the same statistics, the illustrative numerical calculations
of diffusion and friction coefficients and level populations are
performed in Sec. III. A summary is given in Sec. IV.

II. FORMALISM

A. Hamiltonian

The Hamiltonian of the total system (the quantum system
plus several heat baths “λ,” λ = 1, · · · , Nb) is written as

H = Hc +
Nb∑

λ=1

Hλ +
Nb∑

λ=1

Hc,λ, (1)

where

Hc = h̄ωa†a (2)

is the Hamiltonian of the isolated system being either
fermionic or bosonic oscillator with frequency ω,

Hλ =
∑

i

h̄ωλ,ic
†
λ,icλ,i

are the Hamiltonians of the thermal baths. The value of Nb is
the number of heat baths. Each heat bath “λ” is modeled by
the assembly of independent fermionic or bosonic oscillators
labelled in both cases by “i” with frequencies ωλ,i. For the FC
coupling between the system and heat baths, the interaction

Hamiltonians Hc,λ are

Hc,λ =
∑

i

αλ,i(a
† + a)(c†

λ,i + cλ,i ). (3)

The real constants αλ,i determine the coupling strengths.
These couplings are linear in the system and baths operators.
They have important consequences on the dynamics of the
system by altering the effective collective potential and by
allowing energy to be exchanged with the thermal reservoirs,
thereby allowing the system to attain some equilibrium with
the heat baths.

Here, the system and heat baths have the fermionic or
bosonic statistics. So, the creation and annihilation operators
of the system and heat baths satisfy the commutation or
anticommutation relations,

aa† − εaa†a = 1, a†a† − εaa†a† = aa − εaaa = 0,

cλ,ic
†
λ,i − ελc†

λ,icλ,i = 1,

c†
λ,ic

†
λ,i − ελc†

λ,ic
†
λ,i = cλ,icλ,i − ελcλ,icλ,i = 0, (4)

where εa and ελ are equal to 1 (−1) for the bosonic (fermionic)
system and bosonic (fermionic) heat baths, respectively.

B. Master equation for occupation number of quantum system

Employing the Hamiltonian Eq. (1) for the fermionic and
bosonic systems, we deduce the equations of motion for the
occupation number

da†(t )a(t )

dt
= i

h̄

∑
λ,i

αλ,i[a(t ) − a†(t )][c†
λ,i(t ) + cλ,i(t )]

= i

h̄

∑
λ,i

αλ,i[c
†
λ,i(t )a(t ) − a†(t )cλ,i(t )

+ a(t )cλ,i(t ) − a†(t )c†
λ,i(t )]. (5)

For the operators c†
λ,i(t )a(t ) and a(t )cλ,i in Eq. (5), one can

derive the following equations:

dc†
λ,ia

dt
= i(ωλ,i − ω)c†

λ,ia + i

h̄
αλ,i[a

†a + aa]

× [1 − (1 − ελ)c†
λ,icλ,i]

− i

h̄

[∑
λ′,i′

αλ′,i′ (c
†
λ,ic

†
λ′,i′ + c†

λ,icλ′,i′ )

]

× [1 − (1 − εa)a†a], (6)

dacλ,i

dt
= −i(ωλ,i + ω)acλ,i − i

h̄
αλ,i[a

†a + aa]

× [1 − (1 − ελ)c†
λ,icλ,i]

− i

h̄

[∑
λ′,i′

αλ′,i′ (cλ,ic
†
λ′,i′ + cλ,icλ′,i′ )

]

× [1 − (1 − εa)a†a]. (7)

Substituting the formal solutions of Eqs. (6) and (7) in Eq. (5)
and averaging over the heat baths and oscillator, we obtain the
master equation for the occupation number na = 〈a†a〉 of the
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oscillator (a = f and a = b for fermionic and bosonic systems,
respectively),

dna(t )

dt
=

∑
λ,i

∫ t

0
ds{W −

λ,i(t − s)[n̄a(s)nλ,i(s) − na(s)n̄λ,i(s)]

+W +
λ,i(t − s)[n̄a(s)n̄λ,i(s) − na(s)nλ,i(s)]}, (8)

where

W −
λ,i = 2α2

λ,i

h̄2 cos([ω − ωλ,i][t − s]),

W +
λ,i = 2α2

λ,i

h̄2 cos([ω + ωλ,i][t − s]). (9)

Here, n̄a(t ) = 1 + εa〈a†a〉, nλ,i (t ) = 〈c†
λ,icλ,i〉, n̄λ,i (t ) = 1 +

ελ〈c†
λ,icλ,i〉. The symbol 〈...〉 denotes the expectation value

over the whole system of heat baths and oscillator. To ob-
tain Eq. (8), we assume 〈a†ac†

λ,icλ,i〉 = na(t )nλ,i (t ), 〈a2〉 =
〈(a†)2〉 = 0 (for the bosonic subsystem), and 〈c†

λ,ic
†
λ′,i′ 〉 =

〈cλ′,i′cλ,i〉 = 0, 〈c†
λ,icλ′,i′ 〉 = nλ,i(t )δλ,λ′δi,i′ (the heat baths con-

sist of independent oscillators).
One can rewrite Eq. (8) as

dna

dt
=

∫ t

0
dτ {W+(t − τ )n̄a(τ ) − W−(t − τ )na(τ )}, (10)

where

W+ =
∑

λ

W (λ)
+

=
∑
λ,i

[W −
λ,i(t − τ )nλ,i(τ ) + W +

λ,i(t − τ )n̄λ,i(τ )],

W− =
∑

λ

W (λ)
−

=
∑
λ,i

[W −
λ,i(t − τ )n̄λ,i(τ ) + W +

λ,i(t − τ )nλ,i(τ )]. (11)

The physical meaning of the coefficients W+ and W− becomes
clear from the master equation Eq. (10). The coefficient W+
(W−) defines the rate of occupation (leaving) of the state “a” in
the open quantum system. The ratio between the W+ and W−
characterizes the rate of equilibrium. The occupation number
reaches the equilibrium value if the ratio of W+ and W− has
asymptotic at t → ∞.

At equilibrium ( dna
dt |t→∞ = 0), we have the general rela-

tionship

na(t → ∞) = W+(t → ∞)

W−(t → ∞) − εaW+(t → ∞)

= W+(t → ∞)

W (t → ∞) + ∑
λ[ελ − εa]W (λ)

+ (t → ∞)
,

(12)

where the asymptotics W+(∞), W−(∞), and W (∞) are re-
lated as

W =
∑

λ

W (λ) =
∑
λ,i

[W −
λ,i − ελW +

λ,i].

To study the possibility of reaching an equilibrium, we con-
sider the bosonic and fermionic oscillators coupled with the
baths of various statistics.

C. Bosonic (Fermionic) oscillator coupled with bosonic
(fermionic) heat baths

Let us consider the case when all Nb heat baths and
system oscillator are either all bosonic or all fermionic. For
these systems, the details of the procedure for obtaining the
occupation number of system are given in Ref. [29]. Here, we
directly write the final expression for the time dependence of
occupation number

na(t ) = na(0)|A(t )|2 + [1 + εana(0)]|B(t )|2 + Ia(t ), (13)

where Ia(t ) = ∑
λ I (λ)

a (t ) and

I (λ)
a (t ) = αλγ

2
λ

π

∫ ∞

0
dw

w

γ 2
λ + w2

[n(λ)(w)|M(w, t )|2

+ [1 + ελn(λ)(w)]|N (w, t )|2]. (14)

In Eq. (14), n(λ)(w) = (exp[h̄w/(kTλ)] − ελ)−1 are equi-
librium Fermi-Dirac (Bose-Einstein) distributions of the
fermionic (bosonic) heat baths “λ.” The Tλ is the initial
thermodynamic temperature of the corresponding heat bath.
Here, we introduce the spectral density ρλ(w) of the heat-bath
excitations, which allows us to replace the sum over i by
integral over the frequency w:

∑
i ... → ∫ ∞

0 dwρλ(w).... For
all baths, we consider the following spectral function [2]:

α2
λ,i

h̄2wλ,i
→ ρλ(w)α2

λ,w

h̄2w
= 1

π
αλ

γ 2
λ

γ 2
λ + w2

, (15)

where the memory time γ −1
λ of dissipation is inverse to the

bandwidth of the heat-bath excitations which are coupled
to the collective system. This is the Ohmic dissipation with
the Lorenzian cutoff (Drude dissipation). We consider the
case when the memory time of dissipation much less than
the characteristic collective time, i.e., γλ � ω. For the time-
dependent coefficients A(t ), B(t ), M(w, t ), and N (w, t ), the
analytical expressions are presented in Appendix A (see also
Ref. [29]). The similarity of expressions for the occupation
numbers for fermionic and bosonic systems results from the
similarity of the equations of motion for creation and annihi-
lation operators [18–21].

Making derivative of Eq. (13) in t , the following decom-
position |B(t )|2 = ∑

λ J (λ)(t ), and simple but tedious algebra,
we derive the differential equation for the occupation number:

dna(t )

dt
= −2λa(t )na(t ) + 2Da(t ), (16)

where

λa(t ) = −1

2

d

dt
ln[|A(t )| + εa|B(t )|2] (17)

and

Da(t ) =
∑

λ

D(λ)
a (t ) = λa(t )[|B(t )|2 + Ia(t )]

+ 1

2

d

dt
[|B(t )|2 + Ia(t )],
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D(λ)
a (t ) = λa(t )

[
J (λ)(t ) + I (λ)

a (t )
]

+ 1

2

d

dt

[
J (λ)(t ) + I (λ)

a (t )
]

(18)

are the time-dependent friction and diffusion coefficients,
respectively. Here, λa(t = 0) = Da(t = 0) = 0. Therefore, we
have obtained the local in time Eq. (16) for the na(t ). In
the case of constant friction and diffusion coefficients, this
equation describes Markovian dynamics, i.e. the evolution of
na(t ) is independent of the past. In Eq. (16), the transport
coefficients explicitly depend on time and the non-Markovian
effects are taken into consideration through this time depen-
dence [4,8]. The non-Markovian feature of Eq. (16) is well
seen at Da = 0. In this case, na(t ) ∼ exp (−2

∫ t
0 λa(τ )dτ ), i.e.,

the occupation number depends on the time dependence of
λa(t ). Because A = B = 0 [29] and Da = λaIa at t → ∞, the
appropriate asymptotic equilibrium distribution ( dna(t )

dt = 0)

na(∞) = lim
t→∞

Da(t )

λa(t )
= Ia(∞) =

∑
λ

I (λ)
a (∞) (19)

is achieved [see Eqs. (13) and (16)]. Using the asymptotic
values of |M(w, t )|2 and |N (w, t )|2, we obtain from Eq. (14)

I (λ)
a (t → ∞) = αλγ

2
λ

π

∫ ∞

0
dw

w

γ 2
λ + w2

{[ω + w]2n(λ)(w)

+ [ω − w]2[1 + ελn(λ)(w)]}

×
∏Nb

μ=1

(
γ 2

μ + w2
)

∏N0
k=1

(
s2

k + w2
) . (20)

Here, sk (k = 1, ..., N0) are the roots of of the N0 = Nb + 2-
order polynomial[

s2 + ω2 − 2ω

Nb∑
λ=1

αλγ
2
λ /(s + γλ)

]
Nb∏

μ=1

(s + γμ) = 0. (21)

The specific quantum nature of the baths enter into the diffu-
sion coefficient through the appearance of occupation prob-
abilities. The asymptotic diffusion and friction coefficients
are related by the well-known fluctuation-dissipation relations
connecting diffusion and damping constants. Fulfillment of
the fluctuation-dissipation relations means that we have cor-
rectly defined the dissipative kernels in the non-Markovian
equations of motion.

In the Markovian limit, the asymptotic occupation number
is [29]

na(∞) = 1

g0

∑
λ

αλn(λ)(ω),

where g0 = ∑
λ αλ. In an asymptotic equilibrium, the occupa-

tion number differs from the Fermi-Dirac or Bose-Einstein oc-
cupation number if the heat baths have different temperatures.
If Tλ = T , then n(λ)(ω) = n(eq)

a (ω) = (exp[h̄ω/(kT )] − εa)−1

and

na(∞) = n(eq)
a (ω)

has the usual form of Fermi-Dirac or Bose-Einstein distribu-
tion (a thermal equilibrium) [29].

Rewriting Eq. (16) as

d

dt
na(t ) =

∫ t

0
dτ

d

dτ
{−2λa(τ )na(τ ) + 2Da(τ )}

=
∫ t

0
dτ

{[
4λ2

a (τ ) − 2λ̇a(τ )
]
na(τ ) + 2Ḋa(τ )

− 4λa(τ )Da(τ )
}
, (22)

and comparing with Eq. (10), we obtain the following rela-
tionships:

W = 2λ̇a(t ) − 4λa(t )λa(t ),

W+ = 2Ḋa(t ) − 4λa(t )Da(t ). (23)

Here, λ̇a(t ) = dλa(t )
dt and Ḋa(t ) = dDa(t )

dt .

D. Fermionic (Bosonic) oscillator coupled with bosonic
(fermionic) heat baths

Let us consider the case when the Nb heat baths are bosonic
(fermionic) and the system oscillator is fermionic (bosonic).
By the analogy with the fermion or boson system, one can
introduce an equation similar to Eq. (16),

d

dt
na(t ) = −2λ̃(t )na(t ) + 2D̃(t )

=
∫ t

0
dτ {[4λ̃2(τ ) − 2 ˙̃λ(τ )]na(τ ) + 2 ˙̃D(τ )

− 4λ̃(τ )D̃(τ )}, (24)

and compare it to the master equation Eq. (10). As a re-
sult, we obtain the following relationships between the time-
dependent coefficients of these equations:

W − 2εaW+ = 2 ˙̃λ(t ) − 4λ̃(t )λ̃(t ),

W+ = 2 ˙̃D(t ) − 4λ̃(t )D̃(t ). (25)

To respect Eqs. (23) for W and W+, the friction and diffusion
coefficients have to be taken as

λ̃(t ) = λā (t ) − 2εaDā (t ),

D̃(t ) = Dā (t ), (26)

where if a = f (a = b), then ā = b (ā = f). Here, the λā (t ) and
Dā (t ) are calculated with Eqs. (17) and (18) for the bosonic or
fermionic system. Using Eqs. (25) and (26), we obtain

W = 2λ̇ā (t ) − 4λ̃(t )λā (t ),

W+ = 2Ḋā (t ) − 4λ̃(t )Dā (t ). (27)

Note that the friction coefficient λ̃(t ) depends on temperature
through Dā (t ). This dependence also occurs in the case of
nonlinear coupling between the system and thermal baths
when they are fermionic or bosonic [2].

Using D̃(t ) and λ̃(t ) from Eqs. (26) and the solution

na(t ) = e−2
∫ t

0 dτ λ̃(τ )

{
na(0) + 2

∫ t

0
dτ D̃(τ )e2

∫ τ

0 dτ ′λ̃(τ ′ )
}
(28)

of Eq. (24), one can numerically calculate the time-dependent
occupation number of the quantum system.
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If the temperatures and bandwidths of all baths are the
same, then one can show that the occupation number evolution
is equivalent to the one for a system coupled to one bath with
an effective coupling coupling strength g0 = ∑

λ αλ.
Using Eqs. (18) and (26), and the fact that B(∞) = 0, the

asymptotic occupation number is obtained as

na(∞) =
∑

λ I (λ)
ā (∞)

1 − 2εa
∑

λ I (λ)
ā (∞)

. (29)

So, if all reservoirs have the same quantum nature [ā = b(f)],
which differs from the one of the system [a = f(b)], then the
asymptotic occupation number is always stationary. In the
Markovian limit, we obtain

na(∞) =
∑

λ αλn(λ)(ω)

g0 − 2εa
∑

λ αλn(λ)(ω)
. (30)

If Tλ = T , then n(λ)(ω) = n(eq)
ā (ω) and the asymptotic occu-

pation number

na(∞) = n(eq)
ā (ω)

1 − 2εan(eq)
ā (ω)

= n(eq)
a (ω) (31)

is the subject to the Fermi-Dirac or Bose-Einstein distribution.

E. Bosonic (Fermionic) oscillator coupled with mixed fermionic
(bosonic) and bosonic (fermionic) heat baths

Let us consider the system where the oscillator is bosonic
or fermionic, the N f

b heat baths are fermionic, and Nb
b heat

baths are bosonic subsystems (Nb = N f
b + Nb

b ), respectively.
In this case we obtain the following relationships between the
time-dependent coefficients:

W − 2εa

N ā
b∑

λ=1

W (λ)
+ = 2 ˙̃λ(t ) − 4λ̃(t )λ̃(t ),

N ā
b∑

λ=1

W (λ)
+ +

Nb∑
λ=N ā

b +1

W (λ)
+ = 2 ˙̃D(t ) − 4λ̃(t )D̃(t ). (32)

One can similarly to the systems discussed above derive the
friction and diffusion coefficients

λ̃(t ) = λ0(t ) − 2εa

N ā
b∑

λ=1

D(λ)
ā (t ),

λ0(t ) = pλā (t ) + (1 − p)λa(t ),

D̃(t ) =
N ā

b∑
λ=1

D(λ)
ā (t ) +

Nb∑
λ=N ā

b +1

D(λ)
a (t ), (33)

where p = ∑N ā
b

λ=1 αλ/
∑Nb

λ=1 αλ. The λa(t ), λā (t ), D(λ)
a (t ), and

D(λ)
ā (t ) are calculated with Eqs. (17) and (18). The friction

λ0(t ) is defined from the condition to obtain the Bose-Einstein
or Fermi-Dirac distribution in the Markovian limit. Using

Eqs. (33), we obtain

W = 2λ̇0(t ) − 4λ̃(t )λ0(t ),

N ā
b∑

λ=1

W (λ)
+ =

N ā
b∑

λ=1

[
2Ḋ(λ)

ā (t ) − 4λ̃(t )D(λ)
ā (t )

]
,

Nb∑
λ=N ā

b +1

W (λ)
+ =

Nb∑
λ=N ā

b +1

[
2Ḋ(λ)

a (t ) − 4λ̃(t )D(λ)
a (t )

]
. (34)

In contrast to the systems discussed above, there is lim-
itation on the set of coupling strengths, bandwidths, and
temperatures, because the friction coefficient λb(t ) does not
converge to a stationary value as t → +∞. An asymptotic
stationary value of occupation number can only be reached if

1

1 − p

Nb∑
λ=N ā

b +1

I (λ)
a (∞) =

1
p

∑N ā
b

λ=1 I (λ)
ā (∞)

1 − 2εa
p

∑N ā
b

λ=1 I (λ)
ā (∞)

. (35)

In the case α1 = α2 = ... = αN ā
b

= αā and αN ā
b +1 = αN ā

b +2 =
... = αNa = αa, the conditions Eq. (35) result in the same
bandwidths γλ = γ and temperatures Tλ = T , and relate the
values of αā and αa. Note that the possible absence of
asymptotic stationary limit is not seen if we make the RWA
couplings Hc,λ = ∑

i αλ,i(a†cλ,i + ac†
λ,i ) between the system

and heat baths (W +
λ,i = 0), because both friction coefficients

λf,b(t ) have the asymptotic stationary values.
In fusion of two nuclei, we deal with the bosonic collective

system coupled with the internal fermionic bath. If the fusion
occurs in the star, then there is additional bosonic baths. As
follows from our results, these bosonic baths can considerably
modify the fusion process. So, the results on the sub-barrier
fusion obtained with the heavy-ion accelerator can not defi-
nitely related to the nuclear fusion in the star.

In the Markovian weak-coupling, the condition Eq. (35)
is satisfied and the system has an asymptotic equilibrium.
In particular, the asymptotic occupation number might differ
from the Fermi-Dirac or Bose-Einstein occupation number if
the heat baths have different temperatures. If the temperatures
Tλ = T of all baths are the same, then na(∞) = n(eq)

a (ω) and
the system has a thermal equilibrium (the Bose-Einstein or
Fermi-Dirac distribution).

III. CALCULATED RESULTS

One of the examples of collective motion with several heat
baths is the fusion of nuclei in a stellar medium or in some
external field. The effects of the nucleon and field degrees
of freedom can be effectively modeled with appropriate heat
baths. In this paper we use the realistic frequencies and
friction coefficients for the case of fusion of atomic nuclei
along the coordinate of relative distance between the centers
of mass of nuclei. Because all calculated results are shown in
dimensionless units, they can be generalized and applied to
other processes and systems. The calculations are performed
for the systems with several heat baths in the case of Ohmic
dissipation with Lorenzian cutoffs.
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FIG. 1. The calculated time-dependent diffusion (a, d) and fric-
tion (b, e) coefficients and average occupation numbers (c, f) for
the systems f-f-f (solid lines), f-b-b (dotted lines), f-b-f (dashed
lines) (a–c, respectively) and b-b-b (solid lines), b-f-f (dotted
lines), b-f-b (dashed lines) (d–f, respectively) at coupling constants
α1 = α2 = 0.05, inverse memory times γ1/� =20 and γ2/� =12,
and temperatures kT1/(h̄�) = kT2/(h̄�) = 0.1. The plots in pan-
els (c) and (f) correspond to initially unoccupied, na(t = 0)=0,
oscillator states.

A. Fermionic or bosonic oscillator coupled with two heat baths

The occupation numbers, diffusion, and friction coeffi-
cients depend on the values of ω, α1, α2, and γ1,2 (see
Appendix B). The values of α1 and α2 are chosen to have
the realistic values of friction coefficients which are known
from the microscopic calculations. Indeed, these coupling
strengths provide almost the same friction coefficient for
relative motion of two nuclei like in Refs. [32,33]. The values
of γ1,2 should be taken to hold the conditions γ1,2 � �. We
set γ1,2/� � 12. As shown in Ref. [29], in the case of g0 =
α1 + α2, γ1 = γ2, and T1 = T2, the fermionic and bosonic
systems with two baths of the same statistics is reduced to
the system with one bath and the coupling strength g0. As an
example of bosonic system, the atomic or nuclear molecular
state can be considered. The bound or quasibound particle
(electron in the trap or nucleon in the isomeric state) can be
taken as an example of fermionic system. The electromagnetic
field and phonon bath can be treated as the bosonic baths. Free

FIG. 2. The same as in Fig. 1, but for the coupling constants
α1 = α2 = 0.05, inverse memory times γ1/� = γ2/� =12, and tem-
peratures kT1/(h̄�) = 1 and kT2/(h̄�) = 0.1.

and bound electrons and impurities in sample can act as the
fermionic baths.

1. Time-dependent diffusion and friction coefficients

For the fermionic-fermionic-fermionic (f-f-f), bosonic-
bosonic-bosonic (b-b-b), the mixed fermionic-bosonic-
bosonic (f-b-b), bosonic-fermionic-fermionic (b-f-f),
fermionic-bosonic-fermionic (f-b-f), and bosonic-fermionic-
bosonic (b-f-b) systems, the time-dependent friction and
diffusion coefficients are shown in Fig. 1 at the same coupling
strengths α1 = α2 and temperatures T1 = T2 but different
inverse memory times γ1,2. The two independent baths
modify the friction and diffusion coefficients in nonadditive
manner. The diffusion and friction coefficients are equal
to zero at initial time. As seen, the time dependencies of
these coefficients are not the same for the fermionic and
bosonic heat baths. For the f-f-f and b-f-f systems, the friction
λa(t ) and diffusion Da(t ) coefficients relatively fast reach
their asymptotic values (the transient time for the friction is
quite short), whereas in the case of b-b-b, f-b-b, f-b-f, and
b-f-b systems they oscillate. This means that the quasibound
electron coupled with the electron gas and inclusions in the
compound is almost Markovian system. The coupling with
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FIG. 3. For the f-f-f, mixed f-b-b [(a)] and the b-b-b, mixed b-f-f [(b)] systems, the calculated dependencies of the asymptotic occupation
numbers on coupling constant α1 at α2 = 0.01 and kT1,2/(h̄�) = 1. The calculations are performed at γ1/� = γ2/� =12 and γ1/� =12,
γ2/� =20.

phonon field would elongate a time-dependence of friction
and diffusion coefficients and result in non-Markovian
behavior. The amplitudes of oscillations of λa(t ) and Da(t )
for the systems with two bosonic baths (γ1 	= γ2) are larger
than those for the systems with one bosonic bath (γ1 = γ2).
As a result, the occupation number oscillates with larger
amplitude in the case of two bosonic (fermionic) baths
(Fig. 1) than one bosonic (fermionic) bath. The relaxation
times of the systems with two bosonic (fermionic) baths
and one bosonic (fermionic) bath are almost identical and
mainly depend on the coupling constants. The molecular
state coupled with phonon and temperature baths would
demonstrate more oscillations and non-Markovian behavior
than that coupled with the electron gas. A good example
is an electron cooling of heavy-ion beam that is effective
tool for reducing collective fluctuations in the beam. The

coupling of relative motion of two colliding nuclei with their
internal degrees of freedom (fermionic bath) creates strong
dissipation. As known [34], this process is well described by
the phenomenological Markovian diffusion equations.

For the f-f-f, f-b-b, f-b-f and b-b-b, b-f-f, b-f-b systems, the
time dependencies of the friction and diffusion coefficients
are shown in Fig. 2 at the same coupling strengths α1 = α2

and inverse memory times γ1 = γ2 but different temperatures
T1,2 (T1 > T2). As seen, in general, the behavior of friction
and diffusion coefficients is similar to the behavior of these
coefficients in Fig. 1. For example, the amplitudes of oscilla-
tions of the friction and diffusion coefficients for the systems
with two bosonic baths are larger than those for other systems.
Compared to a system with one bosonic bath (T = T1), a
system with two bosonic baths (T1 > T2) has small amplitudes
of oscillations of the λa(t ) and Da(t ). So, the non-Markovian

FIG. 4. For the f-f-f, mixed f-b-b [(a)] and the b-b-b, mixed b-f-f [(b)] systems, the calculated dependencies of the asymptotic occupation
numbers on coupling constant α1 at α2 = 0.01 and γ1/� = γ2/� =12. The calculations are performed at temperatures kT1/(h̄�) =
kT2/(h̄�) = 1 and kT1/(h̄�)=0.1, kT2/(h̄�)=1.
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features can be reduced by adding the bosonic bath of other
temperature.

2. Time-dependent occupation numbers

For the f-f-f, f-b-b, b-b-b, and b-f-f systems, the friction and
diffusion coefficients oscillate in phase at large times and, as
a result, the occupation numbers na(t ) reach asymptotic limits
after oscillations during the transient time (Figs. 1 and 2). In
the contrast, for the systems f-b-f and b-f-b, where fermionic
bath coexists with bosonic one, the occupation numbers os-
cillate around certain average values at large times. Because
the condition Eq. (35) is not satisfied, the systems f-b-f and
b-f-b have no asymptotic limits. In this case, at large times
the influence of the thermostats is minimal and reversible—it
takes energy from the system and gives the same amount of
energy back. As a result, the population of the excited state(s)
decreases and then increases on the same level independent of
the environment. In the case of two mixed baths with (T1 	= T2,
γ1 = γ2), the occupation number for the fermionic bosonic
oscillator oscillates stronger with the larger amplitude than
one for the fermionic oscillator.

As seen in Figs. 1 and 2, the time evolution of occupation
numbers is affected by the nature of the bathes and oscillator.
Two independent non-Markovian baths modify in nonadditive
manner the dynamics of system. If the systems have the same
characteristics, then nb(b-f-f)> nf(f-f-f)> nf(f-b-b) and nb(b-
f-f)> nb(b-b-b)> nf(f-b-b) at large time. So, the fermionic
(bosonic) oscillator interacting with two fermionic (bosonic)
baths has larger (smaller) value of the occupation number than
that interacting with bosonic-bosonic (fermionic-fermionic)
baths. The occupation number at large time depends on the
friction which is related to the energy exchange rate between
the system and baths. In the f-b-b case, the value of λf(t ) in
average larger than that in the f-f-f case. The larger friction
results in smaller occupation number. In the b-b-b system,
λb oscillates around average value which is larger than λb

in the b-f-f case. So, nb(b-f-f) > nb(b-b-b). At the same cou-
pling strength between the system and heat baths the bosonic
baths result in larger friction. For example, if the molecular
fermionic state is coupled with two fermionic baths, then the
initially unoccupied state is more populated then in the case
of coupling with two phonon baths.

For the b-b-b (f-f-f) system with two bosonic (fermionic)
baths (γ1 	= γ2, T1 = T2), the occupation number at large time
is close to that for the b-b (f-f) system with one bosonic
(fermionic) bath (γ1 = γ2, T1 = T2, g0 = α1 + α2). In the case
of two bosonic (fermionic) baths with (T1 	= T2, γ1 = γ2), the
occupation number nb(b-b-b) [nf(f-f-f)] at large time is smaller
than that for the b-b (f-f) system with one bosonic (fermionic)
bath. The difference of the bath temperatures is important for
the dynamics because causes the energy exchange through the
oscillator. One can use the baths of different temperatures to
affect the occupation numbers. The occupation number is less
sensitive to the structure of the additional bath.

3. Asymptotic occupation numbers

In Fig. 3, the dependencies of asymptotic occupation num-
bers on the coupling strength α1 for the f-f-f, f-b-b and b-b-b,
b-f-f systems are shown at different γ1,2, fixed α2 = 0.01, and
kT1/(h̄�) = kT2/(h̄�) = 1. As seen, the change of occupa-

tion number with α1 is stronger for the bosonic systems than
for the fermionic ones. In the case of γ1 = γ2 (one thermal
bath with coupling strength g0 = α1 + α2), the asymptotic
values of nf(f-f-f), nf(f-b-b), nb(b-b-b), and nb(b-f-f) monoton-
ically decrease with increasing α1. In the case of γ1 	= γ2, their
dependencies on α1 are more complicated. The values of nf(f-
f-f) [nb(b-f-f)] and nf(f-b-b) [nb(b-b-b)] decrease with increas-
ing α1 up to α1 ≈ 0.03 and α1 ≈ 0.05, respectively, and then
start to increase. This behavior of occupation number is due
to the contributions of the terms I (1),(2)

b,f (t → ∞) which have
different dependencies on α1. Note that in the case of γ1 	=
γ2, the asymptotic occupation numbers satisfy the following
inequalities: nf(f-f-f)> nf(f-b-b) and nb(b-b-b)< nb(b-f-f). For

FIG. 5. For the f-f (α1 = 0.03, γ1/� =12 or 24), f-f-f (α1,2 =
0.015, γ1/� =12, γ2/� =24), f-f-f-f (α1,2,3 = 0.01, γ1/� =12,
γ2/� =24, γ3/� =18) (a) and b-b (α1 = 0.03, γ1/� =12 or 24),
b-b-b (α1,2 = 0.015, γ1/� =12, γ2/� =24), b-b-b-b (α1,2,3 = 0.01,
γ1/� =12, γ2/� =24, γ3/� =18) (b) systems, the calculated de-
pendencies of average occupation numbers on time t at total coupling
constant g0 = 0.03 and temperatures kT1,2,3/(h̄�) =0.1 and 1. In the
plots in panels (a) and (b), the occupation numbers for the systems
with two and three baths almost coincide. The plots correspond to
initially occupied, na(t = 0)=1, oscillator state.
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FIG. 6. For the f-f (α1 = 0.03, kT1/(h̄�) =0.1 or 1), f-f-f (α1,2 = 0.015, kT1/(h̄�) =0.1, kT2/(h̄�) =1), f-f-f-f (α1,2,3 = 0.01,
kT1/(h̄�) =0.1, kT2/(h̄�) =1, kT3/(h̄�) =0.5) (a) and b-b (α1 = 0.03, kT1/(h̄�) =0.1 or 1), b-b-b (α1,2 = 0.015, kT1/(h̄�) =0.1,
kT2/(h̄�) =1), b-b-b-b (α1,2,3 = 0.01, kT1/(h̄�) =0.1, kT2/(h̄�) =1, kT3/(h̄�) =0.5) (b) systems, the calculated dependencies of average
occupation numbers on time t at total coupling constant g0 = 0.03 and inverse memory times γ1,2,3/� =12. The plots correspond to initially
occupied, na(t = 0)=1, oscillator state.

the f-f-f [Fig. 3(a), dashed line] and b-f-f [Fig. 3(b), dash-
dotted line] systems, at α1 approaching 1 the values of na(∞)
approaches those corresponding to α1 = 0. So, there are cases
in which the second bath weakly influences the asymptotic
occupation number even at large coupling strength.

As seen in Fig. 4, with increasing coupling strength α1

of one bath at fixed α2, γ1 = γ2, and T1 	= T2, the calculated
fermionic and bosonic asymptotic occupation numbers first
decrease and then increase at α1 � 0.03–0.06. So, the con-
tributions of increasing and decreasing terms I (1),(2)

b,f (t → ∞)
provide the complicated dependence of the asymptotic occu-
pation number on the coupling strength of one of the baths.
As seen, adding the second bath of the same statistics and
structure but other temperature, one can cause a larger change
of asymptotic occupation number. This provides the sensitive
control of the bosonic system by the electromagnetic field
considered as the cold bath. The electron in the trap can be
controlled by introducing some inclusions in its surrounding.
Indeed, these inclusions can be considered as the fermion bath
of small temperature.

B. Fermionic (Bosonic) oscillator coupled with three fermionic
(bosonic) heat baths

For the fermionic-fermionic-fermionic-fermionic (f-f-f-f)
and bosonic-bosonic-bosonic-bosonic (b-b-b-b) systems, the
time-dependent fermionic and bosonic occupation numbers
are calculated at the same coupling strengths α1 = α2 = α3

and temperatures T1 = T2 = T3 but different inverse mem-
ory times γ1,2,3 (Fig. 5) and at the same coupling strengths
α1 = α2 = α3 and inverse memory times γ1 = γ2 = γ3 but
different temperatures T1,2,3 (Fig. 6). In the cases of bosonic
and fermionic systems with one, two, and three heat baths,
the occupation numbers oscillate and reach their asymptotic
values with decreasing the amplitude of oscillations. The
values of na(t ) in the bosonic systems oscillate with a larger

amplitude than those in the case fermionic systems. However,
the relaxation times in these systems are almost independent
of the number of heat baths. For both statistics, the results
in Figs. 5 and 6 clearly show that the values of na(t ) of the
systems with two and three heat baths and with the same
total coupling strengths g0 = ∑

λ αλ are very close to each
other. For the bosonic (fermionic) systems with two and
three heat baths, the values of occupation number at large
times are between the values of occupation number of the
bosonic (fermionic) systems with one bath at the minimum
and maximum γλ (Fig. 5) or Tλ (Fig. 6).

IV. CONCLUSIONS

For the bosonic or fermionic FC-oscillator and internal
independent bosonic or fermionic or mixed bosonic-fermionic
heat baths coupled linearly (full coupling, the Ohmic dissi-
pation with Lorenzian cutoff) to the system, the analytical
expressions for the occupation number were derived under
the physical assumption that at initial time t = 0 the heat
baths are in thermal equilibrium in the absence of the quantum
system. We proposed here the approach to treat open quantum
system coupled with several heat baths of different quantum
statistics. The asymptotes of the fermionic and bosonic occu-
pation numbers were derived. The time-dependent transport
coefficients of the master equations for the occupation number
were obtained as well.

The results of illustrative numerical calculations of dif-
fusion and friction coefficients and level populations were
presented. As shown, the dissipative and diffusion aspects
depend on the statistics of the independent heat baths. After
some transient time, the friction and diffusion coefficients of
the systems coupled with fermionic baths reach asymptotic
values. For the systems with bosonic baths, the friction and
diffusion coefficients oscillate in time. The coupling of system
with bosonic baths would elongate a time-dependence of
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friction and diffusion coefficients and result in non-Markovian
behavior. So, the non-Markovian features can be changed
by manipulating with several baths. The independent baths
modify the friction and diffusion coefficients in nonadditive
manner. We found that there is energy exchange between
the baths, especially with different temperatures, through
the oscillator that accelerates the energy dissipation. For the
systems with two bosonic or fermionic thermal baths, the
oscillation of occupation numbers occurs before reaching the
asymptotes. The time dependencies of occupation numbers
are affected by the nature of the heat baths and oscillator
as well as the coupling strengths. The relaxation times of
the systems with two and three bosonic (fermionic) baths
and one bosonic (fermionic) bath are almost identical and
mainly depend on the coupling constants. For the f-f-f and
b-f-f systems with γ1 	= γ2 and T1 = T2, we found that the
second bath could weakly affect the asymptotic occupation
number even at large coupling strength. Adding the second
bath of the same statistics and structure but other tempera-
ture, one can cause larger change of asymptotic occupation
number. For the bosonic (fermionic) systems with two and
three heat baths, the values of asymptotic occupation numbers
are between those of the bosonic (fermionic) systems with
one bath at the minimum and maximum γλ or Tλ. We finally
have shown that the independent non-Markovian baths modify
in a nonadditive manner the dynamics of system leading to
nontrivial asymptotic behavior.

Starting from a system fully coupled to several baths of
different statistics, we have illustrated that the system might
never reach a stationary asymptotic limit. This absence of
equilibrium is at variance with what is usually found in simple
quantum open systems coupled to complex environments and
are predicted to only happen when fermionic baths coexist
with bosonic baths. We found that in the system with mixed
statistics baths the occupation number does reach an asymp-
totic equilibrium limit if the condition Eq. (35) is fulfilled.
Note that the possible absence of asymptotic stationary limit
is not seen if we make the RWA couplings between the
system and heat baths. With the recent progresses of preparing
and manipulating open quantum systems, we hope that the
absence of equilibrium can be confronted to future exper-
imental probes. The dependence of asymptotic occupation
number on time is nonmonotonic. That is, over time, the
population of the excited level can decrease and then increase
independent of the environment. This behavior can be used,
for example, to increase the throughput of a quantum channels
(communication line).
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APPENDIX A: TIME-DEPENDENT COEFFICIENTS A(t ), B(t ), M(w, t ), and N(w, t )

The time-dependent coefficients A(t ), B(t ), M(w, t ), and N (w, t ) used in Eqs. (13) and (14) are obtained in Ref. [29] as

A(t ) = 1

2

N0∑
k=1

ξkeskt (sk − s0)

{
2sk − i[� + ω] − 2isk

Nb∑
λ=1

αλγλ/(sk + γλ)

}
Nb∏

μ=1

(sk + γμ),

= i
Nb∑

λ=1

αλγ
2
λ

N0∑
k=1

ξkeskt (sk − s0)(sk − iω)(sk + iω)−1
Nb∏

μ=1,μ 	=λ

(sk + γμ),

B(t ) = i

2

N0∑
k=1

ξkeskt (sk − s0)

{
� − ω + 2sk

Nb∑
λ=1

αλγλ/(sk + γλ)

}
Nb∏

μ=1

(sk + γμ),

= i
Nb∑

λ=1

αλγ
2
λ

N0∑
k=1

ξkeskt (s0 − sk )
Nb∏

μ=1,μ 	=λ

(sk + γμ),

N (w, t ) =
N0∑

k=0

ξkeskt (isk − ω)
Nb∏

μ=1

(sk + γμ),

M(w, t ) = −
N0∑

k=0

ξkeskt (isk + ω)
Nb∏

μ=1

(sk + γμ), (A1)

where

ξk =
N0∏

i=0, i 	=k

1

sk − si
, (A2)
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with s0 = −iw and the roots sk , k = 1, ..., N0 of Eq. (21) or[
s2 + ω� + 2sω

Nb∑
λ=1

αλγλ/(s + γλ)

]
Nb∏

μ=1

(s + γμ) = 0 (A3)

and

� = ω − 2
Nb∑

λ=1

αλγλ. (A4)

APPENDIX B: EXPLICIT EXPRESSIONS FOR FRICTION AND DIFFUSION COEFFICIENTS
OF SYSTEMS WITH TWO BATHS

Here, we present the explicit expressions for A(t ), B(t ), N (w, t ), M(w, t ), and I (λ)
a (t ) used to calculate na(t ) and λa(t ) with

Eqs. (13) and (17) in the case of two baths.

1. Bosonic-bosonic-bosonic and fermionic-fermionic-fermonic systems

In the case of fermionic or bosonic system with two heat baths (εa = ε1 = ε2 = ε) [29],

Ia(t ) = I (1)
a (t ) + I (2)

a (t ) (B1)

and

I (1)
a (t ) = α1γ

2
1

π

∫ ∞

0
dw

w

γ 2
1 + w2

{n(1)(w)|M(w, t )|2 + [1 + εn(1)(w)]|N (w, t )|2}, (B2)

I (2)
a (t ) = α2γ

2
2

π

∫ ∞

0
dw

w

γ 2
2 + w2

{n(2)(w)|M(w, t )|2 + [1 + εn(2)(w)]|N (w, t )|2}. (B3)

For the time-dependent coefficients A(t ), B(t ), M(w, t ), N (w, t ), the following expressions are obtained:

A(t ) = 1

2

4∑
k=1

ξkeskt (sk − s0)[(2sk − i[ω + �])(sk + γ1)(sk + γ2) − 2isk (α1γ1(sk + γ2) + α2γ2(sk + γ1))],

= i
4∑

k=1

ξkeskt (sk − s0)(sk − iω)(sk + iω)−1
[
α1γ

2
1 (sk + γ2) + α2γ

2
2 (sk + γ1)

]
,

B(t ) = i

2

4∑
k=1

ξkeskt (sk − s0)[(� − ω)(sk + γ1)(sk + γ2) + 2sk (α1γ1(sk + γ2) + α2γ2(sk + γ1))],

= i
4∑

k=1

ξkeskt (s0 − sk )
[
α1γ

2
1 (sk + γ2) + α2γ

2
2 (sk + γ1)

]
,

N (w, t ) =
4∑

k=0

ξkeskt (isk − ω)(sk + γ1)(sk + γ2),

M(w, t ) = −
4∑

k=0

ξkeskt (isk + ω)(sk + γ1)(sk + γ2), (B4)

where

ξk =
4∏

i=0, i 	=k

1

sk − si
, (B5)

s0 = −iw, and s1, s2, s3, s4 are the roots of the following equation:

(s2 + ω�)(s + γ1)(s + γ2) + 2sω[α1γ1(s + γ2) + α2γ2(s + γ1)] = 0 (B6)

or

(s2 + ω2)(s + γ1)(s + γ2) − 2ω
[
α1γ

2
1 (s + γ2) + α2γ

2
2 (s + γ1)

] = 0. (B7)

In Eq. (B6), � = ω − 2α1γ1 − 2α2γ2.
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The asymptotic occupation numbers for the bosonic and fermionic systems are defined only by the integral terms I (1)
a (t → ∞)

and I (2)
a (t → ∞) [29]:

na(t → ∞) = I (1)
a (t → ∞) + I (2)

a (t → ∞), (B8)

where

I (1)
a (t → ∞) = α1γ

2
1

π

∫ ∞

0
dw

w
(
γ 2

2 + w2
){[ω + w]2n(1)(w) + [ω − w]2[1 + εn(1)(w)]}(

s2
1 + w2

)(
s2

2 + w2
)(

s2
3 + w2

)(
s2

4 + w2
) , (B9)

I (2)
a (t → ∞) = α2γ

2
2

π

∫ ∞

0
dw

w
(
γ 2

1 + w2
){[ω + w]2n(2)(w) + [ω − w]2[1 + εn(2)(w)]}(

s2
1 + w2

)(
s2

2 + w2
)(

s2
3 + w2

)(
s2

4 + w2
) . (B10)

So, these expressions are used in Eq. (19). In the Markovian weak-coupling limit, we obtain at T1 	= T2

na(t → ∞) = α1

α1 + α2
n(1)(ω) + α2

α1 + α2
n(2)(ω). (B11)

If T1 = T2 = T , then na(t → ∞) = neq
a (ω).

In Eqs. (17) and (18) for the time-dependent friction and diffusion coefficients we use expressions [29]:

J (1)(t ) = |B1(t )|2 + 1
2 [B1(t )B∗

2(t ) + B∗
1(t )B2(t )],

J (2)(t ) = |B2(t )|2 + 1
2 [B1(t )B∗

2(t ) + B∗
1(t )B2(t )],

which result from the decomposition of the coefficient B(t ):

B(t ) = B1(t ) + B2(t ), B1(t ) = iα1γ
2
1

4∑
k=1

ξkeskt (s0 − sk )(sk + γ2),

B2(t ) = iα2γ
2
2

4∑
k=1

ξkeskt (s0 − sk )(sk + γ1), |B(t )|2 = J (1)(t ) + J (2)(t ). (B12)

2. Fermionic-bosonic-bosonic system

If two heat baths are bosonic and the oscillator is fermionic, then the friction and diffusion coefficients

λ̃(t ) = λb(t ) + 2Db(t ), D̃(t ) = Db(t ), (B13)

are derived. Here, the λb(t ) and Db(t ) are calculated with Eqs. (17) and (18) for the total bosonic system, respectively.

3. Bosonic-fermionic-fermionic system

For the bosonic system with two fermionic heat baths, one can similarly derive the equation for nb(t ), where

λ̃(t ) = λf(t ) − 2Df(t ), D̃(t ) = Df(t ). (B14)

The λf(t ) and Df(t ) are calculated with Eqs. (17) and (18) for the fermionic system, respectively.

4. Bosonic-fermionic-bosonic system

Let us consider the bosonic-fermionic-bosonic (b-f-b) system, where the quantum oscillator is bosonic, the heat baths “1” and
“2” are fermionic and bosonic, respectively. Using Eqs. (25) and (26), we obtain

W − 2W (1)
+ = 2 ˙̃λ(t ) − 4λ̃(t )λ̃(t ), W (1)

+ + W (2)
+ = 2 ˙̃D(t ) − 4λ̃(t )D̃(t ),

λ̃(t ) = λ0(t ) − 2D(1)
f (t ), λ0(t ) = α1

α1 + α2
λf(t ) + α2

α1 + α2
λb(t ),

D̃(t ) = D(1)
f (t ) + D(2)

b (t ), W = 2λ̇0(t ) − 4λ̃(t )λ0(t ),

W (1)
+ = 2Ḋ(1)

f (t ) − 4λ̃(t )D(1)
f (t ), W (2)

+ = 2Ḋ(2)
b (t ) − 4λ̃(t )D(2)

b (t ). (B15)

The values λf(t ), λb(t ), D(2)
b (t ), and D(1)

f (t ) are calculated with Eqs. (17) and (18) for the fermion and boson systems, respectively.
The friction λ0(t ) is defined in such a way as to obtain the Bose-Einstein distribution

nb(∞) = n(eq)
b (ω). (B16)

in the Markovian weak-coupling and T1 = T2 limits.
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In contrast to the b-f-f and f-b-b systems, there is limitation on the set of coupling strengths α1 and α2, bandwidths γ1,2,
and temperatures T1,2 to obtain the asymptotic nb(∞) because the friction coefficient λb(t ) has no the asymptotic limit. The
occupation number has the asymptotic limit if

1

α2
I (2)
b (∞) =

1
α1

I (1)
f (∞)

1 − 2(α1+α2 )
α1

I (1)
f (∞)

. (B17)

This equation relates the coupling strengths α1 and α2. In the Markovian weak-coupling and T1 = T2 limits, there is no restriction
imposed on the coupling strengths α1 and α2.

5. Fermionic-fermionic-bosonic system

In the system, where the oscillator is fermionic, the heat baths “1” and “2” are fermionic and bosonic, respectively, one can
similarly derive the equation for nf(t ), where

λ̃(t ) = α1

α1 + α2
λf(t ) + α2

α1 + α2
λb(t ) + 2D(2)

b (t ), D̃(t ) = D(1)
f (t ) + D(2)

b (t ), (B18)

and the λb(t ), λf(t ), D(1)
f (t ), and D(2)

b (t ) are calculated with Eqs. (17) and (18) for the bosonic and fermionic systems, respectively.
As in the case of the b-f-b system, there is limitation on the set of coupling strengths α1 and α2, bandwidths γ1,2, and

temperatures T1,2 to reach the asymptotic value of nf, because the friction coefficient λb(t ) has no asymptotic limit. Analogous
to the b-f-b system, the occupation number has the asymptotic limit if the condition Eq. (B17) is satisfied.

In the Markovian weak-coupling and T1 = T2 = T limits, there is no restriction imposed on the coupling strengths α1 and α2,
and the asymptotic occupation number obeys the Fermi-Dirac distribution

nf(∞) = n(eq)
f (ω). (B19)
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