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A fully operational loss-free quantum battery requires an inherent control over the energy transfer process,
with the ability of keeping the energy retained with no leakage. Moreover, it also requires a stable discharge
mechanism, which entails that no energy revivals occur as the device starts its energy distribution. Here we
provide a scalable solution for both requirements. To this aim, we propose a general design for a quantum
battery based on an energy current (EC) observable quantifying the energy transfer rate to a consumption hub.
More specifically, we introduce an instantaneous EC operator describing the energy transfer process driven by
an arbitrary interaction Hamiltonian. The EC observable is shown to be the root for two main applications:
(1) a trapping energy mechanism based on a common eigenstate between the EC operator and the interaction
Hamiltonian, in which the battery can indefinitely retain its energy even if it is coupled to the consumption
hub, and (2) an asymptotically stable discharge mechanism, which is achieved through an adiabatic evolution
eventually yielding vanishing EC. These two independent but complementary applications are illustrated in
quantum spin chains, where the trapping energy control is realized through Bell pairwise entanglement and the
stability arises as a general consequence of the adiabatic spin dynamics.
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I. INTRODUCTION

Exploring inherently quantum features of physical systems
in order to realize high-performance tasks has been the ulti-
mate ideal pursued by quantum technologies. As an illustra-
tion, entanglement, which is a genuinely quantum resource,
has been employed as a key concept to design quantum
devices, such as quantum transistors [1–3], quantum heat
engines [4–6], and image processors [7–10], among others
[11–13]. In this scenario, a specific quantum device that may
strongly benefit from entanglement is a quantum battery (QB)
[14–17], which is a quantum system able to both temporarily
store and then transfer energy. QBs are potentially relevant as
fuel for other quantum devices and, more generally, for boost-
ing a proper development of quantum networks. In particular,
they have been proposed in a number of distinct experimental
architectures, such as spin systems [18], quantum cavities
[19–22], superconducting transmon qubits [23], quantum os-
cillators [24,25], and spin batteries in quantum dots [26].

Among fundamental challenges for useful QBs are both
the control of the energy transfer and the stability of the
discharge process to an available consumption hub (CH) (see,
e.g., Refs. [23,27,28] for recent discussion about the stability
topic). In this work, we aim at providing a general approach
to solve each of these problems. More specifically, we will
focus on situations where the battery is initially charged and
an optimal energy transfer process driven by an interaction
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Hamltonian for the QB and the CH is desired. This will be
achieved by introducing a quantum physical observable that
describes the instantaneous energy transfer rate to the CH,
which will be referred to as the energy current (EC) operator.
By exploring its quantum properties, we will show that the EC
operator is the root for two main applications: (1) a trapping
energy mechanism based on a common eigenstate with the
interaction Hamiltonian, in which the battery can indefinitely
retain its energy even if it is coupled to the CH, and (2) an
asymptotically stable discharge mechanism, which will be
achieved through an adiabatic evolution leading to vanishing
EC. These two applications will then be illustrated in quantum
spin chains. For the trapping energy mechanism, quantum
control will be provided by pairwise entanglement through
Bell quantum states for the spins within the battery cell. The
stability will be shown to arise as a general consequence of a
suitably arranged adiabatic spin dynamics.

II. QUANTUM BATTERIES AND CONSUMPTION HUBS

Consider a composite quantum system described by a
Hilbert space B⊗A, where B is associated with a QB and
A refers to an auxiliary system, which will play the role of
a CH. The composite system is driven by the Hamiltonian
H (t )=H0 + HC(t ), where H0 is the individual energy con-
tribution for both QB and CH subsystems, while HC(t ) is
the corresponding charging Hamiltonian. The Hamiltonian H0

can be written as H0 =HB0 + HA0 , with HB0 being the battery
inner Hamiltonian and HA0 the auxiliary inner Hamiltonian.
In general, the inner parts of the QB may interact with each
other, with this inner interaction included in Hamiltonian HB0 .
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The success of the energy transfer from the QB to the CH
can be measured by the ergotropy, i.e., the maximum amount
of work which can be further extracted from the QB. The
ergotropy of a quantum system can be generically defined by

E = max
V ∈U

(Tr{Hρ} − Tr{HV ρV †}), (1)

where H is the reference Hamiltonian of the system and U
is the set of unitary operations [29]. The maximization over
all V ∈ U is associated with the passive state σρ , i.e., σρ is
the state in which no energy can be extracted from the system
by unitary operations [30]. In general, there are a number of
possibilities for a passive state [29], which are related to each
other by unitary rotations in the degenerate subspaces of the
reference Hamiltonian. In cases where we are dealing with
discharging processes of QBs from a pure state, we identify
the ergotropy simply as the difference of energy from the
initial state and the ground state of the system. In fact, since
we can find a operator Vψ so that we can drive the system
from ρψ =|ψ〉〈ψ | to the ground state ρg =|g〉〈g|, then we can
write E=Tr{Hρψ } − Tr{Hρg}. In particular, ρg is identified
as a passive state, and we write its corresponding energy as
EAemp = Tr{Hρg}.

The energy of the CH at the initial time reads EA0 =
Tr{ρA0 HA0 } − EAemp, where ρA0 is the CH initial (pure) state.
Notice that, by starting the evolution in the ground state of
the CH, we have EA0 = 0. In this paper, we are interested
in an energy transfer process from a QB (initially charged
in a pure state) to the CH. We can do this by coupling the
QB to the CH; an energy transfer process will take place,
which will be governed by Schrödinger equation. It is useful
to adopt the interaction picture, where the composite density
operator ρint(t ) is driven by ih̄ρ̇int(t )= [Hint(t ), ρint(t )], with
the dot symbol denoting a time derivative and Hint(t ) the
new charging Hamiltonian in the picture interaction. The
amount of transferred energy C(t ) at instant t is given by
the instantaneous energy variation U (t ) − U (0) in the CH,
reading

C(t ) = U (t ) − U (0) = Tr
{
HA0 ρint(t )

} − EAemp. (2)

Equation (2) provides the amount of energy transferred from
the QB to the CH. Notice that, if the reduced density operator
of the CH corresponds to a pure state at the end of the transfer
process, at t = τ , then it is straightforward to show that C(τ )
can be obtained from the CH ergotropy at the end of the
evolution. In this case, since its ergotropy is nonvanishing, it
is possible to distribute energy from the CH to other systems.

III. THE ENERGY CURRENT OPERATOR

The starting point for the QB proposal is to consider the
instantaneous EC, which is defined as P(t )=Ċ(t ). Notice that
P(t ) quantifies the rate of internal energy transferred to the
CH. It is worth mentioning that P(t ) does not necessarily
quantify the instantaneous rate of ergotropy, since the CH
may evolve to mixed states at intermediate times. However,
considering the initial and final states as pure states, the EC
will coincide with the power in the sense of a time derivative
of work. We can show that P(t ) can be obtained as the
expectation value of a Hermitian EC operator P̂(t ), namely,

P(t )=Tr{P̂(t )ρint(t )}. More specifically, we can obtain P̂(t )
in terms of the Hamitonian of the system as (see Appendix A)

P̂(t ) = (1/ih̄)
[
HA0 , Hint(t )

]
. (3)

A. Energy trapping mechanism

As a first application of the observable P̂(t ), we introduce
a general energy trapping mechanism. To begin, assume a
constant Hamiltonian Hint, which implies that P̂(t )= P̂ is also
a constant operator. Then notice that, if P̂ and Hint commute,
we have that P̂ is a constant of motion. Assume now that
there is a common eigenstate |p0〉 of P̂ and Hint with EC
eigenvalue p0 =0. Then, by initially preparing the quantum
system at the quantum state |p0〉, no amount of energy can be
extracted from the QB. In fact, let us consider the initial state
of the system as |p0〉, where we have P̂|p0〉=0 and Hint|p0〉=
Ep0|p0〉. The evolved state reads |ψ (t )〉=e−iEp0t/h̄|p0〉. Then
the instantaneous EC is P(t )=〈ψ (t )|P̂|ψ (t )〉=〈p0|P̂|p0〉=
0, and no amount of energy can be introduced or extracted
from the system driven by Hint. Remarkably, this conclusion
holds even if P̂ and Hint do not commute, as long as they
share at least a single eigenstate with EC eigenvalue p0 =0.
This less restrictive situation is indeed even more interesting
and will be explored in the next section. Indeed, the trapping
mechanism opens perspectives for a class of QBs in which the
energy is not transferred even when the battery is connected to
the CH. Notice that, even though energy transfer is inhibited,
there may occur charge leakage through coherence transfer
[28,31,32]. Here the mechanism for energy trapping ensures
absence of charge leakage for time-independent Hamiltonians,
since the stationary dynamics will keep the global state fixed
(up to a phase) during the quantum evolution. In the more
general case of a time-dependent Hamiltonian, a nonstation-
ary dynamics could admit energy trapping in average but not
necessarily ergotropy trapping. As we shall see, for time-
independent Hamiltonians, we can also develop an activation
mechanism, where we can control the exact time to discharge
the energy to the CH.

B. Stability of quantum batteries through adiabatic dynamics

As a second application of the observable P̂(t ), we can
show that the adiabatic dynamics allows for a stable energy
transfer to the CH. We define that the system QB-CH under-
goes an adiabatic energy transfer process when the composite
state |ψ (t )〉 evolves adiabatically under the Hamiltonian H (t )
that drives the system. Let the system be initialized in the state
|ψ (0)〉=∑

n cn|En(0)〉, where {|En(0)〉} is the set of instanta-
neous eigenstates of H (0). Then, in the adiabatic regime, we
have

|ψad(t )〉=
∑

n

cneiθ ad
n (t )|En(t )〉, (4)

where θ ad
n (t ) are the adiabatic phases accompanying the adia-

batic dynamics [33]. In this regime, the expected value of the
EC operator is (see Appendix B)

Pad(t ) = 1

ih̄

∑
n,m

cnc∗
mei�ad

nm (t )Emn(t )〈En(t )|HA0 |Em(t )〉, (5)
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FIG. 1. Schematic representation of a Bell QB cell coupled to a
CH. A suitable choice of the amount of energy to be transferred can
be performed after a time interval �t = τd.

where �ad
nm(t )=θ ad

n (t ) − θ ad
m (t ) and �Emn(t )=Em(t ) − En(t ).

Notice that if we start the evolution in a single eigenstate (or
a set of degenerate eigenstates) of the whole system, then
Pad(t )=0 because �Ẽmn(t )→�Ẽmm(t )=0. Since the stabil-
ity condition for an interval I:[t1, t2] can be mathematically
written as Pad(t )=0 for any t ∈ I, then Eq. (5) can be shown
to imply that the adiabatic dynamics provides a general stable
charging process, since Pad(t � τad)=0 where τad is the
required timescale to achieve the adiabatic regime. Although
the condition of a system starting in a single eigenstate is not a
necessary condition for a stable charging-discharging process,
it is important to mention that this is a sufficient condition to
achieve stability of the battery.

IV. BELL QUANTUM BATTERIES

To explore the role of quantum correlations and illustrate
the trapping mechanism previously derived, let us consider
a CH given by a single qubit and a QB composed of a
single cell, where the cell contains two noninteracting qubits.
Notice that, since there is no interaction inside the QB cell,
we do not need to engineer any internal coupling in the
battery. Therefore, the bare Hamiltonian for each qubit is
given by H0 = h̄ω(|1〉〈1| − |0〉〈0|), with |0〉 and |1〉 denoting
the “empty” and the “full” charge state, respectively. When
the QB is coupled to the CH, the whole system evolves under
action of the interaction Hamiltonian

HC = h̄J
2∑

n=1

(
σBn

x σAx + σBn
y σAy

)
, (6)

where σ
Bn
i (i = x, y) is a Pauli operator acting on the Hilbert

space HBn of the nth qubit of the QB (n = 1, 2) and σAi acts
on HA. A schematic representation of this configuration is
shown in Fig. 1. From Eq. (3) the EC operator is

P̂ = 2Jωh̄
2∑

n=1

(
σBn

x σAy − σBn
y σAx

)
, (7)

where we used that Hint =HC. Even though P̂ and Hint do not
commute, we identify a quantum state that is a simultaneous
eigenstate of both P̂ and Hint, which reads (|β11〉B denoting a
Bell state)

|p0〉 = |β11〉B|0〉A = [(1/
√

2)(|01〉 − |10〉)B]|0〉A. (8)

Since P̂|p0〉=0, we then satisfy all the requirements estab-
lished by the energy trapping condition. In addition, if we have

the QB cell prepared in the state |β11〉B, then the initial energy
available for the QB is E0 =2h̄ω. This is exactly the amount
of energy required to offer maximum energy to the CH. Re-
markably, it is possible to show that no other state, within the
four Bell pairs, is capable of satisfying the trapping condition
(see Appendix C). Therefore, we could start some energy flux
by suitably preparing the system at these other Bell states. In
fact, by preparing the system in a state |ψnm(0)〉=|βnm〉B|0〉A,
where |βnm〉B= (|0n〉 + (−1)m|1n̄〉)B/

√
2 are the Bell states

(n̄ = 1 − n), it follows that the initial amount of energy in
the QB will be E0 =2h̄ω for any n, m. From Eq. (2), the
instantaneous transferred energy to the CH is

Cnm(t ) = E0gnm sin2(2
√

2Jt ), (9)

where we have defined g00 =g01 =1/2, g10 =1, and g11 =0
(see Appendix D). Indeed, notice that the singlet state |β11〉B
retains the energy in the QB. On the other hand, the Bell
states |β0m〉B (m = 0, 1) allow for the transfer of E0/2 in the
discharging process, while state |β10〉B promotes a maximum
energy transfer E0, with full discharging time given by τd =
π/(4J

√
2). The advantage of using entanglement becomes ev-

ident when we consider the performance of alternative initial
states. Indeed, as a first alternative, let us consider that the
initial battery state is a factorized state, namely, |ψfc(0)〉B=
|φ1〉B1 |φ2〉B2 , for arbitrary |φ1〉 and |φ2〉. Then the maximum
amount of energy E0 is transferred from the QB to the CH if
and only if |φ1〉=|φ2〉=|1〉, with full discharging time τfc =
τd. (see Appendix E). This result shows that, even though a
factorized initial battery state is able to provide the same EC
as the Bell QB, the initial energy required by the factorized
state is higher than the energy we can transfer to the CH. More
specifically, the initial energy Efc

0 associated with |ψfc(0)〉B=
|1〉B1 |1〉B2 is Efc

0 = 2E0. Therefore, if we provide the same
amount of energy E0, the Bell QB will be more powerful
than the factorized QB. As a second alternative to a Bell
QB, we could also consider a single-particle QB, where the
initial available energy is stored in a single two-level system.
Again, a Bell QB will show better performance, now with
respect to the transfer time. In fact, if we use single particles
to transfer an amount of energy E0, the transfer time is τ

sp
d =

π/(4J ), so that entangled initial states provide a gain of
√

2 in
the EC.

As previously discussed and illustrated in Fig. 1, the Bell
QB presents an inherent blocking performance by storing
energy at the state |β11〉B. However, if we admit a local unitary
operator to lead the battery state from |β11〉B to |β10〉B, then
a maximum energy E0 will flow from the QB to the CH.
Moreover, by using the same mechanism, we can control
the portion of energy transferred to the CH. In fact, if the
operation leads the battery from |β11〉B to |β0m〉B, then 50%
of the available energy gets unblocked. Such a mechanism
can be obtained by an internal agent in the QB, and it does
not promote any change of the energy in the battery, since
the available energy is the same for any Bell state |βnm〉B.
An activation mechanism to transfer 50% of the energy is
obtained through a bit-flip gate (Pauli operator σx) acting on
one of the qubits in the QB, while the unblock of a full charge
is achieved by a phase-shift gate (Pauli operator σz) on one
of the qubits in the cell (see Appendix D). It is important
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to mention that the transfer mechanism does not depend
on the qubit used to activate it. This control on the energy
release, with a specific “button” designed for each situation,
is illustrated in Fig. 1.

Scaling up cells and robustness against decoherence

The Bell QB can be readily scaled up. Indeed, it is possible
to store an amount of energy EN =NE0 by suitably building
an N-cell Bell QB. This system is able to distribute energy in
multiples of E0/2 to the CH by controlling the internal state
of the individual cells. In fact, let us consider a CH composed
of N qubits initially in the state |0〉⊗N . Then we design the QB
so that each cell can transfer its stored energy to a single qubit
of the CH. As a consequence, we can provide adjustable QBs
able to transfer “quanta” of energy given by Eq =E0/2, where
we activate a number M � N of cells of the battery. Hence,
any amount of energy between Eq and ME0 can be transferred
from the QB to the CH in portions of energy Eq.

Concerning its experimental realization, the requirement of
two-qubit XY interactions in a Bell QB allows for its imple-
mentation in currently available solid-state technology such as
superconducting quantum circuits [34–36], quantum dots and
cavity QED [37], atoms in a one-dimensional trap [38–40],
and tunable microscopic optical traps [41,42], among others
[43,44]. Moreover, it is relevant to mention the expected
robustness of Bell QBs against decohering effects. Indeed,
we can take advantage of Bell QBs in some relevant physical
scenarios, where the dominant decohering effect is due to
collective dephasing processes. Indeed, collective dephasing
is a nonunitary phenomenon associated with the dynamics of
N noninteracting particles sharing the same environment [45],
which occurs due to fluctuations of the field that acts on each
particle [46–49] or to dipole-dipole interactions [50]. Under
these nonunitary effects, there is an intrinsic decoherence-free
subspace spanned by the states |10〉 and |01〉, leading to
the complete robustness of the Bell state |β11〉B [45,51] (see
also a recent loss-free scheme for excitonic QBs based on
a symmetry-protected dark state [52]). Naturally, nonunitary
effects may appear when we couple the CH to the QB, but it
can be smoothed by adjusting J so that τd 	 τdp, where τdp is
the relaxation timescale.

V. ADIABATIC MODEL FOR STABLE QBS

In the Bell QB scheme previously introduced, we have a
phenomenon known as spontaneous discharge [23]. This is a
typical consequence of the unitary dynamics, where the en-
ergy oscillates between the QB and the CH after the QB starts
its energy distribution. In turn, there will be energy revivals
in the QB for specific times, which prevents a stable battery
discharge. In order to circumvent this problem, Ref. [23] has
shown a specific situation where a stable charging process
can be achieved by using the adiabatic dynamics specifically
derived for a three-level system. Here, inspired by Eq. (5),
we can provide a general approach to stabilize the charging-
discharging processes of QBs. In order to show that the
adiabatic dynamics provides a stable process for both charge
and discharge of the QB, we will analyze them separately.

FIG. 2. Amount of energy, as multiple of Cmax, transferred from
the QB to the CH through an adiabatic dynamics as function of the
parameter Jτ .

The charging process is directly achieved by adiabatic en-
gineering state of a Bell state [53], where the battery system is
adiabatically driven by a time-dependent Hamiltonian HB(t )
from initial state |00〉B to the final state |β11〉B. Since the
protocol starts from a single state of HB(0), Eq. (5) guarantees
that the charging process will be stable. In the discharging
process, quantum control is provided by a time-dependent
Hamiltonian H (t ). We assume that H (t ) can be turned on
and off. As we turn it on, it is also able to ensure stability
in the discharge process. As in the case of the Bell QB,
we begin by taking the initial state of the whole system as
|ψ (0)〉=|β11〉B|0〉A. Then let us consider a suitable three-
qubit time-dependent Hamiltonian, which reads

H (t ) = [1 − f (t )]Hi + [1 − f (t )] f (t )Hm + f (t )Hf, (10)

where Hi = h̄J (σB1
x σB2

x +σB1
y σB2

y ), Hf = h̄J (σB1
z σAz + σB2

z σAz ),
and Hm = h̄J (σB1

x σB2
x + σB1

y σB2
y + σB2

x σAx + σB2
y σAy ) are the

initial, final, and middle Hamiltonians, respectively. The
Hamiltonian H (t ) fulfills the following required properties:
(1) |ψ (0)〉 is ground state of Hi; (2) the final desired state
|00〉B|1〉A is the ground state of Hf; and (3) there are no
level crossings, which is ensured by Hm. This allows for
the quantum evolution towards the target state through the
adiabatic dynamics.

Due to the double degenerate spectrum of the ground state
of Hfin, it remains to prove that the final state |00〉B|1〉A is
achieved due to the symmetries of H (t ). Indeed, the two
independent ground states of Hfin are |ψ0〉=|11〉B|0〉A and
|ψ1〉=|00〉B|1〉A. Then, by defining the parity operator �z =
σB1

z σB2
z σAz , we can verify that [H (t ),�z]=0 for all t . There-

fore, H (t ) preserves the parity of the state throughout the
evolution. Since we start the evolution at the state |ψ (0)〉,
which has parity eigenvalue −1, the system will evolve to
subsequent states with the same parity. Hence, transitions to
|ψ0〉 at the end of the evolution are forbidden, so that all the
energy of the QB can be adiabatically transferred to the CH,
achieving the final state |ψ1〉. This is illustrated in Fig. 2,
which shows that this transfer is indeed stable for several
different choices of the interpolation function f (t ). Notice
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then that, in agreement with Eq. (5), the QB discharge process
is stable and robust against variations of the interpolation
scheme.

VI. CONCLUSION

A general design of a QB has been proposed, which
originated from the EC operator associated with a suitable
interaction Hamiltonian. The QB proposal provides a scalable
energy source fueled by Bell pairs, with the stability achieved
through a local Hamiltonian. We have then shown that the
EC operator is the source of two main applications: (1) a
trapping energy mechanism based on a common eigenstate
between the EC operator and the interaction Hamiltonian, in
which the battery can indefinitely retain its energy even if it is
coupled to the CH, and (2) an asymptotically stable discharge
mechanism, which is achieved by adiabatic evolutions leading
to vanishing EC. The first application highlights the strength
of entanglement for QBs, which is advantageous both for the
fine grained control of the energy discharge and for the gain
of

√
2 in the energy transfer rate for each individual cell in

the QB. The second application solves in general the stability
of the energy transfer process, with no backflow of energy
from the CH to the QB. More specifically, we introduced a
piecewise time-dependent Hamiltonian to stabilize the energy
discharging process through the adiabatic dynamics. In both
cases, the scaling of the QB can be achieved by adding Bell
pairs to the QB, with each Bell pair providing a controllable
mechanism for full and stable charge of a qubit in the CH.
Experimental implementations may inherit hardware designs
originally proposed for adiabatic quantum computing, avail-
able with current technology.
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APPENDIX A: THE ENERGY CURRENT OBSERVABLE

Consider a bipartite system in the Hilbert space B⊗A,
where B is associated with the quantum battery (QB) and A
denotes an auxiliary system associated with a consumption
hub (CH). The system dynamics is governed by the Hamilto-
nian

H (t ) = H0 + HC(t ), (A1)

where H0 is the natural Hamiltonian system which defines
the energy states of the system and HC(t ) is the interaction
Hamiltonian between the QB and the CH. Without loss of

generality, we take

H0 =
∑

n={C,B}
H (n)

0 , (A2)

where HB0 and HA0 are the bare Hamiltonians of the QB and
CH, respectively. We then define the energy stored in battery
as

C(t ) = Tr
{
HA0 ρ(t )

} − EAemp, (A3)

where ρ is the density matrix for a pure state of the composite
system and EAemp is the energy of the passive auxiliary state
(empty charge state). Here we have EAemp =Tr{HA0 ρAgs}, with
ρAgs denoting the ground state of HA0 . By considering the
Schrödinger equation in the interaction picture, we have

ρ̇int(t ) = 1/(ih̄)[Hint, ρint(t )], (A4)

where the dot symbol denotes time derivative, Hint =
Z†(t )HCZ(t ), and ρint(t )=Z†(t )ρ(t )Z(t ), with Z†(t )=
eiH0t/h̄. It is important to mention that the relevant quantities to
be computed here are independent of the frame used to study
the dynamics. In fact, by computing C(t ) in the interaction
picture, we get

Cint(t ) = Tr
{
HA0 ρint(t )

} − EAemp

= Tr
{
HA0 Z†(t )ρ(t )Z(t )

} − EAemp

= Tr
{
Z†(t )HA0 ρ(t )Z(t )

} − EAemp

= Tr
{
HA0 ρ(t )Z(t )Z†(t )

} − EAemp

= Tr
{
HA0 ρ(t )

} − EAemp = C(t ). (A5)

As a first result from the above discussion, we can define
a Hermitian operator P̂(t ) associated with the instantaneous
battery charging. By defining the instantaneous EC as P(t )=
Ċ(t ), we get

P(t ) = Ċ(t ) = Tr
{
HA0 ρ̇(t )

} = 1

ih̄
Tr

{
HA0 [H (t ), ρ(t )]

}
,

(A6)
where we used the Schrödinger equation for ρ(t ). Thus, we
find

P(t ) = 1

ih̄
Tr

{
HA0 [H (t )ρ(t ) − ρ(t )H (t )]

}

= 1

ih̄
Tr

{
HA0 H (t )ρ(t ) − H (t )HA0 ρ(t )

}

= 1

ih̄
Tr

{[
HA0 , H (t )

]
ρ(t )

} = 1

ih̄
Tr

{[
HA0 , HC(t )

]
ρ(t )

}
,

(A7)

where we used Eq. (A1). Then, by defining

P̂(t ) = 1

ih̄

[
HA0 , HC(t )

]
, (A8)

we conclude that

P(t ) = Tr
{
P̂(t )ρ(t )

}
. (A9)

In the interaction picture, we can use the Eq. (A4) to find
that Pint(t )=Tr{P̂int(t )ρint(t )}=P(t ), where Pint(t ) is the EC
in interaction picture, which reads P̂int(t )= [H (A)

0 , Hint]/(ih̄).
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APPENDIX B: ADIABATIC QBS ARE STABLE

As an application of the definition of the EC operator, let
us show here that adiabatic QBs are stable. We say that the
system QB-CH undergoes an adiabatic transfer process when
the composite quantum state |ψ (t )〉 ∈ B⊗A evolves under
adiabatic dynamics for the Hamiltonian H (t )=H0 + HC(t ).
Let the system be initialized in the state

|ψ (0)〉 =
∑

n

cn|En(0)〉, (B1)

where {|En(0)〉} is the set of eigenvectors of the Hamiltonian
H (t ) at t =0. Therefore, in the adiabatic regime, we have

|ψad(t )〉 =
∑

n

cneiθ ad
n (t )|En(t )〉, (B2)

where θ ad
n (t ) comprises both the dynamic and geometric adia-

batic phases associated with the eigenstate |En(t )〉. Therefore

Pad(t ) = Tr
{
P̂(t )ρad(t )

} = 1

ih̄
Tr

{[
HA0 , HC(t )

]
ρad(t )

}

= 1

ih̄

∑
n,m

cnc∗
mei�ad

nm (t )〈En(t )|[HA0 , H (t )
]|Em(t )〉

with �ad
nm(t )=θ ad

n (t ) − θ ad
m (t ) and where we have used[

HA0 , H (t )
] = [

HA0 , HA0 + HB0 + HC(t )
] = [

HA0 , HC(t )
]
.

(B3)
Thus, we get

Pad(t ) = 1

ih̄

∑
n,m

cnc∗
mei�ad

nm (t )�Ẽmn, (B4)

where �Ẽmn = [Em(t ) − En(t )]〈En(t )|HA0 |Em(t )〉. Now, let us
consider the case where our system starts in a single eigenstate
of the Hamiltonian H (0), for example the kth eigenstate of
H (0). By doing that, we have cn =δnk and the above equation
becomes

Pad(t ) = 1

ih̄

∑
n,m

δnkδmkei�ad
nm (t )�Ẽmn = ei�ad

kk (t )

ih̄
�Ẽkk = 0.

(B5)
Therefore, since the stability condition for an interval [t1, t2]
can be mathematically written as P(t )=0 for any t ∈ [t1, t2],
this result allows us to conclude that adiabatic dynamics is a
strategy to get a stable charging process in quantum batteries
because Pad(t � τad)=0, where τad is the required time to
achieve the adiabatic regime. The same calculation as be done
for the situation where we have a degenerate eigenspace of the
Hamiltonian, where get the same result.

APPENDIX C: BELL SINGLET STATE AND ENERGY
TRANSFER PROTECTION

Here we want to show that the initial state able to block
the energy transfer from the QB to the CH is unique and
given by the Bell singlet state |β11〉 = (1/

√
2)(|01〉 − |10〉).

To this end, let us start by considering a general initial density
operator ρ with matrix elements ρi j . The initial state ρ is
expected to satisfy the following conditions:

(Ca) The available energy is E0 = 2h̄ω.

(Cb) The instantaneous EC is P(t ) = 0,∀t .

By computing the available energy for ρ, we get

E0 = h̄ω(2 + ρ11 − ρ44), (C1)

so that the condition (Ca) imposes ρ11 =ρ44. Now, by com-
puting the EC, we find

P(t ) = 2
√

2Jωh̄ sin(4
√

2Jt )(2ρ11 + ρ22 + ρ33)

= 4
√

2JRe[ρ23]ωh̄ sin(4
√

2Jt ). (C2)

From Eq. (C2), we note that a number of elements of ρ do
not contribute to EC and, for simplicity, we just take them
as zero. In particular, we adopt ρ23 ∈ R. Condition (Cb) then
imposes that 2ρ11 + ρ22 + ρ33 + 2ρ23 =0, Summarizing, by
taking into account conditions (Ca) and (Cb), as well as the
requirements of probability conservation and positivity of ρ,
we obtain the set of constraints

ρ11 = ρ44, (C3)

2ρ11 + ρ22 + ρ33 + 2ρ23 = 0, (C4)

4∑
n=1

ρnn = 1, (C5)

0 � 1 − 4
(
ρ22ρ33 − ρ2

23

)
� 1. (C6)

From the constraints (C3), (C4), and (C5), we obtain

ρ22 = 1 − 2ρ11 − ρ33 and ρ23 = −1/2. (C7)

Therefore, it follows that the density matrix can be written as

ρ =

⎡
⎢⎣

ρ11 0 0 0
0 1 − 2ρ11 − ρ33 −1/2 0
0 −1/2 ρ33 0
0 0 0 ρ11

⎤
⎥⎦. (C8)

In addition, by using (C6), we obtain the inequality

ρ22ρ33 − ρ2
23 � 0. (C9)

From (C7) and (C9), we find

−ρ2
33 + (1 − 2ρ11)ρ33 � 1/4. (C10)

By maximizing the function f (ρ33) = −ρ2
33 + (1 − 2ρ11)ρ33,

it follows that the maximum point fmax of f (ρ33) is provided
by fmax = (1 − 2ρ11)/4. However, (C10) requires that
f (ρ33) � 1/4. This yields ρ11 = 0. Moreover, fmax is obtained
if and only if ρ33 = (1 − 2ρ11)/2, which then implies that
ρ33 = 1/2. In conclusion, the admissible initial density matrix
that is able to retain energy in the QB is essentially unique
and reads

ρ = |β11〉〈β11|. (C11)

APPENDIX D: ENERGY TRANSFER FROM BELL QBS

Let us consider the initial state for the CH as the empty
state |0〉A and that the QB is prepared in a Bell state:

|βnm〉B = 1√
2

(|0n〉 + (−1)m|1n̄〉)B. (D1)

The system dynamics driven by the Hamiltonian

Hint = h̄J
2∑

n=1

(
σBn

x σAx + σBn
y σAy

)
. (D2)

062114-6



STABLE AND CHARGE-SWITCHABLE QUANTUM … PHYSICAL REVIEW E 101, 062114 (2020)

FIG. 3. Maximum value of the charge transferred to the CH for
separable states as function of the parameters β1 and β2.

Then we can write the instantaneous evolved state as

|ψnm(t )〉 = exp

(
− i

h̄
Hintt

)
|βnm〉B|0〉A. (D3)

By computing the instantaneous amount of energy transferred
to the CH, we obtain

Cnm(t ) = 〈ψnm(t )|HA0 |ψnm(t )〉 − E (0), (D4)

where HA0 =1B ⊗ (h̄ωσz )A and E (0)=A〈0|(h̄ωσz )A|0〉A =
−h̄ω is the initial energy in the CH, which is then fully
discharged. Therefore

C00(t ) = C01(t ) = 1

2
h̄ω sin2(2

√
2Jt ), (D5a)

C10(t ) = h̄ω sin2(2
√

2Jt ), (D5b)

C11(t ) = 0, (D5c)

so that the above equations can be rewritten as

Cnm(t ) = E0gnm sin2(2
√

2Jt ), (D6)

where we have defined g00 =g01 =1/2, g10 =1, and g11 =0.
From above equations, in order to control the amount of en-
ergy transferred to CH, we can start the QB in the state |β11〉B,
so that no energy is transferred to the CH. Now, in order to
transfer 50% of the available energy we need to change the
Bell state from |β11〉B to |β0m〉B. This can be achieved by
implementing the operation σx in the first qubit in the QB.
In fact, by implementing the operation O(2)

x = 1B1 ⊗ σB2
x we

have (up to a global phase)

|β11〉B → O(2)
x |β11〉B = |β01〉B, (D7)

so that after this operation the energy transferred to CH is
given by C01(t ). The same result is obtained if we implement

the operation O(1)
x = σB2

x ⊗ 1B1 , because

|β11〉B → O(1)
x |β11〉B = |β01〉B. (D8)

In both cases, the maximum energy transferred is E0/2,
namely, 50% of the available energy in the battery. On the
other hand, from Eqs. (D5) we can transfer 100% of the
available energy if we change the initial state |β11〉B to |β10〉B.
This can be performed through one of the two phase-shift
operations given by

O(1)
z = σB1

z ⊗ 1B2 , or O(2)
z = 1B1 ⊗ σB2

z . (D9)

Therefore, it follows that the energy transfer mechanism is
independent of the qubit used to activate the process.

APPENDIX E: PERFORMANCE OF QBS BASED ON
SEPARABLE STATES

Let us consider the discharging process as performed by
Bell QBs, but taking now a separable state for the energy
transfer process. Then the Hamiltonian is given by Eq. (D2),
where the initial battery state is assumed to be a separable
state |ψfc(0)〉B=|φ1〉B1 |φ2〉B2 . Here we take |φn〉=αn|0〉 +
βneiθn |1〉, with arbitrary amplitudes 0 � αn � 1 and 0 � βn �
1. Then, by letting the system evolve and computing the
instantaneous energy, we find

Cfc(t )

h̄ω
= 2β1β2β̃1β̃2 cos(θ1 − θ2) sin2(2

√
2Jt )

+ (β2
1 + β2

2 ) sin2(2
√

2Jt ), (E1)

where β̃2
n =1 − β2

n , with the subscript “fc” denoting the en-
ergy for “factorized” states and where 2h̄ω is the maximum
charge to be transferred to the CH. Therefore, by studying
the maxima and minima of the above function, we obtain the
critical values for Cfc(t ) as tc,n =nπ/(4

√
2J ). Since the initial

value of Cfc(0) is a minimum of Cfc(t ), then the first maximum
happens when τ = tc,1 =π/(4

√
2J ), where the charge reads

Cmax

h̄ω
= 2β1β2β̃1β̃2 cos(θ1 − θ2) + β2

1 + β2
2 . (E2)

Since we need to get Cmax =E0 =2h̄ω, the first optimization
can be done in the parameters θn, where we need to have θ1 −
θ2 =2nπ , so that

Cmax

E0
= β1β2

√(
1 − β2

1

)(
1 − β2

2

) + β2
1 + β2

2

2
. (E3)

In Fig. 3 we show the plot of Cmax/E0 as a function of the
parameters β1 and β2, where we can see that the maximum
charge is obtained when β1 =β2 =1. Therefore, the maximum
amount of energy E0 is transferred from the QB to the CH if
and only if |φ1〉=|φ2〉=|1〉, where the initial available energy
Efc

0 is Efc
0 =4h̄ω=2E0.
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