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Via Monte Carlo simulations we study nonequilibrium dynamics in the nearest-neighbor Ising model,
following quenches to points inside the ordered region of the phase diagram. With the broad objective of
quantifying the nonequilibrium universality classes corresponding to spatially correlated and uncorrelated initial
configurations, in this paper we present results for the decay of the order-parameter autocorrelation function
for quenches from the critical point. This autocorrelation is an important probe for the aging dynamics in
far-from-equilibrium systems and typically exhibits power-law scaling. From the state-of-the-art analysis of
the simulation results, we quantify the corresponding exponents (A) for both conserved and nonconserved
(order-parameter) dynamics of the model in space dimension d = 3. Via structural analysis we demonstrate
that the exponents satisfy a bound. We also revisit the d = 2 case to obtain more accurate results. It appears that
irrespective of the dimension, A is approximately the same for both conserved and nonconserved dynamics.
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I. INTRODUCTION

Following a quench from the high-temperature disordered
phase to a point inside the ordered region when a homo-
geneous system evolves towards the new equilibrium, sev-
eral quantities [1-7] are of importance for understanding the
nonequilibrium dynamics. The structure of a system is usually
characterized by the two-point equal time correlation function
[1] or by its Fourier transform, S, the structure factor, the lat-
ter being directly accessible experimentally. This correlation
function, C(r, t), is defined as (r = |F|)

C(rt) = (Y (F Y0, 1) — (WF )Y (©,1), (1)

where ¢ (7,¢) is a space (¥) and time (¢#) dependent order
parameter. During a “standard” nonequilibrium evolution,
C(r, t) exhibits the scaling behavior [1]

C(r,t) = C(r/e(t)), 2)

with £ the characteristic length scale, measured as the average
size of the domains rich or poor in particles of specific type,
typically growing as [1]

L~1". 3)

While understanding of the scaling form in Eq. (2) and
estimation of the growth exponent n in Eq. (3) have been the
primary focus [1,2] of studies related to the kinetics of phase
transitions, there exist other important aspects as well [5-7].
For example, during the evolution of the ferromagnetic Ising
model, the corresponding nearest-neighbor ({(ij)) version of
the Hamiltonian being defined as [1]

H:—JZS,‘S‘/‘;SiZZtl;J>Oy €]
(ij)
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one is interested in the time dependence of the fraction of
unaffected spins (S;). This quantity also exhibits a power-law
decay with time #~?, the exponent @ being referred to as the
persistence exponent [5]. Furthermore, in an evolving system
the time translation invariance is violated, implying different
relaxation rates when probed by starting from different wait-
ing times (t,,) or ages of the system. Such an aging property
[6-20] is often investigated via the two-time order-parameter
autocorrelation function [6]

Cag(t, 1w) = (Y (F 1) (7, 0)) — (Y (F 1)) (W (F, 1)), (5)

with ¢t > t,,. Despite different decay rates for different 7,
Cy(t, 1,) in many systems exhibits the scaling property [7]

Cag (1, 1)) ~ (£/£,) 7%, (6)

where ¢ and ¢, are the characteristic lengths at ¢ and ¢,
respectively.

For the understanding of universality in coarsening dynam-
ics, it is important to study all these properties. Note that
universality [1] in nonequilibrium dynamics depends upon the
mechanism of transport, space dimension (d), symmetry and
conservation of order parameter, etc. In addition, in each of
these cases the functional forms or the values of the power-
law exponents for the above-mentioned observables may be
different for correlated and uncorrelated initial configurations
[17,21-26]. In other words, there may be different universality
classes depending upon whether a system is quenched to
the ordered region with perfectly homogeneous configuration,
say, for the Ising model from a starting temperature 7; = oo,
with equilibrium correlation length [27] & = 0, or from the
critical point with £ = oo.

In this work our objective is to estimate A for initial
configurations with & = 0o in the three-dimensional Ising
model as well as revisit the d = 2 case. We consider two
cases, viz., kinetics of ordering in uniaxial ferromagnets [1,2]
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and that of phase separation in solid binary (A + B) mixtures
[1,2]. For the former, the spin values +1 in Eq. (4) represent,
respectively, the up and down orientations of the atomic
magnets. In the second case, different values of S; stand for an
A or a B particle. During ordering in a magnetic system, the
volume-integrated order parameter (note that ¥ is equivalent
to the spin variable) does not remain constant over time [1].
On the other hand, for phase separation in binary mixtures this
total value is independent of time [1], i.e., conserved.

Even for such simple models and the technically easier
case of & = 0, estimation of A remained difficult, particularly
for the conserved order-parameter case [9,28]. For quenches
from the critical point, additional complexity is expected
in computer simulations. In the latter case there exist two
sources of finite-size effects [29]. The first one is due to the
nonaccessibility of & = oo in the initial correlation [29], and
the second is related to the fact [30,31] that £ < oo, always.
Nevertheless, via an appropriate method of analysis [26], in
each of the cases we estimate the value of A quite accurately.
It transpires that the obtained numbers are drastically differ-
ent from those [18] for £ = 0. This is despite the fact that
the growth exponent n does not depend upon the choice of
initial &.

The results are discussed in the background of available
analytical information [7,9,17]. It is shown that the numbers
obey a bound obtained by Yeung, Rao, and Desai (YRD) [9],

A dj (7
2
Here B is an exponent related to the power-law behavior of the
structure factor at the waiting time #,, in the small wave vector
(k) limit [32]:

S(k, t,,) ~ kP. (®)

The rest of the paper is organized as follows. In Sec. II
we provide details of the model and methods. Results are
presented in Sec. III. Section IV concludes the paper with a
brief summary and outlook.

II. MODEL AND METHODS

Monte Carlo (MC) simulations of the nearest-neighbor
Ising model [33-35], introduced in the previous section, are
performed by employing two different mechanisms, viz.,
Kawasaki exchange [36] and Glauber spin-flip [37] methods,
on a simple cubic or square lattice with periodic boundary
conditions in all directions. For this system the value [34]
of critical temperature in d = 3 is T, ~ 4.51J/kg, J and kg
being the interaction strength and the Boltzmann constant, re-
spectively. The corresponding number ind = 2 is >~ 2.27J /kp
[34]. Given that in computer simulations the thermodynamic
critical point is not accessible, we have quenched the systems
from 7, = T, the finite-size critical temperature for a system
of linear dimension L (see the next section for a more detailed
discussion on this) [26,29]. The final temperature was set to
Ty = 0.6T, the starting composition always having 50% up
and 50% down spins. Below we set J, kg, and a, the lattice
constant that is chosen as the unit of length, to unity.

In the Kawasaki exchange Ising model (KIM), a trial move
consists of the interchange of particles between randomly

selected nearest-neighbor sites. For the Glauber Ising model
(GIM), a trial move is a flip of an arbitrarily chosen spin. In
both the cases we have accepted the trial moves by following
the standard Metropolis algorithm [33-35]. KIM and GIM
mimic the conserved and nonconserved dynamics, respec-
tively. In our simulations, one Monte Carlo step (MCS), the
chosen unit of time, is equivalent to L¢ trial moves.

For faster generation of the equilibrium configurations at
T, the Wolff algorithm [38] has been used. There a randomly
selected cluster of identical spins/particles has been flipped.
This way the critical slowing down [39,40] has been avoided.

The average domain lengths of a system during evolution
have been calculated as [31]

o) = / P(ly, 1)0adly. )

Here P({4,t) is a domain-size distribution function, which
is obtained by calculating ¢4, the distance between two suc-
cessive interfaces, by scanning the lattice in all directions.
Quantitative results are averaged over a minimum of 100
independent initial configurations for both KIM and GIM. To
facilitate extrapolation of the results for aging in the thermo-
dynamically large size limit, we have performed simulations
with different system sizes. In d = 3 the value of L varies
between 24 and 128 for KIM and between 64 and 300 for
GIM. In d = 2, we have studied systems with L lying in the
range [64, 512] for KIM and [64, 1024] for GIM. We have
acquired structural data for both types of dynamics for fixed
values of L in each of the dimensions. For this purpose, in
d = 3 we have considered L = 512, and the results ford = 2
were obtained with L = 1024. Given that these system sizes
are large we did not simulate multiple values of L in this
case. Details on the statistics and the system sizes for the
calculations of 7" can be found in the next section. Note that
most of the results are presented from d = 3. We revisit the
d = 2 case to improve accuracy so that certain conclusions on
the dimension dependence can be more safely drawn.

III. RESULTS

As already mentioned, in computer simulations finite-size
effects lead to severe difficulties in studies of phenomena
associated with phase transitions. In the kinetics of phase
transitions, £ never reaches oo, due to the restriction in the
system size [30,31]. This is analogous to the fact that in
critical phenomena [29] one always has & < oco. Of course,
scaling methods exist to overcome the problems in both equi-
librium and nonequilibrium contexts [14,18,26,29,30,34,41].
For studies of coarsening phenomena starting from the critical
point [23-26], difficulties due to both types of effects are
encountered. Nevertheless, via construction of an appropriate
extrapolation method [26] we will arrive at quite accurate
conclusions.

In critical phenomena the true value of 7, cannot be real-
ized for L < oo. In such a situation, for reaching conclusions
in the L = oo limit, one defines TCL, the pseudocritical tem-
perature for a finite system, and relies on appropriate scaling
relations [40,42-44]. TCL is expected to exhibit the behavior
[40,42-45]

' —T.~ L', (10)
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FIG. 1. Finite-size critical temperature 7" for the 3D Ising model
is plotted as a function of 1/L. The solid line is a fit to the
expected critical behavior [see Eq. (10)] by fixing the correlation
length exponent v to 0.63. The simulation results were obtained via
Glauber as well as Wolff algorithms. The arrow points to the value
of thermodynamic critical point that also was fixed to the known
number. Inset: Order-parameter distributions p for two system sizes,
at the same temperature (T = 4.54), are plotted vs the concentration
(n,) of up spins.

where v is the critical exponent corresponding to the diver-
gence [27,45] of & at T,. In Fig. 1 we have presented results
for TCL, as a function of 1/L, from d = 3. The solid line there
is a fit to the scaling form in Eq. (10) by fixing [27,34,45] v
and T, to the three-dimensional (3D) Ising values (>~ 0.63 and
>~ 4.51, respectively). The quality of fit confirms the validity
of Eq. (10) as well as the accuracy of the estimations. We use
the amplitude (=~ 4.4) obtained from the fit to extract 7" for
L larger than the presented ones. This number is >~ 3.9 in [26]
d=2.

The results in Fig. 1 were obtained by using the Glauber as
well as the Wolff algorithms [34,37], exploiting the following
facts. The fluctuation in the number of spins or particles of
a particular species during simulations provides temperature-
dependent probability distributions for the corresponding con-
centration. These distribution functions are double peaked in
the ordered region [26,34]. On the other hand, above criticality
one observes single-peak character. The temperature at which
the crossover from double- to single-peak shape occurs is
taken as the T* for a particular choice of L. In the inset
of Fig. 1 we show the distributions, p(n,) (see caption for
the details of the notation), from two different system sizes.
For both system sizes the temperature is the same. It is seen
that for the larger value of L there is only one peak, while
the distribution for the smaller system has two peaks. This is
expected in the present setup and is consistent with Eq. (10).
Note that the crossover between single-peak and double-peak
structures occurs in a continuous manner. Thus, extremely
good statistics is needed to identify this. The probability
distribution close to T* were thus obtained for each L after
averaging over a minimum of 500 independent runs. Only
because of this are our results in the main frame of Fig. 1

KIM

GIM

FIG. 2. Two-dimensional sections of the evolution snapshots,
recorded during the Monte Carlo simulations of the Ising model in
d =3, are presented for quenches to Ty = 0.6T,.. The upper frames
correspond to conserved dynamics, whereas the lower ones are for
the nonconserved case. At the top of each of the frames we have
mentioned the corresponding time. We have included snapshots for
quenches from finite-size critical temperature as well as from 7, =
oo, with L = 128. In all the frames the down spins (or B particles)
are left unmarked.

accurate, the error bars being less than the size of the symbols.
TCL can also be estimated from the locations of the maxima,
with the variation of temperature, in the thermodynamic func-
tions such as susceptibility and specific heat.

To facilitate appropriate analysis of the autocorrelation
data, we will perform quenches from T~ for different values
of L. For each L, the value of A, referred to as A, will be
estimated. Finally, the thermodynamic limit number will be
obtained from the convergence of Ay in the L = oo limit. In
addition to the L dependence, there will be other effects as
well. We discuss these in the appropriate places.

In Fig. 2 we present two-dimensional cross sections of the
snapshots, taken during the evolution of both types of systems,
from d = 3. For the sake of completeness we have compared
the snapshots for the critical starting temperature with those
for quenches with £ = 0, i.e., from 7; = oco. The upper frames
are for conserved order-parameter dynamics and the lower
ones are for the nonconserved case. In each of the cases the
structure for quenches from the critical point appears different
from that for 7; = oco. Note that all the presented pictures are
from simulations with L = 128, and the results for the critical
point correspond to quenches from TF, as mentioned above.
As is well known [1,31,46—49], it can be appreciated from the
figure that in the nonconserved case the growth occurs much
faster.

The behavior of the equal time structure factor in d = 3 for
a thermodynamically large system at criticality is expected to
be [27,34,45]

S(k,0) ~ k2, (11)

given that in d = 3 the critical exponent n (=~ 0.036, as op-
posed to 0.25 in d = 2), the Fisher exponent that characterizes
the power-law factor of the critical correlation as p=d=2+n)
has a small value. Typically, in most of the coarsening systems
scaling in the decay of autocorrelation function [cf. Eq. (6)]
starts from a reasonably large value of 7,,. By then the structure
is expected to have changed from that at the beginning. Thus,
the exponent —2 in Eq. (11) should be verified before being
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FIG. 3. Log-log plots of structure factor vs wave vector fromd =
3. Results from both types of dynamics are included. The ordinate of
the data set for KIM has been multiplied by a constant number to
obtain collapse in the small-k region. Inset: Same as the main frame
but for d = 2. The solid lines are power laws with exponent values
noted in the figure. The values of #,, and L are also mentioned.

taken as the value of 8 in the YRD bound for understanding of
results following quenches from T.. Furthermore, for 7, = T,
one may even ask about the validity of a stable 8. This is
related to the question of whether there exists a scaling regime
or the structure is continuously changing. Keeping this in
mind, in Fig. 3 we present plots of S(k, t,,) versus k for large
enough values of L and t,,, from d = 3. Results from both
dynamics are included. In fact, B appears to be stable at —2,
even though the structural character changes at large &, e.g., an
appearance of the Porod law [1] [S(k) ~ k=4]is clearly visible
that corresponds to the existence of domain boundaries. This
value of 8, i.e., —2, will be used later for verifying the YRD
bound.

Note here that in Fig. 3 we have presented representative
results with appropriate understanding of finite-size effects
and onset of scaling in the structure as well as in aging. Even
though the results in Fig. 3 are from L = 512, simulating this
size for long enough time, a necessity in studies of aging phe-
nomena, at d = 3 is very time consuming, particularly for the
conserved dynamics. So, for aging the presented data are from
smaller values of L, and the conclusions in the thermodynamic
limit are drawn via appropriate extrapolations.

For the sake of completeness, in the inset of Fig. 3 we
present analogous results for d = 2. Here also the small k be-
havior remains unaltered from that in the initial configuration,
i.e., we have [27] B = —7/4. In this dimension the Porod law
[1] demands S(k) ~ k=3. In the rest of the paper, all figures
will contain results for d = 3 only, except for the last one.

First results for Cy(t, 1)) are presented in Fig. 4, versus
£/¢,, on a log-log scale. In part (a) we have shown data for
the nonconserved dynamics, by fixing the system size, for a
few different values of ,,. The observations are the following.

There exist sharp departures of the data sets from each
other at large £/¢,,. The higher the value of ¢,, the departure
occurs earlier from the plot for a smaller #,,. This is related
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FIG. 4. (a) Log-log plots of the order-parameter autocorrelation
function, Cy(?, t,,), vs £/£,,, for the nonconserved dynamics in d =
3. Data for a few different values of ¢,, are included. These results are
for L = 128. (b) Same as (a) but for the conserved order-parameter
dynamics. These results are from simulations with L = 64. The solid
lines inside both the frames represent power laws, the exponents
being mentioned in appropriate places.

to “standard” nonequilibrium finite-size effects [14,18]. With
the increase of 7, a system has less effective size available to
grow or age for. This fact can be stated in the following way
as well. Note that for a fixed system size the final value of ¢
is fixed. Thus, with the increase of ¢, i.e., of £,,, the value
of the scaled variable £/¢,, decreases. Naturally, when the
latter is chosen as an abscissa variable, the above mentioned
departures, with the increase of ¢,, start appearing earlier.
Furthermore, even in the small ¢/¢,, region the collapse of
the data set for 7, = 10 with those for the larger ¢, values
is rather poor. This, we believe, is due to the fact that in
the scaling regime the structure is different [32] from the
initial configuration [26]. (Also note that the scaling structure
for T; = T, is different from that for 7; = 00.) During this
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switchover to the scaling behavior, the extraction of ¢ is also
ambiguous due to continuous change in the structure that thus
lacks the property of Eq. (2). If we believe that by ¢,, = 50 the
scaling regime has arrived (see the reasonably good collapse
of data sets for r,, = 50 and 100 in the small £/¢,, regime),
the corresponding decay is consistent with A = 0.5, a value
that was predicted theoretically [17]. Nevertheless, given the
complexity of finite-size and other effects, further analysis is
required before arriving at a conclusion with confidence.

In part (b) of Fig. 4 we present similar results for the
conserved dynamics. Here the system size is smaller than
in (a). Note that due to slower dynamics in the conserved
case (n = 1/2 for nonconserved case [1,46], whereasn = 1/3
for the conserved dynamics [31,47-49], and these numbers
are true irrespective [17,21,50] of T;), the convergence to the
scaling regime has not happened even by ¢, = 100. For the
same reason the onsets of finite-size effects for different ¢,
values are not so dramatically separated from each other in
this case.

For both the dynamics, one gets an impression that the
exponent has a tendency to increase with the increase of t,,.
The phenomenon of convergence, however, is more complex
and requires systematic study involving both ¢, and L. This
we will perform in the rest of the paper.

Next we examine the effects of system size on the “scaling”
regime. We remind the reader that there exists another type of
finite-size effect related to & < oo. Due to this, with changing
system size the exponent will differ in “the scaling regime” as
well. Related results are presented in Fig. 5. For the sake of
brevity, here we show data only for the conserved case.

In Fig. 5(a) we show Cy(t, t,) for different values of L
versus £/£,, on a log-log scale by fixing t,, to 20. In addition
to the delayed appearance of late time finite-size effects, with
the increase of system size the decay exponent shows the
tendency of shifting towards smaller values [26]. To pick
the stable power-law regime appropriately, by discarding the
finite size affected and early transient regimes, in Fig. 5(b) we
plot the instantaneous exponent [14,18,31,48,49]
i__dlnCag(t,tw); xzi’ (12)

dlnx Ly
as a function of £/¢,,, for two values of L with 7,, = 20. From
the flat parts we extract the L-dependent exponent A, . We have
performed this exercise for multiple values of z,, for each type
of dynamics.

An even better exercise is to extract Ay from the plots of A;
versus £,,/£. This helps the extrapolation of A; to the x = co
limit, thereby eliminating any corrections, if present, for small
x via judicial identification of the trends of a data set. These
plots are shown in Fig. 5(c). From Fig. 5(b) it was already
clear that the corrections are weak in this case, and so, in
Fig. 5(c) also we observe flat behavior of the relevant region
and obtain the same values of A;. A similar procedure is fol-
lowed in the nonconserved case as well. The above-mentioned
flat behavior in the intermediate regime also confirms that
there exists a power-law relationship between Cys(, ¢,,) and
£/¢,. We reemphasize that the plots of Figs. 5(b) and 5(c)
are expected to convey a similar message. Nevertheless, the
weak dependence of X; on x, if any, will be detectable in one
exercise better than the other. The exercises in these figures
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FIG. 5. (a) Log-log plots of Cy(t,1,) vs £/£, for t,, = 20 and
different values of the linear dimension of the simulation box in d =
3. The solid lines represent power laws. (b) Plots of the instantaneous
exponents, %;, vs £/¢,, for t, =20 and two values of L in d =
3. (c) Same as (b), but Cy(¢,1t,) is plotted vs £,,/¢. The dashed
horizontal lines represent the estimated values of A, the L-dependent
aging exponent. All results are from the conserved dynamics.

suggest that the corrections in the values of A, that may appear
due to such weak dependence are within small numerical
errors.
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FIG. 6. (a) Plots of A, vs 1/L for the conserved order-parameter
dynamics. Data from a few different values of 7, are shown. The
dashed lines are power-law fits to the simulation data sets. (b) Same
as (a) but for the nonconserved order parameter dynamics. All results
are from d = 3. In both parts insets contain scaling plots of the

autocorrelation function. The values of L and t,, are mentioned inside
the frames.

Data for Ay, for a particular type of dynamics, when plotted
versus 1/L for multiple values of ¢, should provide a good
sense of convergence [26]. The corresponding number should
be the value of A for a thermodynamically large system. This
exercise has been shown in Fig. 6 for both conserved (a) and
nonconserved (b) dynamics. The dashed lines there are fits to
the form

AL =A+AL7P, (13)

where A and b are constants. For both KIM and GIM, fits to
each of the data sets provides A value quite consistent with
the others. In Fig. 7 we show analogous results for d = 2 —
part(a) for KIM and part(b) for GIM. Compared to Ref. [26],
these results are obtained after averaging over a larger number
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FIG. 7. Same as Fig. 6, but here the results are from d = 2.

of initial realizations. In the insets of Figs. 6 and 7, we show
scaling plots of the autocorrelation function. Given that we
have chosen the largest simulated system sizes, the collapse
of data from different #,, values in each of the cases is good.
The estimated values of A are quoted in Table I, obtained after
averaging over the convergences of the fittings by considering

TABLE 1. List of values of A for the nearest-neighbor Ising
model. Here “Correlated” and “Uncorrelated” imply results for
quenches from 7; = T, and T; = oo, respectively. For the GIM, we
have quoted the theoretical predictions [8,17,21] inside the parenthe-
ses. For the values of the lower bounds [9], please see Table II.

d=2 d=3
Model Correlated  Uncorrelated  Correlated  Uncorrelated
KIM 0.13 +0.02 3.6 0.2 0.64 4+ 0.05 7.5+04
GIM 0.144+0.02 1.32+0.04 0.57£0.07 1.69=+0.04
(0.125) (1.29) 0.5) (1.67)
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TABLE II. List of 8 values for the nearest-neighbor Ising model.
Validity of YRD bound can be checked by putting these numbers
in Eq. (7) and comparing the outcome with the results quoted in
Table I. While preparing this table, n in d = 3 has been set to zero
(see discussion in the context of Fig. 3). For the sake of convenience,
we have put the values of the bounds [9] inside the parentheses.

Model Correlated Uncorrelated Correlated Uncorrelated
KIM -1.75 (0.125) 4(3) -2(0.5) 4 (3.5)
GIM -1.75 (0.125) 0(1) -2(0.5) 0(1.5)

different numbers of data points for each #,,, along with those
for uncorrelated initial configurations [8,14,18]. All numbers
in this table are from simulation studies. For the comparison
of these numbers with the YRD bound, in Table II we have
quoted the values of 8 for 50 : 50 starting composition of up
and down spins (see caption for more details) [26,32]. For the
uncorrelated case it is clear that the structures are different
for the conserved and nonconserved cases. For the correlated
initial configurations, even though the g values for the two
types of dynamics appear the same the overall structures are
different, as expected [1] (see Fig. 3).

For the sake of completeness, in Table I1I we list the values
of the persistence exponent [5,23-25] 6 for the different
universality classes in d = 2 and 3. Due to technical difficulty
of estimation in the conserved case, for this quantity we
quote only the values for the nonconserved dynamics. This
table contains the values of fractal dimensionality (dy) of
the scaling structures formed by the persistent spins as well
[25,51,52]. From the values of the quantities presented in
Table II1, it is again clear that the universalities for correlated
and uncorrelated initial configurations are different. For the
domain growth, of course, as previously mentioned, the value
of n does not differ between the correlated and uncorrelated
initial configurations [17,21,50].

IV. CONCLUSION

Universality in kinetics of phase transition [1] is less
robust compared to that in equilibrium critical phenomena
[27,34,45]. In kinetics, the classes are decided [1] by transport
mechanism, space dimension, order-parameter symmetry, and
its conservation, etc. In each of these cases there can be
further division into universality classes [17,23-26] based on
the range of spatial correlation in the initial configurations.
In this paper we have examined the influence of long-range

TABLE III. List of values of the persistence exponent # and
related fractal dimension (d) for the nonconserved Ising model [25].

d=2 d=3
Exponent Correlated Uncorrelated Correlated Uncorrelated
0 0.035 0.225 0.105 0.180
dy 1.92 1.53 2711 2.65

correlation on the decay of order-parameter autocorrelation
function, a key quantity for the study of aging phenomena
[6,7] in out-of-equilibrium systems, by quenching the nearest-
neighbor Ising model [27,45] from the critical point to the
ordered region. We have investigated both conserved [1] and
nonconserved [1] order-parameter dynamics.

In the nonconserved case our study mimics coarsening
in a uniaxial ferromagnet. On the other hand, the conserved
dynamics is related to the kinetics of phase separation in solid
binary mixtures. Despite difficulty due to multiple sources
of finite-size effects, we have estimated the exponents for
the power-law fall of the autocorrelation function rather ac-
curately. We observe that in both the cases the decays are
significantly slower than those for the quenches from perfectly
random initial configurations [6-8,14,18].

Even though for quenches with & = 0 the values of X
differ significantly in the two cases, for quenches from the
critical point, i.e., for £ = oo, the exponents are practi-
cally the same. This is irrespective of the space dimension.
For the magnetic case there exists analytical prediction [17],
and the numbers obtained from our simulations are in reason-
able agreement with the former. The source of deviations that
exists may have its origin in the estimation error for T.* as
well as in the statistical error in nonequilibrium simulations.
The discrepancy in d = 3 may still be real given that KIM and
GIM numbers from our analysis are quite close to each other.

In the literature of aging phenomena there exist lower
bounds [7,9] for the values of A. Our results for both types
of dynamics are consistent with one of these bounds. This we
have checked, via the analysis of structure, a property that is
embedded in the construction of the bound.

This work, combined with a few others [14,17,18,23-26],
provides near-complete information on the universality in
coarsening dynamics in the Ising model involving “realistic”
space dimensions, the conservation property of the order pa-
rameter, and spatial correlations in the initial configurations.
Analogous studies in other systems should be carried out by
employing the methods used here to obtain a more complete
understanding, e.g., of the influences of hydrodynamics on re-
laxation in out-of-equilibrium systems with long-range initial
correlations.
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