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State-dependent diffusion in a bistable potential: Conditional probabilities and escape rates
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We consider a simple model of a bistable system under the influence of multiplicative noise. We provide a path
integral representation of the overdamped Langevin dynamics and compute conditional probabilities and escape
rates in the weak noise approximation. The saddle-point solution of the functional integral is given by a diluted
gas of instantons and anti-instantons, similar to the additive noise problem. However, in this case, the integration
over fluctuations is more involved. We introduce a local time reparametrization that allows its computation in
the form of usual Gaussian integrals. We found corrections to the Kramers escape rate produced by the diffusion
function which governs the state-dependent diffusion for arbitrary values of the stochastic prescription parameter.
Theoretical results are confirmed through numerical simulations.
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I. INTRODUCTION

The physics of thermal or noise activation over a barrier
has a long history. Nowadays, it is an important research topic
because of the wide range of applications in several areas
of science, such as physics, chemistry, and biology [1]. The
simplest model to study this problem is a classical particle in
a bistable potential, U (x), whose dynamics is driven by an
overdamped Langevin equation with additive white noise. In
this context, an important physical quantity is the rate at which
the particle escape out of a minimum of the potential. The
seminal work of Kramers [2] stated the very simple formula

radd =
√

ωmin|ωmax|
2π

e− �U
σ2 , (1.1)

where radd is the escape rate, �U = U (xmax) − U (xmin) is the
height of the potential barrier, σ 2 is the noise intensity, and
ωmin = U ′′(xmin) and ωmax = U ′′(xmax) are the local curva-
tures of the potential at its minimum (xmin) and its maximum
(xmax), respectively (primes mean derivative with respect to
x). We use the notation radd to emphasize that this expression
for the escape rate was computed assuming an additive noise
stochastic differential equation. Equation (1.1) is valid in the
weak noise or high barrier approximation σ 2 � �U . Since
this well-established result was defined, a lot of work has been
done in order to compute more accurate expressions suitable
to be applied to more realistic situations. The generalization
of Eq. (1.1) to multidimensional systems was (and still is) a
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big challenge [3]. Moreover, generalizations to different types
of noise probability distributions have been also considered
[4–9].

On the other hand, there is increasing interest for multi-
plicative noise stochastic systems. Some examples of multi-
plicative noise dynamics are given by the diffusion of particles
near a wall [10–14], micromagnetic dynamics [15–17], and
nonequilibrium transitions into absorbing states [18]. There
are two particular stochastic phenomena in which multiplica-
tive noise plays an important role: noise-induced phase tran-
sitions [19–23] and stochastic resonance [24–27]. In the last
case, the escape rate is at the stem of the physical description
of the observed phenomenology.

One of the main questions that we address in this paper
is how the Kramers escape rate of Eq. (1.1) is modified
when the dynamics is driven by a general multiplicative noise,
modeled by a diffusion function g(x). This topic rarely has
been treated in the past and there is some controversy in the
literature [28–32]. In particular, we study the dependence of
the escape rate on the stochastic prescription, necessary to
correctly define the multiplicative noise Langevin equation.
This point is particularly relevant in order to compare analytic
results with numerical simulations. Our main result is

rmult = g2(xmax)

√
ω̃min|ω̃max|

2π
e− �Ueq

σ2 . (1.2)

We used the notation rmult to denote the escape rate in the
multiplicative noise case. In general, we observe that the
Arrhenius form of the Kramers result still remains. Another
similarity with Eq. (1.1) is that the escape rate does not
depend on details, either of the potential or of the diffusion
function. Instead, it only depends on the local properties
of these functions at the maximum and minima of the po-
tential. On the other hand, there are significant differences
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between both results. First, the original potential U (x) has
been replaced by the equilibrium potential Ueq(x), obtained
from the solution of the asymptotic stationary Fokker-Planck
equation [Eq. (2.5)]. This potential depends on the noise
and, more importantly, on the prescription used to interpret
the stochastic differential equation. The barrier height is, in
this case, �Ueq = Ueq(xmax) − Ueq(xmin). It is worth noting
that xmax and xmin are the positions of the maximum and
minimum of the equilibrium potential Ueq and not of the
original “classical” potential U (x). Local curvatures ω̃min =
U ′′

eq(xmin) and ω̃max = U ′′
eq(xmax) are also computed by using

the equilibrium potential. Finally, there is an overall factor
given by the diffusion function computed at the maximum
of the equilibrium potential, g2(xmax), coming from a careful
treatment of fluctuations. We describe the model and the
technique used to compute Eq. (1.2), discussing the result in
more detail throughout the paper.

Multiplicative stochastic processes can be studied with
different theoretical approaches. For numerical simulations
[33], the Langevin approach seems to be more adequate.
The Fokker-Planck equation is perhaps more appropriate to
develop analytic calculations, especially in the long time sta-
tionary limit. In this context, techniques such as mean fields,
perturbation theory, and even renormalization groups are also
available [34]. On the other hand, the path integral formula-
tion of stochastic processes is the more natural technique to
compute correlation and response functions [35]. Important
progress has been recently reached in the path integral rep-
resentation of multiplicative noise processes [36–41], despite
the fact that this topic has been studied for a long time [42].

The escape rate is just one ingredient of a more general
problem that is the computation of conditional probabilities.
Equilibrium properties, such as detailed balance, can be cast
in terms of the conditional probability and its time reversal.
Time-reversal transformations, detailed balance relations, as
well as microscopic reversibility in multiplicative processes
were studied in detail in Ref. [39]. More recently, we have
presented a useful path integral technique to compute weak
noise expansions [43]. The integration over fluctuations in the
multiplicative case is not trivial. The reason is that the diffu-
sion function produces an integration measure that resembles
a curved time axis [44]. We have provided a local time
reparametrization in order to integrate fluctuations [43]. In
this paper, we compute the conditional probability of finding a
particle in a well at large times t/2, provided it was in the same
or the other well at −t/2. In the weak noise approximation,
saddle points provide a set of diluted instanton and anti-
instanton solutions. The diluted instanton gas approximation
was first introduced in the context of quantum mechanics to
compute the tunneling probability across a potential barrier
[45]. In the context of an additive stochastic process, it was
developed in great detail in Refs. [46,47]. From a technical
point of view, we generalize the calculation of Ref. [47] to
the multiplicative noise case, using the time reparametrization
techniques introduced in Ref. [43]. We also perform extensive
Langevin simulations to test our results and approximations,
finding excellent agreement.

The paper is organized as follows. In the next section, we
present the equilibrium properties of a particle in a double-
well potential under state-dependent diffusion. In Sec. III,

we briefly review the path-integral representation of a condi-
tional probability in a multiplicative process and we show, in
Sec. IV, how to integrate fluctuations. We develop the dilute
instanton gas approximation in Sec. V, where we compute
conditional probabilities and the escape rate. In Sec. VI, we
present Langevin simulations of a particular model and com-
pare the output with our analytic results. Finally, we discuss
our results in Sec. VII. We leave to the Appendix some details
of the calculation.

II. EQUILIBRIUM PROPERTIES OF A PARTICLE IN A
DOUBLE-WELL POTENTIAL UNDER STATE-DEPENDENT

DIFFUSION

In this section, we describe the equilibrium properties of a
model consisting of a single particle in a double-well potential
coupled with a thermal bath with state-dependent diffusion.
We consider a conservative one-dimensional system described
by a potential energy U (x) = U (−x) with a double minima
structure. The thermal bath is characterized by the diffusion
function g(x) = g(−x). The reflection symmetry x → −x is
not essential and most of our results do not depend on it.
However, to keep the discussion as simple as possible, we
focus on the symmetric model, leading the details of a more
general asymmetric situation to a future presentation.

In order to reach thermodynamic equilibrium at long times,
the drift force f (x) should be related with the classical poten-
tial U (x) through a generalized Einstein relation [38,39]:

f (x) = −1

2
g2(x)

dU (x)

dx
. (2.1)

In this way, the overdamped stochastic dynamics is driven by
the Langevin equation

dx

dt
= −1

2
g2(x)

dU (x)

dx
+ g(x)η(t ), (2.2)

where η(t ) obeys a Gaussian white noise distribution with

〈η(t )〉 = 0 , 〈η(t )η(t ′)〉 = σ 2δ(t − t ′) , (2.3)

in which σ 2 measures the noise intensity. This equation is
understood in the generalized Stratonovich [48] prescription
(also known as the α prescription [42]). The asymptotic long
time equilibrium probability distribution is given by [39]

Peq(x) = N e− 1
σ2 Ueq (x)

, (2.4)

where N is a normalization constant and the equilibrium
potential

Ueq(x) = U (x) + (1 − α)σ 2 ln g2(x) . (2.5)

The parameter 0 � α � 1 labels the particular stochastic
prescription used to discretize the Langevin equation. For
instance, α = 0 corresponds with the Itô interpretation while
α = 1/2 corresponds with the Stratonovich one. In this way,
the equilibrium potential is not the bare classical potential,
but it is corrected by the diffusion function g(x). On the other
hand, the case α = 1 corresponds with Hänggi-Klimontovich
or kinetic interpretation [49,50]. This is the only prescription
which leads to the Boltzmann distribution Ueq(x) = U (x).
Furthermore, this prescription is also known as anti-Itô and
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can be considered as the time reversal conjugated to the Itô
prescription [39,40].

Although the techniques and results of this paper do not
depend on details, either of U (x) or of g(x), it is convenient,
just to visualize the equilibrium potential Ueq(x), to consider
a very simple model. Let us take, for instance,

U (x) = − 1
2 x2 + 1

4 x4 , (2.6)

with the diffusion function

g(x) = 1 + λx2, (2.7)

where the parameter λ measures in some sense the multi-
plicative character of the noise. The particular value of λ = 0
corresponds with an additive noise. The potential U (x) has
two degenerated minima at xmin = ±1 and a local maximum
at xmax = 0. The contribution of the multiplicative noise for
the equilibrium potential is quite interesting. In the weak
noise limit, the global two-minima structure remains the same.
However, the minima are displaced to

xmin = ±[1 − 4σ 2(1 − α)]1/4

∼ ±1 ∓ σ 2(1 − α) + O(σ 4) . (2.8)

For σ 2 � 1/4(1 − α), both minima melt in a single one,
deeply changing the global structure of the potential. This
dependence on the noise intensity resembles a second-order
phase transition, where the critical noise is given by

σc = 1

2

1√
1 − α

. (2.9)

Interestingly, the critical noise depends on the stochastic pre-
scription. For α → 1, σc → ∞, meaning that, in the anti-Itô
prescription, the double-well structure is preserved for all
values of the noise.

In Fig. 1, we depict the equilibrium potential Ueq(x) given
by Eq. (2.5) for the simple model specified by Eqs. (2.6)
and (2.7), for different values of the parameters σ and α. In
Fig. 1(a), we show the equilibrium potential for σ = 0.5 and
different values of the stochastic prescription α = 0, 1/2, 1.
We see that, for α = 1, Ueq = U and the minima are fixed
at xmin = ±1. However, in the Stratonovich and Itô prescrip-
tions, the minima are displaced toward the origin. In Fig. 1(b),
the three curves are computed in the Itô prescription with
different values of the noise σ = 1/5, 2/5, 2/3. In this case,
the minima approach zero when the noise grows and, for the
value σ = 2/3 > σc = 1/2, the equilibrium potential has only
one global minimum at xmin = 0.

III. CONDITIONAL PROBABILITIES: PATH
INTEGRAL REPRESENTATION

We are interested in computing the conditional probability
P(x f , t f |xi, ti ) of finding the system in the state x f at time t f ,
provided the system was in the state xi at a previous time
ti. It is useful to express this quantity using a path integral
representation [43]. It can be written as

P(x f , t f |xi, ti ) = e− �Ueq
2σ2 K (x f , t f |xi, ti ), (3.1)

(a)

(b)

FIG. 1. Equilibrium potential Ueq(x) given by Eq. (2.5). In panel
(a), we fixed σ = 0.5. The continuous line is plotted in the anti-Itô
prescription α = 1, the dotted line is in the Stratonovich prescription
α = 1/2 and the dashed line corresponds to the Itô interpretation α =
0. In panel (b), all the curves are computed in the Itô interpretation.
The continuous curve is plotted with σ = 1/5, the dotted line with
σ = 2/5, and the dashed line with σ = 2/3. In both figures, we have
fixed λ = 1.

where �Ueq = Ueq(x f ) − Ueq(xi ) and the propagator
K (x f , t f |xi, ti ) is given by

K (x f , t f |xi, ti ) =
∫

[Dx] e− 1
σ2

∫ t f
ti

dt L(x,ẋ)
. (3.2)

Here, the functional integration measure is

[Dx] = Dx det−1g = lim
N → ∞
�t → 0

N∏
n=0

dxn√
�t g2

( xn+xn+1

2

) , (3.3)

where x0 = xi and xN = x f . The Lagrangian can be written in
the form

L = 1

2

(
1

g2(x)

)
ẋ2 + V (x) , (3.4)

where

V (x) = g2

2

[(
U ′

eq

2

)2

− σ 2

(
U ′′

eq

2
+ g′

g
U ′

eq

)]
+ σ 4

4
(gg′)′.

(3.5)
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(a)

(b)

FIG. 2. Potential −V (x) given by Eq. (3.5). All the plots are in
the Itô prescription, α = 0. The dashed lines are the potentials in
the additive noise case g(x) = 1 and the continuous lines correspond
with multiplicative noise, for g(x) = 1 + x2. In panel (a), we have
fixed σ = 0.1 while in panel (b), σ = 0.01.

The primes mean derivative with respect to x. Equation
(3.2), with the Lagrangian defined by Eq. (3.4), correctly
describes the dynamics of the Langevin Eq. (2.2) for arbitrary
values of the parameter 0 � α � 1 [43]. It is important to note
that all the information about the stochastic prescription is
codified in the structure of the equilibrium potential Ueq(x),
contained in the definition of the potential V (x), Eq. (3.5). In
this particular representation, the path integral measure given
by Eq. (3.3) is discretized symmetrically, allowing us to use
normal calculus rules in the manipulation of the path integral
(for more details on the subtleties of stochastic calculus in the
path integral formulation, please see Ref. [39] and references
therein).

An interesting observation is that Eq. (3.2) coincides with
the propagator of a quantum particle with position-dependent
mass m(x) = 1/g2(x) moving in a potential V (x), written in
the imaginary time path integral formalism t → −it . The
noise σ 2 plays the role of h̄ in the quantum theory. At a
classical level, the Lagrangian, Eq. (3.4), represents a particle
with variable mass moving in a potential −V (x). The structure
of the potential −V (x) [Eq. (3.5)] is much more complex than
U (x) or even Ueq(x).

In Fig. 2, we plotted the potential −V (x) for the simple
model displayed by Eq. (2.6). All the curves have been plotted
in the Itô prescription α = 0. The dashed lines correspond
to the additive noise case g(x) = 1, while the continuous
lines represent the potential in the multiplicative noise case,
with g(x) = 1 + x2. In Fig. 2(a), we fixed σ = 0.1, while
in Fig. 2(b), σ = 0.01. The first observation is that −V (x)
has three maxima and two minima. The location of both
nonzero maxima roughly coincides with the minima of the
potential U (x). The difference is of the order of σ 2. The main
effect of the diffusion function is to increase the curvature at
each maxima with a factor proportional to g2(xmax) > 1. An
important feature that will be relevant to compute conditional
probabilities is that the difference between the height of the
peaks are of the order of σ 2. Thus, in a weak noise regime,
the difference between the three maxima tends to disappear.
In the extreme limit of σ → 0, the potential −V (x) has three
degenerate maxima. This fact is clearly shown in Fig. 2(b). It
is timely to note that the structure of −V (x) is quite different
from a similar calculus of the tunneling probability amplitude
of a quantum particle [45]. In that case, the relevant potential
is −U (x), which has only two maxima. The appearance of
a quasidegenerate maximum at x = 0 is proper of a classical
stochastic process, even additive as well as multiplicative.

IV. FLUCTUATIONS AND TIME REPARAMETRIZATION

The usual weak noise expansion consists in evaluating the
path integral of Eq. (3.2) in the saddle-point approximation
plus Gaussian fluctuations. Generally, multiplicative noise
induces an integration measure that depends on the diffusion
function g(x). In Ref. [43], we have shown how to overcome
this problem by means of a time reparametrization. In this
section, we briefly review this technique since we will use it
to compute conditional probabilities.

The classical equation of motion is

d2x

dt2
= g2V ′ + g′

g
ẋ2 . (4.1)

Despite the fact that this is a complicated nonlinear equation,
using time translation symmetry, a first integral can be built
up. We have

ẋ2
cl = 2g2

cl (Vcl + H ) . (4.2)

Here, xcl (t ) is a solution of Eq. (4.1). The notation xcl stands
for classical solution, resembling in some sense a semiclassi-
cal calculation in quantum mechanics. H is an arbitrary con-
stant, gcl = g(xcl (t )) and Vcl = V (xcl (t )). Then, the solution
of Eq. (4.1) can be expressed by a quadrature

t − t0 =
∫ xcl

0

ds√
2Veff (s)

, (4.3)

where we have defined an effective potential,

Veff (x) = g2(x)[V (x) + H]. (4.4)

These expressions have two arbitrary constants, t0 and H , that
should be determined by means of the boundary conditions
xcl (ti) = xi and xcl (t f ) = x f . Thus, Eqs. (4.3) and (4.4) im-
plicitly define xcl (t ), used as a starting point of the weak noise
approximation.
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Let us assume, for the moment, that, given initial and
final conditions, the classical solution xcl is unique. Then, we
consider fluctuations around it

x(t ) = xcl (t ) + δx(t ) , (4.5)

with boundary conditions δx(ti ) = δx(t f ) = 0. Putting
Eq. (4.5) into Eq. (3.2) and keeping up to second-order
terms in the fluctuations, we find for the propagator

K (x f , t f |xi, ti )

= e− 1
σ2 Scl

∫
[Dδx] e− 1

2

∫
dtdt ′ δx(t )O(t,t ′ )δx(t ′ ), (4.6)

where the classical action Scl is

Scl =
∫ t f

ti

dt L(xcl (t ), ẋcl (t )) (4.7)

and the fluctuation kernel,

O(t, t ′) = − d

dt

[
1

g2
cl

dδ(t − t ′)
dt

]
+

[
1

g2
cl

V ′
eff (xcl )

]′
δ(t − t ′).

(4.8)

In Eq. (4.6), the functional integration measure is

[Dδx] = lim
N → ∞
�t → 0

N∏
n=0

dδxn√
�t g2

(
xcl (tn) + xcl (tn+1)

2

) . (4.9)

Due to the time dependence of gcl = g(xcl (t )), the fluc-
tuation kernel O(t, t ′) is not trivial. On the other hand, the
integration measure, Eq. (4.9), depends on the diffusion func-
tion g(x(t )). As a consequence, although the exponent in
Eq. (4.6) is quadratic, the evaluation of the functional inte-
gral is cumbersome. In this case, to compute the fluctuation
integral, we make a time reparametrization. For concreteness,
we introduce a new time variable τ by means of

τ =
∫ t

0
g2(xcl (t

′))dt ′ . (4.10)

This is a nontrivial local scale transformation, weighted by
the diffusion function evaluated at the classical solution xcl (t ).
Performing this time reparametrization, the fluctuation kernel
transforms as O(t, t ′) → �(τ, τ ′) and takes the simpler form

�(τ, τ ′) =
[
− d2

dτ 2
+ W [xcl ]

]
δ(τ − τ ′), (4.11)

where

W (xcl ) = 1

g2
cl

[
1

g2
cl

V ′
eff (xcl )

]′
. (4.12)

More important, after discretizing the reparametrized time
axes τ , the functional integration measure, Eq. (4.9) becomes

[Dδx] = lim
N → ∞
�τ → 0

N∏
n=0

dδxn√
�τ

, (4.13)

in which the function g(xcl ) has been absorbed in the
reparametrization.

Thus, in the new time variable τ , the functional integral
over fluctuations can be formally evaluated, obtaining for the
propagator

K (x f , t f |xi, ti ) = [det �(τi, τ f )]−1/2e− 1
σ2 Scl (ti,t f )

, (4.14)

where the relation between (τi, τ f ) and (ti, t f ) is given through
Eq. (4.10).

Equation (4.14) is formally similar to the weak noise
expansion in the additive noise case. However, in this case,
the determinant is written in terms of a rescaled time pa-
rameter τ . Thus, in order to compute a prefactor, we need
to reparametrized the time variable, compute the determinant
and, at the end, go back to the original time. In Ref. [43], we
have successfully used this technique to compute conditional
probabilities of an harmonic oscillator in a multiplicative
noise environment. Here, we will use it to compute condi-
tional probabilities in a double-well setup.

V. PROBABILITY OF REMAINING IN A WELL

In order to compute conditional probabilities, let us con-
sider a potential −V (x) with the general structure displayed
in Fig. 2. We will consider that the potential has local maxima
at x = ±a and x = 0, while it has two minima, at x = ±xp.
The difference |V (a) − V (0)| ∼ O(σ 2), in such a way that
the three maxima are degenerated in the limit σ → 0. As we
have mentioned, the maxima at x = ±a roughly coincide with
the minima of the bare potential U (x). The difference is of
order σ 2.

We want to compute the probability of remaining in a
minimum of U (x), after some time t . Let us compute, for
instance, the probability of remaining in the state x = −a,
i.e., the probability of finding the particle in the state x =
−a at a time t/2, provided it was in the same point, at a
time −t/2. As the initial and final states coincide, �Ueq = 0
and, from Eq. (3.1), we see that this conditional probabil-
ity coincides with the propagator, P(−a, t/2| − a,−t/2) =
K (−a, t/2| − a,−t/2). So, we are interested in the function
K (−a,−t/2 | − a, t/2) for very long times, t → ∞.

The main point is that for long times, there are a huge
number of solutions (or approximate solutions) of the saddle-
point equation which need to be considered in order to com-
pute the path integral in the weak noise approximation. A
trivial solution of Eq. (4.1) with initial and final conditions
xcl (−t/2) = xcl (t/2) = −a is simply xcl = −a. In this case,
the multiplicative noise has a trivial effect. Since xcl does
not depend on time, the diffusion function gcl is a simple
constant that renormalizes the noise intensity σ . Then, the
contribution of this solution to K (−a, t/2| − a,−t/2) can be
easily computed, obtaining

K (0)(−a, t/2| − a,−t/2) =
[

g2
aU

′′
eq(a)

2πσ 2

]1/2

, (5.1)

where ga = g(a). We are using the superscript (0) to indicate
the contribution of the constant solution to the propagator.

A. Instantons/anti-instantons

In the case of potentials with two degenerate maxima, there
are topological time-dependent solutions of the equation of
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motion with finite action that interpolate between both max-
ima. These solutions are called instantons or anti-instantons
and should be taken into account to compute the propagator.
For very large time intervals, well-separated superposition of
instantons and anti-instantons will also contribute to the path
integral in a nontrivial way. The technique of summation over
these configurations, usually called instanton/anti-instanton
diluted gas approximation, was developed by several au-
thors to compute tunneling amplitudes in quantum mechanics
[45,51,52]. In stochastic processes, the technique was applied
to the case of additive white noise in Ref. [47], in which the
problem of a diffusion in a bistable potential was addressed.
Some years later, the same technique was successfully applied
to color noise processes [4–7]. Here, we will apply it to the
multiplicative noise case. In the rest of this section, we will
closely follow the calculation of Ref. [47], emphasizing those
steps that are proper of multiplicative noise.

In addition to the constant solution, there are other time-
dependent trajectories which begin and end at x = −a for
very long time intervals that will contribute to the propagator.
In our case, the maximum at x = 0 is quasidegenerate with
x = ±a. For this reason, we expect that trajectories which
begin at x = −a, go to approximately x = 0, and then return
to the original point will also have an important weight in the
functional integral. These types of trajectories are not exact
solutions of the classical equation of motion, so then there
will be a linear term in the fluctuation expansion. However,
this term will be O(σ 2) since, in the limit σ → 0, it should
disappear.

We denote by K (1)(−a, t/2| − a,−t/2) the contribution of
the trajectory −a → 0 → −a to the propagator. To compute
it, we first rewrite the Lagrangian, Eq. (3.4), in the following
way:

L = 1

2

(
1

g2(x)

)
ẋ2 + V (0)(x) + δV (x) , (5.2)

where we have defined the quantity

δV (x) = V (x) − V (0)(x) =
{

0, x < −xp

V0 − Va, x > −xp
. (5.3)

In the last expression, −xp is the position of the minimum of
the potential −V (x), Va = V (a) = V (−a) and V0 = V (0). The
specific form of δV (x), as well as the specific value xp are not
important. The final results will not depend on such details.
Thus, the first two terms of Eq. (5.2) describe the dynamics of
a particle in a potential −V (0) with truly degenerate maxima,
while δV (x) ∼ O(σ 2).

Let us compute asymptotic solutions of the classical equa-
tion of motion for the potential −V (0). We define the instan-
ton, xI (t ), as the solution with initial and final conditions
xcl (−t/2) = −a and xcl (t/2) = 0, for very large values of t .
From Eq. (4.3), we have

t − t0 =
∫ xI

−xp

dx√
2g2(x)(V (0)(x) − Va)

, (5.4)

where we fixed the conditions xI (t0) = −xp and H = Va.
These parameters guarantee the above-mentioned initial and
final conditions.

FIG. 3. Instanton/anti-instanton pair trajectory in the potential
−V (0)(x).

We see, from Eq. (5.4), that the integral is dominated by the
region in which V (0)(x) − Va → 0. It happens for x → 0 >

−xp or x → −a < −xp. Thus, to compute the integral we can
expand V (0)(x) around x = 0 and x = −a to second order in
powers of x and x + a, respectively. Thus, in the harmonic
approximation we have

V (0)
h (x) =

{
Va + 1

2V ′′
0 x2, x > −xp

Va + 1
2V ′′

a (x + a)2, x < −xp
. (5.5)

Using this approximation, we obtain for the instanton solution

xI (t ) ∼
t�t0

−a + (−xp + a) ega (V ′′
a )1/2(t−t0−�ap) , (5.6)

xI (t ) ∼
t�t0

−xp e−g0(V ′′
0 )1/2(t−t0−�0p) , (5.7)

where we have introduced the finite constants

�(xi, x j )=
∫ x j

xi

dx√
2

[
1

g(x)
√

V (0) − Va

− 1

g(xi )
√

V (0)
h − Va

]
,

(5.8)

in such a way that, in Eq. (5.7), �0p = �(0, xp) and �ap =
�(a, xp).

The instanton/anti-instanton pair of trajectories, corre-
sponding with the path −a → 0 → −a, can be written as

xIA (t, t0, t1) =
{

xI (t − t0), t < t0+t1
2

xI (t1 − t ), t > t0+t1
2

, (5.9)

where xI (t ) is given by Eqs. (5.6) and (5.7). A typical
instanton/anti-instanton trajectory is shown in Fig. 3. The
classical action is computed by replacing Eq. (5.9) into
Eq. (5.2) and integrating in time between ti = −t/2 and t f =
t/2. We find

SIA(t, t0, t1) = (V0 − Va)(t1 − t0) + Vat

− x2
p(V ′′

0 )1/2

g0
eg0(V ′′

0 )1/2(t0−t1+2�0p) + Ueq(0)

−Ueq(a) + σ 2 ln

∣∣∣∣U
′′
eq(a) g2

a (xp + a)

U ′′
eq(0) g2

0 xp

∣∣∣∣
+ σ 2

2

[
g2

aU
′′
eq(a)�pa + g2

0U
′′
eq(0)�0p

]
, (5.10)
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where we have used the notation SIA = Scl [xIA], i.e., the
classical action computed at the instanton/anti-instanton con-
figuration of Eq. (5.9).

The next step is to compute fluctuations around
the instanton/anti-instanton solution. After the time
reparametrization given by Eq. (4.10), we are lead to the
computation of the determinant det �̂(τ f , τi ), where the
operator �̂ is given by Eq. (4.11), evaluated at xcl = xIA(τ ).
Due to time translation invariance, the determinant has zero
modes. Similarly to the original computation of instanton
fluctuations [45], we need to properly take into account
translation modes, identifying translation fluctuations with
the integration over the collective variables t0 and t1. We
obtain (see the Appendix)

K (1)

(
−a,

t

2

∣∣∣∣ − a,− t

2

)
= N

∫ t/2

−t/2
dt0

∫ t/2

t0

dt1

×ga
√

SI g0
√

SA[det′�̂(τ f , τi )]
−1/2

× e− 1
σ2 SIA (t,t0,t1 )

, (5.11)

where SI = Scl [xI ], SA = Scl [xA], and the prime in the deter-
minant indicates that it should be evaluated excluding the zero
modes. We use the notation K (1) to indicate the contribution
of the path −a → 0 → −a to the propagator. This result is
similar to the additive noise case [47]. The main difference
is that the determinant is computed in a reparametrized time
and the integration over collective variables t0 and t1 are
renormalized by the diffusion function. The advantage of
the reparametrized time is that the operator �̂ has the simpler
form of Eq. (4.11) and can be computed using the Gelfand-
Yaglom theorem [53]. At the end of the calculation, we go
back to the original time axes. Following tedious but usual
procedures, we finally find

K (1)

(
− a,

t

2

∣∣∣ − a,− t

2

)
= −g2

0t K (0) � , (5.12)

where K (0) is the contribution of the constant solution, given
by Eq. (5.1), and

� = [U ′′
eq(a)|U ′′

eq(0)|]1/2

2π
exp

{
− Ueq(0) − Ueq(a)

σ 2

}
. (5.13)

We see that the contribution of an instanton/anti-instanton
configuration to the propagator at long times is a linear
function of time. The structure of the coefficient � is very
interesting. All the information about the stochastic calculus
is hidden in the definition of the equilibrium potential, Ueq. On
the other hand, it does not depend on the details of Ueq(x), but
instead it depends on the barrier height, Ueq(a) − Ueq(0), and
on the curvature at each maxima, U ′′

eq(0) and U ′′
eq(a). These

properties are quite similar with the additive noise case, except
for the fact that the original potential U (x) is replaced by
the equilibrium potential Ueq and the time is rescaled by the
diffusion function at the maximum of the potential t → g2

0t .
In this way, K (1) does not depend on the details of g(x), but
only on its value at the maxima, g(0) and g(a).

Because of the structure of the potential −V (x), there are
other trajectories which contribute in a nontrivial way to the
propagator; for instance, trajectories that begin in x = −a,
go to x = a passing through x = 0, and return to x = −a.

FIG. 4. Representation of a trajectory of 2-instanton and 2-anti-
instanton in the potential −V (0)(x).

This kind of trajectories contains two instantons and two
anti-instantons, as shown in Fig. 4. The contribution of these
trajectories to the propagator can be computed following the
same steps of the computation of the single instanton/anti-
instanton case. We find, in this case,

K (2)

(
− a,

t

2

∣∣∣∣ − a,− t

2

)
=

(
g2

0t
)2

2!
K (0) �2 . (5.14)

Thus, trajectories of the type −a → a → −a, produce a
quadratic time contribution, the coefficient is simply �2,
where � is given by Eq. (5.13).

B. Kramers escape rate and time-reversal transformation

To compute the conditional probability of remaining in
a minimum after some time t , we need to sum up all the
trajectories that begin and end at x = −a and which con-
tribute to the propagator in a nontrivial way. Having in
mind that �Ueq = 0, this probability coincides with the prop-
agator, P(−a, t/2| − a,−t/2) = K (−a, t/2| − a,−t/2). As
described above, there are essentially three contributions to
these paths: a constant one, K (0), given by Eq. (5.1), a linear
term K (1) given by Eq. (5.12), corresponding to trajectories
−a → 0 → −a or, by symmetry, to a → 0 → a, and, finally,
a quadratic term K (2) given by Eq. (5.14), related to the path
−a → a → −a.

Consider, for instance, a general trajectory containing 
1

paths of the type −a → 0 → −a and 
2 paths of the type
a → 0 → a, related with the linear function K (1). In addition,
we allow m paths of the type −a → a → −a, related with
K (2). Then, this particular trajectory will contribute to the
propagator with a term

K (
1,
2,m)

(
− a,

t

2

∣∣∣∣ − a,− t

2

)
= K (0)

( − g2
0t

)
1+
2+2m

(
1 + 
2 + 2m)!

×�
1+
2+2m . (5.15)

By carefully counting the number of different paths which
contribute to each trajectory labeled by (
1, 
2, m) and sum-
ming up, we finally arrive at the expression for the conditional
probability,

P

(
− a,

t

2

∣∣∣∣ − a,− t

2

)
= 1

2
K (0)(1 + e−t/τk ). (5.16)

On the other hand, by using the same formalism, we easily
find the expression for the conditional probability of finding
the system in the state x = a at time t/2, provided it was in
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the state x = −a at a previous time −t/2,

P

(
a,

t

2

∣∣∣∣ − a,− t

2

)
= 1

2
K (0)(1 − e−t/τk ). (5.17)

In Eqs. (5.16) and (5.17), the inverse time parameter τ−1
k ,

which is equivalent to the Kramers escape rate, is given by
τ−1

k = rmult = g2
0�. Using Eq. (5.13), it is explicitly written as

rmult = g2
0

√
U ′′

eq(a)|U ′′
eq(0)|

2π
e− �Ueq

σ2 , (5.18)

with �Ueq = Ueq(0) − Ueq(a).
This is one of the main results of our paper. Comparing

Eq. (5.18) with the classical result of Eq. (1.1), we clearly see
the effect of the multiplicative noise. Notice that the role of
the original potential U (x) is now played by the equilibrium
potential Ueq(x) given by Eq. (2.5). This potential depends not
only on the diffusion function g(x) and the noise, but also
on the stochastic prescription α which defines the original
Langevin equation. There is also an important global scaling
factor given by g2(0).

It is worth to mention that, to the best of our knowledge,
there are only a few papers where analytic expressions for the
escape rate in the multiplicative noise case were in fact de-
rived. Indeed, there is not one where different stochastic pre-
scriptions are discussed. In Refs. [28–30], particular examples
combining multiplicative with additive noise were treated.
There seems to be a consensus that in the exponential part of
the Arrhenius form, the classical potential should be replaced
by an effective potential computed from the static solution of
the Fokker-Planck equation. However, the values presented
for the prefactor differ from ours. In all those references, there
is no indication of the discretization prescription used. This
fact is quite important in multiplicative noise, since different
prescriptions correspond to completely different stochastic
processes. In such a situation, it is necessary to proceed
with great care in order to compare analytic expressions and
numerical data. In Ref. [32], a careful treatment of the first
time passage was made by focusing on the Fokker-Planck
equation in the Stratonovich prescription. Its result coincides
with ours for α = 1/2 in the weak noise limit.

In order to gain more insight into Eq. (5.18), let us compare
the Kramers escape rate with the expression of rmult, expand-
ing Eq. (5.18) for weak noise. We obtain

rmult

radd
= |g0|2α|ga|2(1−α)[1 + O(σ 2)]. (5.19)

It can be noticed that the relation between both escape rates
does not depend on details of g(x), but on its value at each
maxima of −V (x), x = ±a and x = 0. As expected, Eq. (5.19)
depends on the stochastic prescription parameter α. For in-
stance, in the case of the Stratonovich prescription, α = 1/2,
rmult/radd = g0ga. In this case, g0 and ga have the same weight.
On the other hand, in the Itô interpretation α = 0, rmult/radd =
g2

a while in the thermal prescription, α = 1, rmult/radd = g2
0.

Indeed, Eq. (5.19) is invariant under the transformation

α ←→ 1 − α, (5.20)

0 ←→ a, (5.21)

which is nothing but a time-reversal transformation [39].
The simplest way to understand this symmetry is by not-
ing that the instanton solution xI (t ) interpolates between the
states x = −a and x = 0. The time-reversal solution, the
anti-instanton xA(t ) = xI (−t ), makes the inverse trajectory,
i.e., connecting x = 0 with x = a. However, if the forward
time process evolves with the α prescription, the backward
evolution takes place with the 1 − α prescription. In this
sense, one process is the time-reversal conjugate of the other
one. For this reason, the kinetic prescription α = 1 is also
called the anti-Itô interpretation. In fact, the only time-reversal
invariant prescription is the Stratonovich one, α = 1/2. For
details on the time-reversal transformation in multiplicative
noise dynamics, please see Refs. [38–40].

Let us finally mention that the escape rate in the multiplica-
tive case may be greater or lower than in the additive case,
depending essentially on the values of g(0) and g(a). More-
over, if the diffusion function g(x) locally approaches zero at
either x = a or x = 0, the escape rate goes to zero. This effect
can be understood from the fact that the effective curvature of
V (x) approaches zero and the particle tends to remain in the
well for a long time. Of course, our approximation t � τk is
no longer valid in this limit.

VI. NUMERICAL SIMULATIONS

In this section, we perform numerical simulations for the
stochastic process driven by the Langevin equation (2.2) with
(2.3), interpreted in the generalized Stratonovich prescription.
We use the Euler-Maruyama scheme, which is the simplest
algorithm for this task. This algorithm implies an Itô dis-
cretization of the stochastic differential equation (SDE). Thus,
for a Langevin equation interpreted in a given α prescription,
0 � α � 1, it must be transformed to Itô prescription by
appropriately changing the drift function f (x). As a conse-
quence, we represent any α defined SDE by means of the
following Itô differential equation:

dx

dt
= −1

2
g2(x)

dU (x)

dx
+ σ 2αg(x)g′(x) + g(x)η(t ). (6.1)

Equation (6.1) was obtained from Eq. (2.2) by shifting
f (x) → f (x) + σ 2αg(x)g′(x) [43].

Considering the model given by Eqs. (2.6) and (2.7), we
explicitly have the Itô SDE,

dx = x(1 + λx2)

2
[(1 − x2)(1 + λx2) + 4λσ 2α]dt

+(1 + λx2)dW , (6.2)

where W (t ) is a standard Wiener process with 〈W (t )〉 = 0
and 〈W (t )W (t ′)〉 = σ 2min(t, t ′). In Fig. 5, we show a typical
output for a particular noise realization. Fixing the initial con-
dition x(0) = 1, we clearly see the dynamics of the stochastic
variable x(t ), fluctuating around the potential minima xmin ∼
±1, flipping between them at seemly irregular times.

We have computed the mean value 〈x(t )〉 over different
noise realizations. In Fig. 6, we show the result of averaging
over 8 × 104 configurations of the noise for different values of
the stochastic prescription. We can observe that, as expected,
〈x(t )〉 tends to zero exponentially. This means that, at long
times, the particle is flipping between both potential wells
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FIG. 5. x(t ), computed from the integration of Eq. (6.2) for a
particular realization of the noise, for λ = 0.5, α = 1/2, and σ 2 =
0.095. Time interval 0 < t < 1000 was divided into 2 × 104 steps.

with zero mean value. We can also observe that the typical de-
cay time is not the same for different stochastic prescriptions
and, in general, τI < τS < τK , where τI , τS , and τK are the
decay times in the Itô, Stratonovich, and kinetic prescriptions.
This is consistent with the fact observed in Fig. 1, where we
can see that the height of the equilibrium potential barrier
increases with increasing α.

By using the asymptotic conditional probability distribu-
tions, Eqs. (5.16) and (5.17), it is not difficult to show that, for
t � τk ,

〈x(t )〉 = A e−t/τk , (6.3)
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Stratonovich Theor.
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FIG. 6. 〈x(t )〉 averaged over 8 × 104 noise realizations. We fixed
the initial condition x(0) = 1 and the parameters λ = 0.5 and σ 2 =
0.085. The three curves corresponds to three different stochastic
prescriptions, α = 0, 1/2, 1. The continuous lines are the numerical
simulations while the dashed, dotted, and dash-dotted lines corre-
spond to a theoretical fitting using Eq. (5.18), in the Itô, Stratonovich,
and kinetics stochastic prescription, respectively.
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FIG. 7. Decay rate rmult as a function of the noise intensity σ 2

computed using Eq. (5.18). The continuous line corresponds to the
decay rate in the Itô prescription. For Stratonovich and kinetic or
anti-Itô interpretations, the decay rate is depicted by the dashed
and dot-dashed curves, respectively. The points (diamonds) were ob-
tained from a linear fitting of ln〈x(t )〉 through numerical simulations
for each case. For all the data, it was fixed λ = 0.5.

where A is some constant. We have used Eq. (6.3), with τk =
r−1

mult computed in Eq. (5.18), to compare the simulations and
the theoretical prediction in the three cases shown in Fig. 6,
obtaining excellent fittings.

In order to have more accurate results, the numerical decay
rate r = τ−1

k can be obtained from a linear least-square fitting
of ln〈x(t )〉. Following this procedure, we studied a wide range
of the parameter space {α, σ 2} and we compared the output
with the analytic decay rate of Eq. (5.18). In Fig. 7, we
show the decay rate rmult as a function of the noise intensity
σ 2 for three different values of the stochastic prescription.
The continuous line represents the decay rate in the Itô
prescription. The Stratonovich interpretation is depicted by
the dashed line and the dot-dashed curve shows the decay
rate in the kinetic or anti-Itô prescription. The diamonds
are numerical results obtained by the least-square fitting of
ln〈x(t )〉 in each case. We can observe an excellent agreement
over almost all the noise range. As expected, there is a small
deviation for larger values of the noise, since in these cases
�Ueq/σ

2 � 1, and the Arrhenius form is no longer a good
approximation.

In Fig. 8, we show the decay rate rmult as a function of
the stochastic prescription 0 � α � 1, for different values
of the noise from σ 2 = 0.055 to σ 2 = 0.085. We observe
an excellent agreement between the theoretical predictions
and the data computed from the numerical simulation of
the Langevin equation. In this figure, the continuous line
was plotted fixing σ 2 = 0.055 and has a perfect match with
the numerical results. We expect that lower values of the
noise produce still better results. However, for these values,
the time decays are huge, being on the order of t = 1000
for σ 2 = 0.055. So, in order to have statistics for a lower
noise range, it would be necessary to simulate for much
longer timescales considering a big number of noise realiza-
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FIG. 8. Decay rate r = τ−1
k as a function of the stochastic pre-

scription α obtained from Eq. (5.18) for different values of σ 2. The
continuous line is plotted for σ 2 = 0.055, dashed line corresponds
to σ 2 = 0.065, while the dot-dashed and dotted lines correspond
to σ 2 = 0.075 and σ 2 = 0.085, respectively. The points (diamonds)
results from numerical simulation, computed by linear fittings of
ln〈x(t )〉. Parameter λ = 0.5 was fixed for all the curves.

tions. Of course, this consumes much more computational
resources.

VII. SUMMARY AND CONCLUSIONS

We have considered the problem of a particle in a sym-
metric double-well potential U (x), with a dynamics driven
by an overdamped multiplicative Langevin equation charac-
terized by a symmetric diffusion function g(x) = g(−x). The
stochastic differential equation was defined in the general-
ized Stratonovich prescription, parametrized by a continuum
parameter 0 � α � 1. This prescription contains the usual
stochastic interpretations for particular values of the param-
eter α. Indeed, α = 0, 1/2, 1 corresponds to the usual Itô,
Stratonovich, and kinetic prescriptions, respectively.

We have provided a path integral technique to compute
conditional probabilities in the weak noise approximation
for arbitrary values of the parameter α. Interestingly, all
the dependence of α is codified in the equilibrium potential
Ueq(x), obtained by means of a static solution of the associated
Fokker-Planck equation.

We introduced a local time reparametrization, which al-
lows us to exactly integrate fluctuations around saddle-point
solutions. Conditional probabilities were computed for long
time intervals by generalizing the instanton/anti-instanton
diluted gas approximation, already developed for the additive
noise case [47]. From these probabilities, the escape rate
was computed in the same approximation and the result was
compared with the Kramers escape rate for additive noise
dynamics.

The main result of the paper is given by Eq. (5.18). We
found that the general structure of the escape rate keeps the

Arrhenius form of the Kramers result. The main corrections
are twofold. First, the equilibrium potential Ueq(x) of Eq. (2.5)
plays the role of the bare potential U (x). The potential Ueq(x)
is generally different from U (x) in the multiplicative noise
case, depending on the diffusion function and the stochas-
tic prescription α. Indeed, the only stochastic prescription
in which Ueq(x) = U (x) is the anti-Itô prescription α = 1.
Moreover, there is a global scale factor g2(0) that has its origin
in the time reparametrization necessary to correctly compute
fluctuations.

In the weak noise limit, we found a simple relation be-
tween the Kramers escape rates computed with additive and
multiplicative noise, given by Eq. (5.19). The obvious consis-
tency check is that rmult/radd = 1 in the limit g(x) → 1 (or
λ → 0 in the particular example). In addition, we observe
that g(0) and g(a) enter with different weights depending on
the prescription parameter α. These weights are consistent
with a time-reversal transformation, which relates a stochastic
process in the α prescription with its time reversal conjugate
1 − α. Indeed, the Stratonovich convention α = 1/2 is the
only one with time-reversal invariance and, in this case, both
maxima enter with the same weight.

Finally, we have made extensive Langevin simulations
to test the accuracy of our expressions. We have explored
a huge region of the parameter space {σ, α}, in which the
high barrier approximation, �Ueq/σ

2 � 1, is well defined.
We have found a very good agreement for all values of the
stochastic prescription.

Although we have presented results for a system with
full reflection symmetry x → −x, the methods developed in
this paper are completely general. We hope to communicate
results for a more general nonsymmetric case in the near
future. Moreover, by having analytic expressions for the con-
ditional probability we can face the problem of stochastic
resonance in multiplicative noise processes in a more solid
basis.
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APPENDIX: ZERO MODES IN THE
MULTIPLICATIVE CASE

The relation of zero modes of the fluctuation operator and
translation invariance is very well known in quantum me-
chanics [45], as well as in additive noise stochastic dynamics
[47]. In this Appendix, we focus on the effect produced by
the diffusion function g(x) in a multiplicative noise stochastic
system.

Let us consider the instanton function xI (t ) as a solution of
the equation of motion, Eq. (4.1), with boundary conditions
limt→−∞ xI (t ) = −a and limt→∞ xI (t ) = 0, where −a and 0
are the positions of a minimum and the local maximun of
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Ueq(x), respectively. In the weak noise approximation, these
values coincide with two local maxima of −V (x) as shown
in Fig. 2. It is not difficult to show that dxI/dt is a zero
mode of the fluctuation operator Eq. (4.8). To see this, we
consider ∫

dt ′O(t, t ′)
dxI (t ′)

dt ′

= − d

dt

(
1

g2

d2xI

dt2

)
+

(
1

g2
V ′

eff

)′ dxI

dt

= − d

dt

(
1

g2
V ′

eff

)
+

(
1

g2
V ′

eff

)′ dxI

dt
= 0, (A1)

where in the first term of the last line we have used d2xI/dt2 =
Veff and in the second term we used the chain rule.

Thus, the fluctuation operator has a normalized zero mode
of the form

η0(t ) = A
dxI (t )

dt
, (A2)

where A is a normalization constant. To determine it, we
impose ∫

dt η2
0(t ) = A2

∫
dt

(
dxI

dt

)2

= 1 (A3)

and, thus, the normalization constant reads

A−2 =
∫

dt

(
dxI

dt

)2

. (A4)

The action computed at the instanton solution is

SI =
∫

dt

{
1

2g2(xI )

(
dxI

dt

)2

+ V (xI )

}
. (A5)

Using the equations of motion, it can be written as

SI =
∫

dt
1

g2(xI )

(
dxI

dt

)2

. (A6)

Since the zero mode has a small support around t0, in the thin-
wall approximation we can write with good accuracy

SI ∼ 1

g2
a

∫
dt

(
dxI

dt

)2

, (A7)

where ga = g(a). Replacing this result in Eq. (A4) we finally
find the normalized zero mode

η0(t ) = 1

ga
√

SI

dxI (t )

dt
. (A8)

In order to compute fluctuations, we perform a local time
reparametrization given by Eq. (4.10). We are led to the
computation of the integral

IF =
∫

[Dδx] e
− 1

2

∫
dτδx(τ )

(
− d2

dτ2 +W [xcl ]
)
δx(τ )

, (A9)

where W is given by Eq. (4.12). To compute it, we expand
fluctuations in eigenfunctions of the fluctuation operator,
taking special care with the translational modes that are

responsible for the zero mode. We write the fluctuation field
in the following form:

δx(τ ) = c0ψ0(τ − τ0) +
∞∑

k=1

ckψk (τ − τ0), (A10)

where ψk are eigenvectors(
− d2

dτ 2
+ W [xcl ]

)
ψn(τ ) = λnψn(τ ) (A11)

with eigenvalues λk 
= 0 and the zero mode in the
reparametrized variable reads

ψ0(τ ) = 1

ga
√

SI
g2(xI (τ ))

dxI (τ )

dτ
. (A12)

The functional measure can be written in terms of the
coefficients ck as

Dδx = dc0

∏
k 
=0

dck . (A13)

Computing the variation of fluctuations under time transla-
tion, we have that

dδx(τ ) = dxI

dτ
dτ0 . (A14)

On the other hand, a variation in the zero mode reads

dδx(τ ) = 1

ga
√

SI
g2(xI (τ ))

dxI

dτ
dc0 . (A15)

Now, comparing Eqs. (A14) and (A15) and using the
reparametrization identity dτ/dt = g2(xI ), we immediately
find

dc0 = ga
√

SI dt0 . (A16)

In this way,

IF =
∫

ga
√

SI dt0

∫ ⎛
⎝∏

k 
=0

dck

⎞
⎠ exp

[
− 1

2

∑
n

λn(τ0)c2
n

]

=
∫

ga
√

SI dt0

⎡
⎣∏

k 
=0

λ
−1/2
k (τ0)

⎤
⎦

=
∫

dt0 ga
√

SI

[
det′

(
− d2

dτ 2
+ W [xcl ]

)]−1/2

, (A17)

where the prime means that the determinant should be com-
puted without the zero mode.

Thus, the usual interpretation of the zero mode as an
integration in the collective variable dt0 is still valid in the
multiplicative case. However, the constant of proportionality
is renormalized by the diffusion function ga, computed at the
minimum of the potential.

The same reasoning applies to the anti-instanton solu-
tions. However, in this case, the variation is proportional to
g0

√
SAdt1, where g0 is evaluated at the maximum of the

potential and SA is the classical action evaluated at the anti-
instanton solution. This analysis leads to Eq. (5.11) for K (1).
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