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We study the entropy S of longest increasing subsequences (LISs), i.e., the logarithm of the number of distinct
LISs. We consider two ensembles of sequences, namely, random permutations of integers and sequences drawn
independent and identically distributed (i.i.d.) from a limited number of distinct integers. Using sophisticated
algorithms, we are able to exactly count the number of LISs for each given sequence. Furthermore, we are not
only measuring averages and variances for the considered ensembles of sequences, but we sample very large
parts of the probability distribution p(S) with very high precision. Especially, we are able to observe the tails of
extremely rare events which occur with probabilities smaller than 1075%. We show that the distribution of the
entropy of the LISs is approximately Gaussian with deviations in the far tails, which might vanish in the limit of

long sequences. Further, we propose a large-deviation rate function which fits best to our observed data.
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I. INTRODUCTION

Imagine a game of numbers: Given a sequence of n num-
bers, mark the largest subset of numbers such that every
marked number is larger than (or equal to) all marked numbers
appearing to the left of it in the sequence. The marked num-
bers will be a (weakly) increasing subsequence. The number
of marked elements is called the length [. If the subsequence
maximizes [ over all possible subsequences, it is called the
longest (weakly) increasing subsequence (LIS) [1]. An early
study of this problem was by Ulam [2] as a toy example to
illustrate the Monte Carlo method in a textbook, which lead
to its byname Ulam’s problem. However, it should be noted
that in the same year Ref. [3] also discussed the connection
of LISs to Young tableaus. Ulam’s study found that LISs of
random permutations have a mean length / which grows with
the size of the sequence n as (I) = c4/n. The Monte Carlo
simulations estimated ¢ ~ 1.7, and in the years since then
¢ = 2 was proven [4].

But the length of LISs of permutations attracted much
more interest. In mathematics the whole distribution p(/) was
analyzed. First, expressions for its upper and lower tails were
proven [5-7], and later, it was proven that the central part is
a Tracy-Widom distribution [8]. At the time this result was
an unexpected connection between LISs and random matrix
theory, where this Tracy-Widom distribution describes the
fluctuations of the largest eigenvalues of the Gaussian unitary
ensemble, i.e., an ensemble of Hermitian random matrices. In
the following years it turned out that the LIS was an extremely
simple model at the center of a growing class of seemingly
unrelated problems. Beginning with a mapping of a (1+1)-
dimensional polynuclear growth model of the Kardar-Parisi-
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Zhang type onto LISs [9] a plethora of models was shown
to exhibit the properties of LISs of random permutations,
namely, that their fluctuations are distributed according to one
of the Tracy-Widom distributions. Examples range from other
surface growth processes, like a direct mapping of a ballistic
deposition model on LISs [10] and experimental observations
of a Tracy-Widom distribution in the fluctuations of real sur-
face growth [11], to the totally asymmetric exclusion process
[12] and directed polymers [13]. Some review articles have
given an overview of and insight into the connections between
these models [14-16].

Recently, ensembles of sequences different from the ran-
dom permutation were studied, like random walks with dif-
ferent distributions of their jump lengths [17-20].

Besides its role in mathematics and physics, the LIS found
applications in computer science, where it is suggested as a
measure of sortedness of large amounts of data [21] or to find
structures in time series while preserving the privacy of the
data, which is useful in the context of, e.g., fraud detection
using financial data streams [22]. Also in bioinformatics the
LIS found applications in the context of sequence alignment,
e.g., for DNA and protein sequences [23].

Here, we are interested in another property of this fa-
mous problem. First, note that the LIS is not necessarily
unique for any given sequence. For example, consider the se-
quenceod = (7,9,4,1,0,6, 3,8, 5,2). While the length/ = 3
of the longest increasing subsequence is uniquely defined,
this sequence has M =7 distinct LISs: (4,6, 8), (1,6, 8),
0,6,8), (1,3,8), (0,3,8), (1,3,5), and (0, 3,5). As men-
tioned above, the length [ is thoroughly studied, but about the
number of distinct LISs M of a given sequence, very little is
known. Nevertheless, for example, for the above-mentioned
applications like determining sortedness and fraud detection,
the actual number of distinct LISs will allow us to estimate
the reliability of decisions based on the LIS calculation much
better. For this reason and to gain fundamental insight into the
solution space structure, we study using computer simulations
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FIG. 1. Visualization of two sequences ¢. The horizontal axis
shows the index i of the value o;. The elements belonging to one
LIS are marked by circles. (a) Random permutation. (b) Random
sequence with 11 distinct elements.

[24] here this quantity, namely, its logarithm, i.e., the entropy
S=InM.

One of the few results is that the number of increasing sub-
sequences of a fixed length grows exponentially in n [1,25].
Although, this suggests that it is infeasible to count the LISs
by enumeration, we will introduce in Sec. I[I B an algorithm
to count the LISs efficiently without the need to enumerate
them. Due to the exponential growth, it indeed makes sense
to finally measure the entropy S. Since we want to explore
the whole distribution of the entropy, including the tails of
extremely rare events with probabilities of, say, 107190 we
have to apply a sophisticated Markov chain sampling scheme,
which will be explained in Sec. II C. Finally, Sec. III shows the
results of our study before Sec. IV concludes this study. But
first, we introduce the two ensembles we studied in Sec. IT A.

II. MODELS AND METHODS

For completeness we define the LISs in a more formal
way than in the Introduction. Let ¢ = (01,02, ...,0,) be a
sequence of numbers. A LIS is the longest sequence A, =
(i), 0iyy ..., 03,) Wwith 03, < 0y, < --- < 03, such that i} <
ip < --- < i <n. We denote by M the number of distinct
sequences A, fulfilling this property, and S =1InM is the
entropy.

A. Ensembles of random sequences

In this study, we scrutinize two ensembles of random
sequences, with the first, which is studied more in depth, being
random permutations, for which an example with one LIS
marked is visualized in Fig. 1(a).

Second, we study a parameterized random sequence con-
sisting of, at most, K + 1 distinct ordered elements. We call
this the “K ensemble.” An example for K = 10 is shown in
Fig. 1(b). In the limit K = 0, it consists only of identical
elements and has therefore a unique LIS with a length of
| = n. The other limit K — oo consists of sequences with
unique elements, which can be mapped to a permutation by
replacing each element by its rank, which in turn will not
change the LIS. Thus, we can interpolate with K between
a nondegenerate LIS and the well-known case of random
permutations. Indeed, the length of the LIS of this ensemble
was studied in Ref. [26].

As a technical remark, note that the algorithms explained
in the following section find the strictly monotonic increasing
subsequence, but for the K ensemble, we want to find the
weakly increasing subsequence. With a simple mapping of
the sequence (with elements from Nj) to a new sequence
o =0; + ﬁ of rational numbers we can apply algorithms for
strict LISs on « to find all weak LISs of o.

B. Counting the number of distinct LISs

Algorithms to find the length of the LIS are rather simple,
and there exists some variety. A popular choice is patience
sorting [27], which originally was a sorting algorithm espe-
cially suited for partially sorted data [28] but can be simplified
to an efficient algorithm to find the length of the LIS of a given
sequence in time O(n In n) [4]. But there are more alternatives,
e.g., a fast algorithm in O(nlnlnn) [29,30], approximate
algorithms for sequences whose members cannot be saved
[31], and algorithms which are exact within a sliding window
[32]. Even for the enumeration of LISs, there is literature
introducing algorithms [29] which are able to, e.g., generate
LISs with special properties [33].

Here, we introduce a method to count (and enumerate)
distinct LISs of any sequence efficiently. Note that we do not
claim to be the first to introduce an algorithm to count the
number of LISs. Some of the existing enumeration algorithms
could be extended with the same principle we use to allow
for efficient counting. Also there is at least one algorithm
description for counting the LISs in a well-known program-
mer forum [34]. However, we could not find any reference to
published literature. Therefore, we show our approach, which
is an extension of patience sorting.

Like patience sorting, this method takes elements sequen-
tially from the front of the sequence and places them on top
of a selected stack from a set (s, ..., s;) of stacks, such
that each stack s; is sorted in decreasing order; that is, the
smallest element is on top of the stack, and the number of
stacks is minimal. Thus, in the beginning there is just one
stack containing the first element of the given sequence. This
placement can be achieved by always placing the current
element taken from the sequence on the leftmost stack, whose
top element is larger than the current element. If this is not
possible, i.e., if all top elements are smaller than the current
element, one opens a new stack sii; to the right of the
currently rightmost stack. Note that therefore the top elements
of the stacks are ascendingly sorted and the correct stack of
each element can be found via binary search. The final number
of stacks is equal to the length of the LIS [ [4].

To count the LISs, we need to extend this algorithm by
introducing pointers. The basic idea is that for any LIS,
exactly one number will be taken from each stack [35]. These
pointers will take care of the order constraints in the following
way: Each time an element is placed on a stack, pointers are
added to some elements of the previous stack. This idea is
already described in Ref. [4], but in addition to the pointers
mentioned there, which will point to the currently topmost
element of the previous stack, we also add pointers to all
elements of the previous stack which are smaller than the
current element. The meaning of such a pointer from any
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FIG. 2. Construction of the DAG for the sequence (7,9, 4,
1,0,6,3,8,5,2). Stacks grow upwards. (a) Partial DAG for (7, 9,
4,1, 0, 6). (b) Partial DAG for (7, 9, 4, 1, 0, 6, 3, 8). (c) Complete
DAG with annotations (subscript) labeling the number of paths to
reach the corresponding element from the rightmost stack. Summing
the subscripts of the leftmost stack yields the total number of paths
originating from the rightmost stack, i.e., the number of all LISs, here
M="17.

element o, to o, (j; > jo) will be thatin a LIS o, can appear
before o;,. An example structure is shown in Fig. 2.

The set of all pointers, i.e., edges, forms a directed acyclic
graph (DAG). The DAG can be used to enumerate all LISs
by following all paths originating from any element of the
rightmost stack. This will yield all LISs in reverse order. For
our purposes, we just have to count all paths originating from
the rightmost stack. To do this in an efficient way, we can
propagate information stack by stack through the DAG: We
save for each element how many paths can be used to reach
it. All elements of the rightmost stack are initialized with 1.
The elements of the stack to the left are assigned the sum of
all incoming edges. This is repeated until the leftmost stack
is reached. The sum of all paths ending in elements of the
leftmost stack is the total number of LISs.

To estimate the run time, note that we have to iterate over
all incoming edges, of which there are, at most, O(n2) in a
DAG with n nodes. Also the construction takes the maximum
of the number of edges for constructing the pointers and
O(nlnn) for constructing the stacks, such that the run time
of this algorithm is O®1?) in the worst case. Note, however,
that typical DAGs generated here have far fewer edges. We
observe that, typically, the length of a LIS and therefore the
number of stacks is O(4/n). Each stack can be connected to
only the previous stack. Assuming that stacks are typically of
size O(+/n), this leads to, at most, O(n) edges between each
pair of neighboring stacks and therefore O(n./n) total edges.

C. Sampling rare events

Using the algorithm above, we can determine the number
of LISs M for arbitrary sequences. Therefore, generating
random sequences allows us to sample S = In M, build his-
tograms from the samples, and estimate the distribution p(S)
from them. But to observe any event which occurs with a
probability of r, we would have to generate O(1/r) samples
and O(1/r?) to reduce the statistical error enough to determine
the probability with reasonable accuracy. Since we would like
to know the tails of the probability distribution characterizing
extremely rare events, we have to use a more sophisticated
method than this proposed simple sampling.

Our approach is to bias the ensemble in a controlled way
towards extremely improbable configurations, gather enough
samples there, and correct the bias afterwards. This will lead
to small statistical errors across large parts of the support.
This method [36] was successfully applied in a wide range
of problems from graph theory [37,38], stochastic geometry
[39], nonequilibrium work distributions [40], and the Kardar-
Parisi-Zhang equation [41] to the exploration of the tails of
the distribution of the LIS’s length for random permutations
and random walks [19].

The exact method is inspired by equilibrium thermo-
dynamics, where the Metropolis algorithm [42] is used to
generate samples of systems in the canonical ensemble at
some temperature T, which governs the typical values of the
energies observed in this system. Here, we identify the energy
with our observable of interest S. This allows us to use the
“temperature” parameter to bias the generated states towards
improbable values of S.

This method builds a Markov chain consisting of se-
quences ¢, where i is the step counter of the chain. For each
step in the chain, from the present sequence o a trial se-
quence o’ is constructed by performing some changes to o”.
For the standard ensemble of random permutations, where
we have performed large-deviation simulations, we used the
swap of two elements as the change move to build the Markov
chain. The trial sequence is accepted, i.e., 6+t!) = ¢/, with
the Metropolis acceptance probability Py = min (1, e=25T)
depending on the temperature 7" and the change AS between
¢’ and 0¥, Otherwise, the previous sequence is repeated in the
chain, i.e., 6TV = ¢, This procedure is sketched in Fig. 3.

To ensure that the Markov process generates samples
with a well-defined distribution, it is necessary to be able to
reach any state after finitely many changes; that is, ergodicity
holds. Here, we can generate any permutation by repeatedly
swapping two elements. The last ingredient is global balance,
which means that the rate of changes into state o is the same as
the rate out of this state, i.e., equilibrium. The easiest way to
assert this global balance is to enforce a much stricter detailed
balance, such that the rate of changes from state ¢ into state
o’ is the same as the reverse direction [43]. First, note that in
our case each swap of two elements of the sequence has the
same probability to be chosen as the reverse swap; that is, the
selection probability is symmetric. Since the rate of changes
from one state to another is the product of the probability to
be in that state pp, the aforementioned selection probability,
which cancels due to its symmetry, and the probability to
accept the selected change P,, this can be formulated as

pB(0)Pocc(0 — 0') = pp(0')Pic(0’ — 0). (1)

The Metropolis acceptance probability is chosen such that
it fulfills the detailed balance for a Boltzmann distribution
DB = %e’s(”)/ T where Zr is a normalization constant for
our application or the partition function in the notation of
statistical mechanics. This detailed balance equation can be
verified by inserting the expressions into it.

In our case the Markov process will therefore eventually
result in sequences o which are distributed according to

1
Or(o) = Z—Te-S“”/TQ(a), 2)
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FIG. 3. Sketch of a Markov chain of sequence realizations generated by swaps of two random elements of the permutation. All distinct
LISs are marked by lines with distinct shades. The acceptance of a sequence as the next sequence of the Markov chain is dependent on the

number of LISs in the realization M since the energy is identified with § =

where Q(o) is the natural distribution of sequences which we
would obtain from simple sampling and Zy is the partition
function of our artificial temperature ensemble. From here it
is just a question of elemental algebra to connect our estimates
of the probability density function in the artificial temperature
ensemble p7(S) to the distribution of the unbiased ensemble
we want to study p(S):

pr§)= Y 0r(o) 3)
{o1S(0)=S5}
= Y S0 “)
{o1S(@)=s) T
_ 1 seur
=7 TpS). 5)

Depending on the value of T, a simulation will generate data
for S in a specific interval. Thus, to obtain the distribution p(S)
over a large range of the support, we performed simulations
for many values of 7. This requires finely tuned values of the
temperatures. The ratio of all constants Z; can be obtained
from overlaps of pr, and pr, since the actual distribution needs
to be unique, i.e.,

pr,($)e™ T Zy, = pr.($)e® T Zy,. (6)

We used on the order of 30 temperatures per size n, where
larger sizes typically required more temperatures. Also, like
for all Markov chain Monte Carlo techniques, one has to
carefully ensure the equilibration of the process and discard
sequences of the chain which are still correlated too much
with previous sequences. Note that equilibration can be en-
sured rather conveniently [36] by performing two sets of
simulations starting with very different initial sequences, with
low and high values of S, respectively. The Markov chains can
be considered to be equilibrated when the values of S agree
within fluctuations between the two sets.

III. RESULTS

First, we study the behavior of typical sequences for
the two ensembles. In the second part, we will investi-
gate the large-deviation behavior of the standard permutation
ensemble.

InM.

A. Typical behavior

To investigate the typical behavior of the permutation
ensemble, we consider different system sizes up to large se-
quences of n = 524288 = 2!? elements. The estimated prob-
ability density functions p(S) of the LIS entropy of permuta-
tions is shown in the range of typical probabilities in Fig. 4(a).
These data are collected over 10° samples for each system

(a) T
0.12 )y = 2048

0.08 - n = 8192 B

& n = 32768

0.04 - n = 524288 7

n = 131072

0.00 LL ‘ ‘

0 100 200 300

n = 524288 ]
Gaussian Nb 3

FIG. 4. (a) Probability density p(S) of the entropy S for random
permutations of different lengths n, obtained with simple sampling.
(b) Probability densities p(S) collapse on an approximate standard
Gaussian shape for multiple system sizes if shifted by their mean
(S) ~ 0.347./n and scaled with their width o ~ 0.49.¢/n. Note the
logarithmic vertical axis.
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FIG. 5. Average entropy S as a function of the sequence length n
for the permutation ensemble and for the K ensemble with different
values of K. Error bars are usually smaller than the width of the lines.
(a) K ensemble with constant K. Lines are fits of the form f(n) =
b+ m(:;—l) (b) Permutation ensemble with K o¢ n. The line is the

growth observed for random permutations (S) ~ 0.347./n.

size. Clearly, the mean value and width of the distribution
increase with n.
Indeed, we observe for the mean a growth of the form

(S) = cv/n. )

[Also see Fig. 5(b).] Note that the fits resulted in rather large
reduced x2 goodness of fit values (caused by the very high
precision of the measured means), suggesting that there are
corrections to this form for finite sizes. Our best estimate for
the prefactor under the assumption that the above relation
is correct is ¢ ~ 0.347. Also, for the standard deviation we
observe a similar simple relation of o5 = b/n with b ~ 0.49.

We notice that the growths of the mean entropy (S) =
c+/n and of the mean count (M) ~ ¢2V" with ¢, =~ 0.44 (not
shown) estimated from our data follow the same behavior as
the mean number of increasing subsequences (ISs) of length
2/n = (I) (Eq. (11.5) in [25]), (m) ~ ()" = enCe/DVr,
Thus, since ¢; < 41n(e/2) ~ 1.2, our numerical results sug-
gest the actual mean count of LISs is much lower (and e/ is
even lower in accordance with Jensen’s inequality). In other
words, the number of longest increasing subsequences is ex-
ponentially lower than the number of increasing subsequences
of the same length. This can be understood in the following

way: We consider ISs of given length /, which is the average
LIS length for this value of n. Now, looking at the ensemble of
sequences, some will have a LIS length [ < 1. For them, there
are no ISs of length [, so they will not contribute any ISs to the
average. This will be a fraction of sequences. Some sequences
will have a LIS length of / = [; they will contribute all their
LISs to the average. Finally, some fraction of sequences will
have a LIS length [ > [. Here, all subsequences of length [ of
all LISs will be ISs contributing to the average. Since there are
exponentially many subsequences (and maybe even more ISs
which are not subsequences of a LIS), they will dominate the
average number of ISs, thus leading to a stronger exponential
growth compared to the average number of LISs.

We use our estimates for the mean and standard devia-
tion to rescale the distributions for different system sizes in
Fig. 4(b) and observe a collapse on a shape which can be
approximated well by a standard Gaussian. Especially, the
strongest deviations from this scaling form occur for small
sizes, while the larger sizes seem to converge to the limiting
shape. This is expected since the corrections to the scaling
we used, which are mentioned above, should be stronger for
smaller values of n. We backed this observation by classical
normality tests [44—46], which are able to distinguish this
distribution from a normal distribution with very high confi-
dence at small system sizes but become less confident for the
largest system sizes (details not shown here). Especially, the
weak Kolmogorov-Smirnov test is not able to distinguish
the distributions from a normal distribution with a significance
level below 10% for all sizes n > 65536 for our sample of 10°
realizations.

Due to our limited sample size, the tails of the measured
distribution are subject to statistical errors. In Sec. III B we
will present higher-quality data for the far tails to show that
the approximation by a Gaussian shape is valid deep into the
tails. Even for extremely rare events we cannot exclude the
possibility that the distribution converges to a Gaussian in
the large-n limit.

Next, we look at the ensemble of random sequences with
a limited number of K 4 1 distinct elements. For constant
values of K Fig. 5(a) shows the average entropy. The trivial
case of K = 0, which allows only one LIS of length / = n,
corresponds to an entropy of S =0 and is not visualized.
The case K =1, which consists of sequences containing
two distinct elements, has a low and, interestingly, almost
n-independent entropy. There are typically only one or two
distinct LISs in such sequences independent of the length
of the sequence. Our data for larger values of K show two
phenomena. First, larger values of K lead to larger entropies,
and second, the dependency of the entropy on the length of
the sequence diminishes for the limit of large n; that is, for
each fixed K there should be a limiting entropy approached
for n — oo. Indeed, fits of a function f(n) = b + m(,f_fc) with
the limiting value lim,,_, o, f(n) = b to our data confirm this
guess for all values of K we considered. Note that the shape
of the fitting form is purely heuristic. We first tried standard
shapes like approaching a constant with a power law or an
exponential, but they did not work out well.

Since b seems to grow roughly linearly with K (not shown),
this leads to the conjecture that for K o n the saturation
of the entropy should not occur and, instead, should grow
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FIG. 6. (a) Probability density p(S) for multiple system sizes
with extremely high precision data for the far tails. The inset shows
a zoom of the high-probability region. The lines are fits to Gaussian
distributions, which fit very well in the high-probability region, but
do not describe the whole tails of the distribution. (b) Same rescaling
of the axes as in Fig. 3(b). This shows that the different system
sizes move towards the Gaussian for larger sizes. The lines are linear
interpolations of all available data points; not all of them are shown as
symbols for clarity. The inset shows the area between the logarithm
of the rescaled distribution and the logarithm of a standard normal
distribution with a fit used for extrapolation.

with the size n. Especially, we observed this behavior for the
permutation case, which is identical to the K — oo limit, as
explained in Sec. II A. Indeed, in Fig. 5(b) we can observe
a quick convergence with increasing n to the behavior of the
random permutation. Our conjecture [Eq. (7)] for its growth
is visualized as a line.

B. The far tails

In this section we study the distribution of the entropy of
the LISs for the random permutation ensemble with a focus
on the far tails. Due to the much larger numerical effort, we
are able to show results up to sequence lengths of n = 8192.

The data presented in the previous section, which was
obtained via simple sampling, resulted in a distribution which
appeared to be very well approximated by a Gaussian. We
want to investigate whether this is still true when we include
our high-precision estimates of the far tails. Here, we can
observe a slightly faster than Gaussian decay [see Fig. 6(a)].

In Fig. 6(a) the distribution for a selection of sequence lengths
n is shown, including the far tail, and fitted with (normalized)
Gaussians. While they describe the high-probability region of
the distribution (shown in the inset) very well, the deviation
becomes stronger for increasingly rare events.

To test whether this deviation remains in the n — oo
limit, we rescale the distributions, like in Fig. 4(b), to be
independent of system size [see Fig. 6(b)]. First, we see that
this collapse does not work as well in the far tails as it does in
the high-probability region. Interestingly, there is a crossing
for different system sizes. To the left of the crossing, larger
sizes tend towards the Gaussian, which hints that for larger
sizes the Gaussian approximation becomes better even in the
intermediate tails. Careful examination of the crossing shows
that its position depends on the system size and larger systems
cross farther on the right than smaller systems. This is again
a hint that the Gaussian approximation becomes valid over
larger ranges of the distribution for larger system sizes.

To quantify this observation, we cannot use classical sta-
tistical tests like we could for the data we obtained via simple
sampling. Instead, we will use a crude estimate of similarity,
similar to one already used in [47]. We compare the area A
between the logarithm of the scaled empirical distributions
ps(x) = ap(S), where x = (S — (S))/o [see Fig. 6(b)], and
the logarithm of a standard normal probability density func-
tion pg to estimate whether they become more similar for
larger sizes. To be able to make a comparison across all
system sizes, we limit this difference to the largest range of
the horizontal axis for which we have data for all sizes, i.e.,

40
A= / lIn py(x) — In p ()] . ®
0

Using this method, we observe a strictly decreasing area,
as shown in the inset of Fig. 6(b). If we extrapolate it using
a power law with offset A(n) =c + an~®, we obtain a re-
sult for the offset ¢ = 344 & 360, which is, within the error
bars, consistent with an offset of zero, i.e., consistent with
a convergence to a Gaussian. However, since the constants
of our scaling assumption are tainted with hard to quantify
errors, this should be interpreted as a trend. Nevertheless,
this result means that we cannot exclude the possibility that
the distribution will be Gaussian in the right tail in the limit
of n - oo.

Next, we can use our empirical data of the distribution
to test whether a large-deviation principle holds, that is,
whether the behavior of the distribution can be expressed by
a rate function ® in the n — oo limit, defined by ®(s) =
—1lim,_ % In p,(sSmax.n) [48], where Syax » is the maximum
possible value for a given value of n and therefore s € [0, 1].
This rescaling with the maximum value, i.e., s = S/Smax.n,
is done to describe the largest fluctuations by one size-
independent function ®(s). Since we have the distributions
pn(S) for multiple finite n, we can calculate empirical rate

functions ®,(s) for each n and extrapolate whether they

converge to a limiting curve, which is a strong hint that this
curve is the size-independent rate function ®(s), which would
establish a large-deviation principle. If a rate function exists,
it governs the fluctuations around the mean. For example,
the existence of a rate function with mild properties implies
the law of large numbers and the central limit theorem for the
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FIG. 7. (a) Usual empirical rate function ®(s) = —Ilim,—

ﬁln p(S). No convergence is visible; the curves shift to the left
with increasing sequence length n. (b) Empirical rate function with
unusual exponent ®,(s) = —lim, ;«3% In p(S) for the random per-
mutation case in log-log scale to emphasize the convergence to a
common tail with a power-law shape.

corresponding process. For brevity, we will omit n subscripts
for Smax.n and p,(S).

To analyze our data, we have to determine Sy,.x for the
LISs. A maximum entropy is achieved if, for many groups
of elements, one can choose independently between different
elements. Thus, consider a sequence which consists of groups
of k decreasing elements, followed by k decreasing elements
which are larger than all elements before and so on. An
example forn = 9 and k = 315 (3,2,1,6,5,4,9,8,7). In this case
a LIS would have length n/k and can contain for each block
of k an arbitrary element, resulting in M = k"/* distinct LISs.
The entropy S =InM = 7 Ink is maximized at k = e and,
since we are limited to integer k, at k = 3. This results in a
maximum entropy of Sp.x = nln3/3, i.e., linear in n.

In Fig. 7(a) the empirical rate functions are visual-
ized, but no convergence to a common tail is visible. The
best common tail we can generate happens for a slightly
modified rate function with an unusual exponent ®,(s) =
—1lim,,_ # In p(S). Note, however, that such an exponent
is not out of the question. For example, the rate function of the
right tail of the distribution for the rescaled length [ = [/./n of
LISs behaves as ® (1) = —lim,— o0 1= In p(!) [7]. Our result
is shown in Fig. 7(b) in double logarithmic scale to emphasize

960 LMCMC i
simple sampling
940 LMean —

220
200

180

160 - R

FIG. 8. The length of the LIS / as a function of the entropy
S for a sequence length n = 8192. The dark gray data points are
gathered using simple sampling and represent typical sequences. The
other data points are collected with the Markov chain Monte Carlo
(MCMC) method described in Sec. I C and represent extremely rare
sequences with atypical entropy.

the collapse in the right tail on a power law ~s“ with a
slope of k¥ & 2, consistent with the previously observed almost
Gaussian right tail.

Finally, we want to understand what leads to sequences
with atypically many or few distinct LISs. For this purpose
we used the sequences generated by simple sampling and by
the large-deviation approach to study their correlation with the
length of the corresponding LIS. This might give insight into
qualitative mechanisms governing the degeneracy of the LISs.
This correlation is visualized in Fig. 8 for random permuta-
tions of length n = 8192. Typical permutations have a LIS
entropy around (S) & 35 with a typical length of (/) &~ 180,
marked by darker gray points. Apparently, the degeneracy of
the LIS is uncorrelated with its length for low and intermediate
values of S. However, extremely degenerate LISs necessi-
tate longer LISs. This is somewhat counterintuitive since
there are more increasing subsequences of shorter length
[1]. We assume therefore that the mechanism here is that
these rare sequences have a structure which is in some sense
modular (see Sec. IIIB for the configuration of maximum
entropy) to allow for many almost identical LISs. These
may differ independently in many places and therefore can
combinatorically combine such small differences. Then, since
a longer LIS has more members, the combinatorial character
leads to an entropy advantage for long LISs. This higher
number of combinatorial possibilities becomes necessary at
some point to support even more degenerate LISs; thus, we
see a very strong correlation for extremely high values of S.
However, we assume that for very long LISs, the entropy has
to decrease again. In the extreme case of /| = n the sequence
has to be sorted and can contain only a single LIS. Since
we do not observe very long LISs in our sampled data, they
are combinatorially suppressed. In order to have access to
this region, one would have to perform a biased sampling
with respect to the length and measure the entropy or, even
better, measure the two-dimensional distribution p(S,!) by
a two-temperature large-deviation approach, which would be
numerically very demanding.
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IV. CONCLUSIONS

Here, we studied the entropy S of the longest increasing
subsequences of random permutations by counting the num-
ber of distinct LISs. Using an extension of the patience sorting
algorithm, this can be readily obtained for any given sequence.
Especially, we applied Markov chain Monte Carlo techniques
to explore the far tail of the probability distribution of S in
the regime of extremely rare events with probabilities less
than 107600,

Concerning the typical behavior, we found that the av-
erage entropy grows as a square root in the length of the
permutation; that is, the number of LISs grows exponentially,
as expected. The fluctuations of the entropy are, in good
approximation, Gaussian but show deviations from this shape
in the far tails.

Further, we used the data of the far tails to empirically scru-
tinize the rate function, the central piece of the large-deviation
theory. For the right tails we proposed a rate function with
an unusual exponent ®(S/Smax) = — lim, o In p(S)/n3/2 ~
(S/Smax)z, towards which the right tails of all studied sys-
tem sizes seem to converge. This means the standard large-
deviation principle, where one would see a convergence with
a factor 1/n instead of 1/ 13’2, does not hold, but still, the tails
of the distribution can be described by some rate function.
Note that for the distribution of LIS lengths also a rate func-
tion with a factor different from 1/n was found in previous
work.

In addition to random permutations, we studied an en-
semble with a limited number of distinct elements in the se-
quences. For a fixed number of distinct elements, we observed
that S converges to a constant value which is independent
of the sequence length for long sequences. For any number
of distinct symbols, which is proportional to the sequence
length, this will converge to the same LIS entropy as random
permutations for large system sizes.

Also, the data structure used to count the LISs can be
used to perform unbiased sampling of all LISs, which is a
line of research we are working on right now. Here, also
other ensembles of sequences could be of interest, like one-
dimensional random walks. Finally, for future research it
could be interesting, yet numerically extremely demanding,
to study two-dimensional distributions like p(S, [).
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