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Single-file diffusion (SFD) in finite open nanopores is characterized by nonzero spatially varying tracer
diffusion coefficients within a generalized hydrodynamic description. This contrasts with infinite SFD systems
where tracer diffusivity vanishes. In standard tracer counterpermeation (TCP) analysis, two reservoirs, each
containing a different species, are connected to opposite ends of a finite pore. We implement an extended
TCP analysis to allow the two reservoirs to contain slightly different mixtures of the two species. Then,
determination of diffusion fluxes through the pore allows extraction of diffusion coefficients for near-constant
partial concentrations of the two species. This analysis is applied for a lattice-gas model describing two-
component SFD through a finite linear pore represented by a one-dimensional array of cells. Two types of
particles, A and B, can hop only to adjacent empty cells with generally different rates, hA and hB. Particles are
noninteracting other than exclusion of multiple cell occupancy. Results reveal generalized hydrodynamic tracer
diffusion coefficients which adopt small values inversely proportional to pore length in the pore center, but which
are strongly enhanced near pore openings.
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I. INTRODUCTION

Inhibited diffusive transport through finite-length
nanopores with ends open to fluid reservoirs is of direct
relevance to several applications. These include transport
across biological membranes [1–3], as well as separations
[4–7] and catalysis [8–11] utilizing inorganic nanoporous
materials. An extreme case of inhibited transport corresponds
to single-file diffusion (SFD) [12–15] where species cannot
pass each other inside the pore. Significantly, early studies
of biological transport recognized the potential of anomalous
behavior in this single-file diffusion (SFD) regime [3].
Separations involve competitive transport of two or more
species, often through nanoporous membranes. These
processes naturally relate to the current study which considers
transport for two species with different mobilities subject
to SFD. Often differences in the strength of adsorption
for different species is a key component of separation
efficiency [4,6], but our study is more relevant to separations
of nonadsorbing species. For applications to catalysis in
nanoporous systems [8–11], again at least two distinct species
diffuse in the pore, i.e., reactants and products. However,
the relevance of an analysis of transport in the absence
of reaction, as studied here, to the description of catalytic
reaction-diffusion processes deserves further comment which
we now provide.

In this context, first consider the treatment of reaction-
diffusion processes in the hydrodynamic regime [16–18]
where diffusion rates far exceed reaction rates. In this regime,
spatial concentration gradients are small and the kinetics is

reaction limited. Then, analysis of transport in the absence of
reaction is performed, and the generally nontrivial results pro-
vide input to the hydrodynamic reaction-diffusion equations
describing exactly the reactive system. This approach has been
applied effectively, e.g., for low-pressure catalytic reactions
on single-crystal surfaces, to generate a precise beyond-mean-
field analysis of spatiotemporal reaction-diffusion phenomena
[11,18,19]. However, of more relevance here is the analysis
of catalytic conversion reactions in linear nanopores with
inhibited transport, including the SFD regime where reac-
tant and product species cannot pass each other [20–23].
Such systems cannot be regarded as corresponding to the
hydrodynamic regime given their finite size (on the order
of 100 nm), and due to large concentration gradients. Also,
traditional mean-field reaction-diffusion equation treatments
fail dramatically to capture the behavior of the subtle interplay
between inhibited transport and reaction [23]. Yet the above
strategy of first analyzing the nontrivial transport properties of
the corresponding nonreactive system, and then incorporating
results in a description of reaction kinetics, has proved to
be highly successful in capturing nontrivial non-mean-field
reactivity behavior [11,23]. This type of so-called generalized
hydrodynamic treatment is actually more common in a con-
ventional fluid mechanics context [24].

It is appropriate to recall that Onsager theory provides a
precise treatment of transport for single- and multicompo-
nent systems, but only in the above-mentioned hydrodynamic
regime of large length scales and small concentration gra-
dients [16,25]. Consequently, this theoretical framework is
not directly applicable to the finite open systems of interest
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in this study. However, it does provide some insights into
the appropriate generalized hydrodynamic treatment [23,24]
which will prove effective for describing behavior on the
relevant shorter length scales, as well as incorporating pore
end effects [11,23]. In addition, for the systems of interest here
with a SFD constraint, it is natural to investigate any resultant
simplifying features of the general Onsager theory which are
imposed by this constraint.

Another perspective on the challenge of describing trans-
port in finite SFD systems comes from precise theoretical and
simulation studies of tracer diffusion in finite closed systems
with periodic boundary conditions. Such studies have been
applied to treat single-component SFD systems providing
insight into the particle concentration dependence of the tracer
diffusion coefficient, and also revealing an inverse propor-
tionality to pore length [26,27]. (In such analyses, there is a
need to define displacement of the tagged particle so that it
can increase without bound.) The dependence on pore length
is consistent with the classic result for SFD that the tracer
diffusion coefficient vanishes in an infinite system due to
a sublinear increase in the mean-square displacement [12].
Various refined analyses have been applied to open finite open
systems indicating that some basic features of behavior for pe-
riodic systems are preserved including the inverse dependence
on pore length [27–29].

However, the approach on which we focus here, and which
is targeted to finite open systems, is tracer counterpermeation
(TCP) analysis [30,31]. In the standard TCP analysis, two
reservoirs each containing the same concentration of differ-
ently labeled or “colored” but otherwise identical species are
connected to opposite open ends of a finite pore. We empha-
size that the two differently colored species have identical
mobilities and interactions. After a transient filling period for
an initially empty pore, a steady state develops. Determination
of the corresponding steady-state fluxes of the two species
in opposite directions through the pore allows extraction of
a tracer-type diffusion coefficient. This can be regarded as
a generalized hydrodynamic tracer diffusion coefficient not
just because it applies for a finite-size system (rather than an
infinite system), but also because it captures pore end effects
(i.e., enhancement of diffusivity near the openings) [30,31].
This latter feature has been shown critical in determining
concentration distributions and reaction yield for catalytic
conversion reactions in single-file nanopores for the special
case of equal reactant and product mobility [11,23].

The natural goal pursued in this contribution is to extend
the above TCP studies to treat two species with different
mobilities, as is invariably the case for multicomponent sep-
arations or for distinct reactant and product species in cat-
alytic conversion reactions. In addition, we will implement
an extended TCP analysis where each of the two reservoirs
connected to opposite ends of the pore no longer includes
just a single component (as in the standard TCP analysis).
Rather, we allow the reservoirs to include slightly different
mixtures of the two components. Then, determination of dif-
fusion fluxes through the pore allows extraction of generalized
hydrodynamic tracer diffusion coefficients including for the
case of near-constant partial concentrations of the two species.

Finally, we remark that given the complexities of treating
transport in multicomponent single-file systems, we naturally

simplify the analysis by considering noninteracting systems
(in the sense that the only interaction is the exclusion of
passing of particles in the single-file system). This leads to
a fundamental simplification in the description of chemical
diffusion coefficients for single-component systems [32]. For
multicomponent systems of interest here, it greatly simplifies
description of system thermodynamics which controls one
of two factors determining of chemical diffusion coefficients
[11,16,19]. Particularly significant, for the special case of
equal mobility in noninteracting two-component systems, is
that exact results are available for Onsager diffusion tensor
[11,16,33]. These results will provide a touchstone for our
treatment of the general case of unequal mobility.

In Sec. II, we describe our stochastic lattice-gas model
for the two-component single-file system, as well as the
associated master equations. Standard and generalized hy-
drodynamic theories for the above model are presented in
Sec. III. Results from kinetic Monte Carlo simulation anal-
ysis of the model are presented in Sec. IV, and additional
discussion is provided in Sec. V. Conclusions are reported in
Sec. VI.

II. LATTICE-GAS MODEL AND HETEROGENEOUS
MASTER EQUATIONS

A. Lattice-gas model prescription

We consider a stochastic lattice-gas (LG) model describing
two-component single-file diffusion through a finite pore.
See Fig. 1. The pore is represented by a one-dimensional
linear array of sites or cells. The cell width is denoted by
a which is usually set to unity. There are two types of
particles, A and B, which can hop only to adjacent empty
cells with generally different rates, hA and hB, respectively.
Consequently, this dynamics automatically enforces a SFD
constraint. Implicitly, this prescription of dynamics implies
that there are no interactions between particles other than the
exclusion of occupancy of sites or cells by more than one
particle. The above description completely specifies the model
for an infinite system, or for a finite system with periodic
boundary conditions.

For a finite system with open boundaries of relevance for
TCP analysis, the form of coupling between the pore and the
reservoirs must also be specified. In this analysis, reservoirs
at opposite ends of the pore are not coupled directly, but
only coupled through the pore. One approach is to assume
that each reservoir corresponds to well-stirred infinite three-
dimensional 3D lattice-gas of particles with specified concen-
tration. There is one exterior cell in each reservoir adjacent
to an interior end site or cell within the pore. Transport
between the reservoir and the pore occurs by particle hopping
between these two sites with the same rates as within the
pore. Specifically, adsorption of A (B) from exterior cell to the
interior end pore cell occurs at rate hA (hB) if the interior cell is
empty. Desorption of A (B) from an occupied interior end pore
cell to the exterior cell occurs at rate hA (hB) if the exterior cell
is empty. The well-stirred condition for the reservoirs means
that there are no spatial correlations within the reservoirs,
and that the probability that any reservoir site is occupied by
species A or B corresponds to the specified global reservoir
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FIG. 1. Schematic of the extended TCP setup for our LG model of a two-component SFD system in a finite open nanopore. Particles A and
B hop with rates hA and hB, respectively, to adjacent empty cells in the pore which imposes a SFD constraint. Adsorption from and desorption
to external reservoirs involve hopping between the interior end pore cell and the adjacent exterior reservoir cell also with rates hA and hB.
Reservoirs are well stirred.

concentration for that species. This probability impacts the
rate of transport into and out of the pore.

For an infinite system or finite pore with periodic boundary
conditions, the lack of interactions between particles in the
model implies that there are no correlations in the equilibrium
state within the pore. This in turn allows simple exact deter-
mination of compressibilities based on fluctuation-correlation
relations [34,35], the results of which will be utilized in
Sec. III.

B. Heterogeneous master equations

Behavior in the above model is described exactly by
heterogeneous master equations which can instructively be
written in hierarchical form [11]. Let integer n denote the
site or cell label, and let 〈An〉 and 〈Bn〉 denote the probability
to find A and B in cell n (i.e., the partial concentrations).
Let X (or E) denote the state where the cell is occupied by
either type of particle (or unoccupied). Then, one has 〈Xn〉 =
〈An〉 + 〈Bn〉 and 〈Xn〉 + 〈En〉 = 1. Let 〈AnEn+1〉 denote the
probability that cell n is occupied by A and cell n + 1 is E, etc.
Also let ∇〈Cn〉 = 〈Cn〉–〈Cn – 1〉 denote a discrete derivative.
Then, except near pore openings, model behavior is described
by

d/dt〈An〉 = −∇JA(n) and d/dt〈Bn〉 = −∇JB(n), (1)

with net fluxes JA,B(n) from cell n to cell n + 1 given by

JA = hA[〈AnEn+1〉 − 〈EnAn+1〉] and

JB = hB[〈BnEn+1〉 − 〈EnBn+1〉]. (2)

Separate equations apply for the cells at the ends of the pore
reflecting the prescription of adsorption and description at
pore openings described in Sec. II A. These serve as “bound-
ary conditions.” The fluxes (2), which reflect the feature that
hopping occurs only to neighboring empty cells, cannot be
written in terms of single-cell concentrations due to spatial
correlations between occupancy of different cells [11,20–
23,36]. Thus (1) is not closed, but rather is just the lowest-
order equation in a hierarchy [11]. The next-order equation for
pair probabilities involves triplet probabilities. Triplets couple
to quartets, etc.

One strategy for model analysis is to implement hierarchi-
cal truncation approximations. The lowest-order mean-field

or site approximation neglects all spatial correlations, and
obtains a closed set of equations for single-site quantities. The
pair approximation writes triplets in terms of pair and single-
site quantities, and thus obtains closed coupled equations
for single-site and pair quantities. The triplet approximation
writes quartets in terms of triplets, etc. However, even these
higher-order truncation approximations fail to accurately cap-
ture behavior given the strong correlations induced by the
SFD constraint [11,36]. See the Appendix for a more detailed
discussion, and also the Supplemental Material [37] for addi-
tional results.

It is, however, possible to derive an exact relation between
the above fluxes by considering the combination

JA/hA + JB/hB = 〈XnEn+1〉 − 〈EnXn+1〉 = 〈Xn〉 − 〈Xn+1〉.
(3)

The latter reduction utilizes exact relations such as
〈XnEn+1〉 + 〈XnXn+1〉 = 〈Xn〉. An analogous reduction has
been used in the analysis of the simpler case of transport in
single-component systems [32].

In a standard TCP analysis for a finite open pore, the reser-
voir coupled to one end contains only A with concentration
〈A〉 = 〈X 〉, and the reservoir at the other end contains only B
with the same concentration 〈B〉 = 〈X 〉. In our extended TCP,
we will allow reservoirs to contain different mixtures of A and
B, but will maintain the constraint that the total concentration
in both reservoirs is the same, 〈X 〉. One could consider even
more general situations where the concentrations in the two
reservoirs differ. In the latter most general case, in the steady
state where fluxes are constant in time and space, (3) implies
that the total concentration 〈Xn〉 varies linearly across the
pore. In the standard TCP analysis or in our extension where
both reservoirs have the same total concentration 〈X 〉, then
(3) implies that 〈Xn〉 = 〈X 〉 is constant in the pore, and
furthermore yields the key result

JA/hA = −JB/hB (same 〈X 〉 for both reservoirs). (4)

The relation (3) applies more generally for infinite systems
or finite systems with periodic boundary systems, but in the
equilibrium state of such systems trivially JA = JB = 0 and
〈Xn〉 is constant.
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III. STANDARD AND GENERALIZED HYDRODYNAMIC
THEORIES

A. Onsager hydrodynamic transport analysis

For a comprehensive analysis of our two-component LG
model with SFD, it is appropriate to consider a hydrodynamic
treatment of transport with and without SFD which applies
for macroscopic or infinite systems in the regime of small
concentration gradients. This consideration will help guide
the subsequent development of a generalized hydrodynamic
treatment for the finite open systems of interest here.

First, we comment on the single-component LG model
with hopping to nearest-neighbor (NN) empty sites at rate h.
(This corresponds to the limit of our two-component model
where the concentration of either A or B vanishes.) Exact
analysis [32] reveals that the chemical or collective diffusion
coefficient is independent of particle concentration, 〈X 〉, and
is simply given in terms of the particle hop rate by D0 = a2h
where again a denotes the lattice constant (or cell width). For
a general LG model, the tracer diffusion coefficient has the
form Dtr = D0(1 – 〈X 〉) f (〈X 〉) where f � 1 is a correlation
factor reflecting back-correlations in the walk of the tagged
particle [38]. However, for SFD in infinite systems, one has
that f ≡ 0 so that Dtr = 0.

For a two-component system with species C = A or B,
Onsager hydrodynamic transport theory determines species
diffusion fluxes, JC , in terms of gradients in either chemical
potentials, μC, or densities (i.e., concentrations), 〈C〉. These
fluxes have the form [11,16]

JA = − �AA∇μA − �AB∇μB = − DAA∇〈A〉 − DAB∇〈B〉,
(5)

with an analogous expression for JB. The � denote Onsager
conductivity coefficients and the D denote chemical diffu-
sion coefficients. Collecting these coefficients into a 2×2
asymmetric diffusion tensor, D, and a symmetric 2×2 con-
ductivity tensor, �, one obtains the relation D = � × χ−1

involving the 2×2 symmetric compressibility tensor χ. The
components of χ have the form χCD = ∂〈C〉/∂μD. For our
two-component non-noninteracting LG model, application
of fluctuation-dissipation relations immediately shows that
[11,16]

χAA = (kBT )−1(1 − 〈A〉)〈A〉, χBB = (kBT )−1(1 − 〈B〉)〈B〉,
and

χAB = χBA = (kBT )−1〈A〉〈B〉, (6)

where kB denotes the Boltzmann constant and T denotes the
system temperature.

In the hydrodynamic limit for multicomponent SFD sys-
tems, the tracer diffusion coefficient vanishes for any choice
of mobilities of the components. However, the chemical dif-
fusion coefficients do not vanish, and are determined for
our two-component LG SFD model by first evaluating the
Onsager conductivity coefficients. This analysis utilizes the
feature that �CD measures the diffusion flux of C induced by
imposing a bias in the diffusion of species D. For SFD, it is
clear that imposing a bias in the diffusion of one species im-
poses the same flux per particle for all species. Consequently,
the induced flux for each species is exactly proportional to the

concentration of that species. As a result, one has

�AA/�BA = 〈A〉/〈B〉 and �BB/�AB = 〈B〉/〈A〉 (for SFD).
(7)

Then since �AB = �BA, (7) implies that all three distinct con-
ductivity coefficients are determined by any one of these, e.g.,
�AB. Using the relationship between D and �, an immediate
consequence of (6) and (7) is that

DAA = DAB = (kBT )�AB/(〈B〉〈E〉),
(8)

so that JA = − DAA∇〈X 〉,

and

DBB = DBA = (kBT )�AB/(〈A〉〈E〉), so that

JB = − DBB∇〈X 〉 = (〈B〉/〈A〉)JA, (9)

where 〈E〉 = 1 − 〈A〉 − 〈B〉. The relationship between JA and
JB is a direct and natural consequence of SFD.

Complete determination of chemical diffusion coefficients
and fluxes requires an additional relation for conductivity
coefficients. For noninteracting two-component LG models,
this relation has the form [39]

�AA/D0(A) + �AB/D0(B) = (kBT )−1〈A〉〈E〉, (10)

where D0(A) = a2hA and D0(B) = a2hB. This leads to the
explicit results for hydrodynamic diffusion coefficients:

DAA = D0(A)D0(B)〈A〉/[D0(B)〈A〉 + D0(A)〈B〉] and

〈A〉DBB = 〈B〉DAA. (11)

The relations (11) in turn lead to explicit results for hydrody-
namic diffusion fluxes JA and JB using (8) and (9). Intuitive
limiting behavior is also recovered. For example, one has
DAA ∼ D0(B) 〈A〉/〈B〉, as D0(A)/D0(B) → ∞ where slow B
diffusivity must control behavior, and also as 〈A〉 → 0.

B. Generalized hydrodynamic formulation

The above results show that when the total concentration,
〈X 〉, is constant (as is the case for TCP and extended TCP
configurations), then the diffusion fluxes JA and JB vanish in
the hydrodynamic regime. However, for TCP-type analysis
in finite open systems, it is clear from Sec. II that there
are nonzero diffusion fluxes through the pore. These fluxes
and the associated diffusion coefficients are then naturally
characterized as generalized hydrodynamic quantities as they
reflect both finite-size and pore end effects. Some insight
into development of an appropriate formalism is provided
by consideration of more general noninteracting LG models
still with two components, A and B, hopping to neighboring
empty sites or cells with equal hop rates, hA = hB = h, but
now also allowing possible exchange of A and B on adjacent
sites or cells. In this case, an exact Onsager-based analysis of
transport yields the result [16,33]

JA = −D0(〈A〉/〈X 〉)∇〈X 〉 − Dtr[(〈B〉/〈X 〉)∇〈A〉
− (〈A〉/〈X 〉)∇〈B〉], (12)

for hA = hB where again D0 = a2h, and where Dtr is the
unique tracer diffusion coefficient (since both A and B have
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the same hopping dynamics) which depends on the extent of
exchange and on 〈X 〉. An analogous relation describes JB. For
SFD (in the absence of exchange of A and B), Dtr vanishes
in the hydrodynamic limit and (12) recovers the result (11)
in the case where D0(A) = D0(B) = D0. However, of more
significance here is the observation that for the more general
LG model with possible exchange, in the case of constant
〈X 〉 (as applies for the so-called counterdiffusion mode of
TCP-type configurations where ∇〈A〉 = –∇〈B〉), (12) reduces
to [11,16,23,30]

JA = −Dtr∇〈A〉 and

JB = − Dtr∇〈B〉(= −JA), for hA = hB.. (13)

It is natural to use (13) to define generalized tracer diffu-
sion coefficients for finite systems with hA = hB, where the
fluxes are determined from a TCP-type analysis via [11,30,31]

Dtr (TCP) ≡ −JA/∇〈A〉 ≡ −JB/∇〈B〉 (for hA = hB). (14)

This definition has been shown to account for finite-size ef-
fects [where Dtr (TCP) scales inversely with pore length in the
pore center], and also to incorporate pore end effects [noting
that Dtr (TCP) is enhanced near pore openings] [11,23,30,31].
Incorporating Dtr with these features into analysis of catalytic
conversion with inhibited diffusion in finite nanopores (in-
cluding the case of SFD) has been shown to recover precisely
all features of behavior in these processes [11,23].

Finally, it is also natural to use (14) to motivate the def-
inition generalized tracer diffusion coefficients for our SFD
model with unequal hop rates in terms of fluxes obtained from
a TCP-type analysis via

Dtr (A|TCP) ≡ −JA/∇〈A〉 and

Dtr (B|TCP) ≡ −JB/∇〈B〉 (for hA 	= hB). (15)

Extended TCP analysis in Sec. IV will use these definitions
to extract generalized tracer diffusion coefficients. More pre-
cisely, Dtr (A, B|TCP) are obtained from a spatially discrete
analog of (15) where ∇〈C〉 is obtained from (〈Cn〉–〈Cn−1〉)/a.
From the relation (4) in Sec. II, it is clear that

Dtr (A|TCP)/Dtr (B|TCP) = hA/hB = D0(A)/D0(B). (16)

IV. EXTENDED TCP ANALYSIS: KINETIC MONTE
CARLO SIMULATION RESULTS

In this section, we report the results for
Dtr (A|TCP)/(a2hA) = Dtr(B|TCP)/(a2hB), denoted by
Dtr (TCP)/(a2h) for convenience, from kinetic Monte Carlo
(KMC) simulation studies of standard and extended TCP
analysis of our two-component LG model with SFD.
Generally, we consider unequal hop rates hA 	= hB. We select
a pore length of L = 50 cells or sites, and a total concentration
in both coupled reservoirs of 〈X 〉 ranging from 0.1 to 0.9.
We consider ratios of hop rates hA/hB = 1, hA/hB = 5
and hA/hB = 50. Results for hA/hB = 1 are available in
Refs. [30,31]. Naturally, any effects of unequal mobility
of the two components will be most clear for hA/hB = 50.
Our analysis involves running a single long simulation trial
averaging behavior over time (after an initial transient period)
for each parameter choice in order to obtain precise values

for quantities such as 〈An〉, 〈Bn〉, and fluxes through the
pore.

First, we review results of standard and extended TCP anal-
ysis for hA/hB = 1. Previous standard TCP analysis charac-
terized in detail Dtr (A|TCP) = Dtr(B|TCP) = Dtr (TCP) for
hA/hB = 1 [30,31]. These position-dependent quantities are
symmetric about the pore center, as follows from the sym-
metry of the model. They exhibit a plateau in the pore cen-
ter where [26] Dtr (TCP) ≈ D0(1 – 〈X 〉)/[〈X 〉(L – 1)] and are
enhanced near the pore openings. From the linearity of the
master equations, and also the boundary conditions at pore
openings, it can be shown that for equal mobility, the standard
TCP results for Dtr (A|TCP) = Dtr (B|TCP) are preserved in
an extended TCP analysis where the reservoirs include differ-
ent mixtures of A and B, but retain the same 〈X 〉 [31].

Next, consider a standard TCP analysis for an extreme case
of highly unequal mobility, hA/hB = 50. Results are shown in
Fig. 2 for both the steady-state concentration profiles across
the pore, as well as for the corresponding generalized tracer
diffusion coefficients. General features seen for hA/hB = 1 (a
plateau in the pore center at least for larger 〈X 〉, and enhanced
values near pore openings) are preserved. However, a clear
asymmetry about the pore center is evident, particularly for
lower 〈X 〉. Specifically, Dtr (TCP)/(a2h) is greater near the left
end of the pore attached to the reservoir of A rather than B.
This is particularly clear even for higher 〈X 〉 in the regions
where Dtr (TCP) is enhanced near the pore openings. This
feature is perhaps not surprising since A is the more mobile
species, and its population dominates that of slower species
near the left end of the pore.

A shortcoming of the above analysis for Dtr (TCP)/(a2h) is
that it convolutes behavior for different mixtures of A and B
for a specific total concentration 〈X 〉. Ideally, one would want
to determine Dtr (TCP)/(a2h) for specific individual concen-
trations, 〈A〉 and 〈B〉, as well as for specific 〈X 〉 = 〈A〉 + 〈B〉.

This is achieved by an extended TCP analysis. First, we
analyze the case where 〈A〉 = 〈B〉 = 〈X 〉/2. To this end we
perform a sequence of simulations where the concentration of
A [B] in the left reservoir is r〈X 〉 [(1 – r)〈X 〉], and the con-
centration of A [B] in the right reservoir is (1 – r)〈X 〉[r〈X 〉].
Thus, r = 1 corresponds to standard TCP, but we analyze
behavior for the sequence of values r = 0.8, 0.7, 0.6, 0.55,
0.52 approaching r = 1

2 , where r = 1
2 corresponds to exactly

equal concentrations of A and B in the pore. As r → 1
2 , the

difference in concentrations in the two reservoirs vanishes,
and thus the fluxes, JA and JB, also vanish. The closer r is to
1
2 , the smaller the fluxes and the more difficult it is to obtain
precise values of desired quantities (given fluctuations in the
stochastic model). Thus, r = 0.52 is a compromise between
reliable statistics and uniform concentrations. By considering
behavior for the above sequence of r values we can assess the
degree of convergence as r → 1

2 .
Results for Dtr (TCP)/(a2h) are shown in Fig. 3 for

hA/hB = 5 (for which precise results are more readily ob-
tained than for hA/hB = 50), for a range of different val-
ues of 〈X 〉. For hA/hB = 5 and 〈A〉 = 〈B〉 = 〈X 〉/2 with
L = 50 as r decreases toward 1

2 , Dtr (TCP)/(a2h) con-
verges to a form symmetric about the pore center for all
〈X 〉. The minimum values realized in the pore center are
Dtr (TCP min)/(a2h) = 0.176, 0.0226, 0.0133, and 0.000 98,
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FIG. 2. Standard TCP analysis of the generalized tracer diffusion coefficient Dtr for a pore with L = 50 for 〈X 〉 = 0.1 (a), 0.3 (b), 0.6
(c), and 0.9 (d), and with hA/hB = 50 hA/hB = 50 in all cases. Dtr is strongly enhanced approaching the pore openings. The insets show
the concentration profiles from which Dtr was extracted highlighting the feature that these Dtr are associated with strongly varying partial
concentrations of A and B.

for 〈X 〉 = 0.1, 0.3, 0.6, and 0.9, respectively. The strong
dependence on 〈X 〉 is reminiscent of but not identical to that
for hA = hB.

Finally, we further extend our TCP procedure to consider
the dependence of Dtr (TCP)/(a2h) on the relative concen-
trations of 〈A〉 and 〈B〉 for fixed total 〈X 〉 = 0.3, just con-
sidering the case hA/hB = 5. The above analysis assessed
behavior for 〈A〉 = 〈B〉 = 0.15. Here, instead, we first assess
behavior for 〈A〉 = 0.21 and 〈B〉 = 0.09, i.e., a dominant

population of more mobile species. To this end, one performs
a sequence of simulations where the concentration of A [B] in
the left reservoir is 0.21 + δ[0.09 – δ], and the concentration
of A [B] in the right reservoir is 0.21 – δ[0.09 + δ]. Results
shown in Fig. 4 indicate that Dtr (TCP min)/(a2h) ≈ 0.054
in the limit of small δ. This should be compared with the
value Dtr (TCP min)/(a2h) = 0.023 for 〈A〉 = 〈B〉 = 0.15
(with the same hA/hB and 〈X 〉). Thus, as might be ex-
pected, Dtr (TCP min)/(a2h) is enhanced upon increasing the

FIG. 3. Extended TCP analysis of the generalized tracer diffusion coefficient Dtr in the limit where 〈A〉 = 〈B〉 = 〈X 〉/2 for a pore with
L = 50. Results are shown for 〈X 〉 = 0.1 (a), 0.3 (b), 0.6 (c), and 0.9 (d), and with hA/hB = 5 in all cases. Again, Dtr is strongly enhanced
approaching the pore openings. In each case, behavior is shown for r = 1, 0.8, 0.7, 0.6, 0.55, and 0.52, where r → 1

2 corresponds to 〈A〉 = 〈B〉
in both reservoirs.
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FIG. 4. Extended TCP analysis of the generalized tracer diffu-
sion coefficient Dtr for hA/hB = 5 exploring behavior in the limit
where 〈A〉 = 0.21 and 〈B〉 = 0.09 with L = 50. Results for 〈A〉 =
0.21 ± δ, 〈B〉 = 0.09 ∓ δ at the pore ends are shown with δ = 0.06
(dotted), 0.04 (dashed), and 0.02 (solid). Again, Dtr is strongly
enhanced approaching the pore openings. The insets show the
concentration profiles from which Dtr was extracted for various δ.

proportion of the more mobile species for the same fixed total
concentration.

For completeness, it is natural to also analyze behavior
for 〈A〉 = 0.09 and 〈B〉 = 0.21, i.e., a dominant population
of less mobile species. To this end, we perform a sequence
of simulations where the concentration of A [B] in the left
reservoir is 0.09 + δ [0.21 – δ], and the concentration of A
[B] in the right reservoir is 0.09 – δ[0.21 + δ]. Results shown
in Fig. 5 indicate that Dtr (TCP min)/(a2h) ≈ 0.019 in the
limit of small δ compared with Dtr (TCP min)/(a2h) = 0.023
for 〈A〉 = 〈B〉 = 0.15. Thus, Dtr (TCP min)/(a2h) is reduced
upon increasing the proportion of the less mobile species.

V. DISCUSSION

A. Tracer diffusion with periodic boundary conditions

It is natural to compare the results of our extended TCP
analysis for tracer diffusion in finite open systems with results
from more conventional analysis in finite systems with peri-
odic boundary conditions (PBC). For PBC, the tagged particle
displacement is defined so as to be able to increase without

FIG. 5. Extended TCP analysis of the generalized tracer dif-
fusion coefficient Dtr for hA/hB = 5 exploring behavior in the
limit where 〈A〉 = 0.09 and 〈B〉 = 0.21 with L = 50. Results
for 〈A〉 = 0.09 ± δ, 〈B〉 = 0.21 ∓ δ at the pore ends are shown
with δ = 0.06 (dotted), 0.04 (dashed), and 0.02 (solid). Again, Dtr

is strongly enhanced approaching the pore openings. The insets
show the concentration profiles from which Dtr was extracted for
various δ.

bound if the particle cycles through the system arbitrarily
many times in the same direction. For our two-component
LG model, it is clear that the SFD constraint implies that
the mean-square placement of tagged particles of either
species has the same long-time asymptotic behavior. Thus,
the same tracer diffusion coefficient, Dtr (PBC), applies for
both species. For hA/hB = 1, the tracer diffusion coefficient
corresponds to that for a single-component system, where
exact analysis shows that [26] Dtr = D0(1 – 〈X 〉)/[〈X 〉(L – 1)]
for 〈X 〉 = N/L with integer total number of particles 1 �
N � L.

We have performed a comprehensive simulation analysis
of Dtr (PBC) for general unequal mobility and general partial
concentrations 〈A〉 = NA/L and 〈B〉 = NB/L where NA (NB)
denotes the number of A (B). Varying all of hA/hB, 〈A〉/〈B〉,
〈X 〉, and L indicates that

Dtr (PBC) =
[xA/D0(A) + xB/D0(B)]−1(1 − 〈X 〉)/[〈X 〉(L − 1)], (17)

where xA = 〈A〉/〈X 〉 and xB = 〈B〉/〈X 〉 are fractional species
concentrations, so that xA + xB = 1. Results from simulations
supporting this form are provided in the Supplemental Ma-
terial [37]. The form of (17) is reminiscent of series resis-
tance behavior: xAN resistors with resistance RA = 1/D0(A)
in series with xBN resistors with resistance RB = 1/D0(B)
have overall resistance Rtot = (xARA + xBRB)N , and overall
conductance inversely proportional to this quantity.

The form of the dependence on partial coverages and
diffusivities also reflects that of the exact results (11)
for hydrodynamic chemical diffusion coefficients. It thus
also recovers intuitive limiting behavior, e.g., Dtr (PBC) ∼
D0(B)(1 – 〈X 〉)/([〈B〉(L – 1)], as D0(A)/D0(B) → ∞, which
is controlled by the mobility of the slow species. In particular,
for a single slow particle B, where 〈B〉 = 1/L, one recovers
the simple mean-field result, Dtr (PBC) ∼ D0(B)(1 – 〈A〉∗), as
D0(A)/D0(B) → ∞, where 〈A〉∗ = NA/(L – 1) is the local
concentration of highly mobile A species on sites not occupied
by B.

B. PBC versus extended TCP results

It is natural to compare tracer diffusivity values from
the TCP analysis with that from the PBC analysis. Here,
we consider the case hA/hB = 5, 〈X 〉 = 0.3, and L = 50.
From (17) for equal concentrations of A and B, xA =
xB = 1

2 , one has that Dtr (PBC) = 0.079(a2hB). Extended
TCP analysis with the same parameters gave minimum
plateau values for tracer diffusivity in the pore center
of Dtr (A|TCP min) = 0.133(a2hB) and Dtr (B|TCP min) =
0.027(a2hB); i.e., Dtr (PBC) adopts a value intermediate be-
tween the TCP values of Dtr (A, B|TCP min). This feature
also applies for unequal concentrations of A and B. Results
for xA = 0.3 and xB = 0.7 (a dominant population of slow
species) and for xA = 0.7 and xB = 0.3 (a dominant popu-
lation of fast species) are shown in Table I together with those
for xA = xB = 1

2 . Results show that Dtr (PBC) always lies in
between Dtr (B|TCP min) and Dtr (A|TCP min).

It should be emphasized that the analysis of tracer dif-
fusion in closed systems with PBC and in open systems
with a TCP-type setup corresponds to fundamentally different

062103-7



LAI, PLEASANT, GARCÍA, AND EVANS PHYSICAL REVIEW E 101, 062103 (2020)

TABLE I. Comparison of minimum values of tracer diffusion coefficients from an extended TCP analysis with that for an analysis with
periodic boundary conditions (PBC). In all cases, one has hA/hB = 5, 〈X 〉 = 0.3, and L = 50.

hA/hB = 5 Dtr (B|TCP min)/(a2hB) Dtr (PBC)/(a2hB) Dtr (A|TCP min)/(a2hB)

xA = 0.3, xB = 0.7 0.019 0.063 0.095
xA = xB = 0.5 0.027 0.079 0.133
xA = 0.7, xB = 0.3 0.054 0.108 0.270

ensembles: a canonical ensemble for PBC versus a grand
canonical ensemble for the TCP-type setup. There is a reason-
able correspondence between the PBC result and plateau value
of tracer diffusivity in the pore center for the TCP analysis
with equal mobility. The situation is more complicated for
unequal mobility, as indicated above, with the single tracer
diffusion coefficient for both species from analysis with PBC
adopting a value in between the two distinct plateau values for
different species from the TCP-type analysis.

C. Multicomponent SFD systems

It is natural to extend our analysis for two-component sys-
tems to multicomponent systems. For TCP, the two reservoirs
connected to opposite ends of the pore would contain different
mixtures of the multiple species, A, B, C, etc., with the same
total concentration 〈X 〉. One allows for generally different hop
rates, hA, hB, hC, etc., for A, B, C, etc. respectively. Extending
the exact master equation analysis in Sec. II A, it follows that

JA/hA + JB/hB + JC/hC + · · · = 0. (18)

One naturally defines tracer diffusion coefficients in terms
of fluxes and concentration gradients for the extended TCP
setup via Dtr (A|TCP) ≡ – JA/∇〈A〉, etc., as in (15). One can
consider special cases where concentrations of only a pair of
species, say, A and B, differ in the two reservoirs (so C, etc.,
have the same concentration, and consequently JC = 0, etc.).
In this special case, once again one recovers the result (16)
relating the distinct tracer diffusion coefficients for A and B.

Regarding hydrodynamic theory for noninteracting multi-
component SFD systems, again analysis of compressibilities
is straightforward. Also, it is clear that imposing a driving
force on any one species induces the same diffusion flux for all
species. �AA : �BA : �CA : . . . = 〈A〉 : 〈B〉 : 〈C〉 : . . ., etc.,
leading to extension of the analysis for the two-component
case. Regarding the analysis of tracer diffusivity in finite
systems with periodic boundary conditions, it is again the case
that the SFD condition implies the same tracer diffusion coef-
ficient, Dtr (PBC), for all species. Insight into the behavior of
this diffusion coefficient is also reasonably achieved through
a mixed series resistor analogy, as in the two-component case.

VI. CONCLUSIONS

Our extended TCP analysis has provided detailed insight
into tracer diffusion coefficients for the two-component SFD
system in a finite open nanopore with generally unequal
mobility of the two components. In particular, this formalism
opens the possibility to quantify tracer diffusivity for specific
selected concentrations of the two components, and thus to
systematically assess the variation in behavior upon varying

the total concentration or the relative concentrations of the
components. The tracer diffusion coefficients extracted from
the extended TCP analysis should be regarded as generalized
hydrodynamic diffusion coefficients as they apply for finite
systems, and thus do not vanish as is the case for tracer
diffusivity for any infinite SFD system. Significantly, while
these diffusion coefficients have a well-defined plateau value
in the pore center (provided the pore is sufficiently long),
their values are always significantly enhanced near the pore
openings. One might regard stochastic adsorption-desorption
processes at the pore openings as offsetting the SFD constraint
in the regions near the pore openings, and thus enhancing
tracer diffusivity. It should be noted that even higher-level
analytic dynamic mean-field-type analysis of tracer diffu-
sivity, which applies truncation approximations to the exact
hierarchical master equations, fails to quantitatively capture
behavior. See the Appendix and the Supplemental Material
[37]. This is due to the generation of strong nonequilibrium
spatial correlations as a result of the SFD constraint [11,36].

It is also appropriate to emphasize that enhancement of
tracer diffusivity near pore openings is expected to be critical
in controlling concentration distributions within the pore, and
thus reactivity, for systems where SFD within the pore is
coupled to a conversion reaction within the pore. This feature
has been previously confirmed from the case of equal mobility
of reactants and products in such a SFD system [11,23].
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APPENDIX: APPROXIMATE HIERARCHICAL
TRUNCATION ANALYSIS

An analytic treatment of TCP-type problems involves
analysis of the appropriate heterogeneous hierarchical master
equations, the lowest-order example of which is given by (1)
with expressions for the diffusion fluxes given in (2). In ad-
dition, appropriate boundary conditions at the pore ends must
be applied. As noted in the text, there exist different levels
of hierarchical truncation approximation of these equations
which we describe explicitly below. It is natural to compare
the predictions of these different approximations with precise
KMC simulation results for tracer diffusion coefficients.

062103-8



GENERALIZED HYDRODYNAMIC ANALYSIS OF … PHYSICAL REVIEW E 101, 062103 (2020)

FIG. 6. Results from an extended TCP analysis for hA/hB = 5, 〈X 〉 = 0.6, and L = 50 for Dtr (TCP)/(a2h) from site through quartet
approximations compared with KMC simulation.

The lowest-order mean-field or site approximation ig-
nores all spatial correlations, and thus factorizes 〈AnEn+1〉 =
〈An〉〈En+1〉, 〈EnAn+1〉 = 〈En〉〈An+1〉, etc., where 〈En〉 =
1 – 〈Xn〉 = 1 – 〈X 〉 for our TCP setup. It immediately follows
that, e.g.,

JA = hA(1 − 〈X 〉)∇〈An〉, so that

Dtr (A|TCP) = a2hA(1 − 〈X 〉), (A1)

which constitutes a severe overestimate of the actual value of
Dtr (A|TCP).

Let F, G, H, K, L, · · · denote any of A, B, or E. Then,
successively higher-level pair, triplet, quartet, etc., approxi-
mations utilize the following factorizations of multisite prob-
abilities [11]:

〈FnGn+1Hn+2〉 = 〈FnGn+1〉〈Gn+1Hn+2〉/〈Gn+1〉 (pair),

〈FnGn+1Hn+2Jn+3〉 = 〈FnGn+1Hn+2〉〈Gn+1Hn+2Jn+3〉/〈Gn+1Hn+2〉 (triplet),

〈FnGn+1Hn+2Jn+3Kn+4〉 = 〈FnGn+1Hn+2Jn+3〉〈Gn+1Hn+2Jn+3Kn+4〉/〈Gn+1Hn+2Jn+3〉 (quartet),

etc. (A2)

Implementation of the pair approximation requires simul-
taneous analysis of Eq. (1) for single-site probabilities as
well as additional equations for pair probabilities (which
together form a closed set). The triplet approximation requires
simultaneous analysis of equations for single-site, pair, and
triplet probabilities, etc.

Next, we present results from application of these ap-
proximations to analyze TCP systems for a two-component
SFD system in a finite open nanopore with L = 50. We
compare these predictions against precise KMC simulation
results. Here, we show only results from an extended TCP
analysis, but additional results for a standard TCP analysis
are shown in the Supplemental Material [37]. In contrast to

KMC simulation, it is appropriate to note that there is no
practical limitation in choosing a very slight difference in
concentrations of each species between the two reservoirs at
opposite ends of the pore. Thus, one can choose r (defined
in the main text) to be extremely close to 0.5. However, for
consistency and for comparison with results in the main text,
here we choose r = 0.52. In Fig. 6, we show results for
concentration profiles and tracer diffusivity for hA/hB = 5,
〈X 〉 = 0.6, L = 50, and r = 0.52. The truncation approxima-
tions show the correct trend for increasing truncation order
with results for Dtr approaching precise simulation values.
However, the few lowest-order approximations are far from
quantitatively precise.
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