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Fluid-fluid demixing and density anomaly in a ternary mixture of hard spheres
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We report the grand-canonical solution of a ternary mixture of discrete hard spheres defined on a Husimi lattice
built with cubes, which provides a mean-field approximation for this system on the cubic lattice. The mixture is
composed of pointlike particles (0NN) and particles which exclude up to their first (1NN) and second neighbors
(2NN), with activities z0, z1, and z2, respectively. Our solution reveals a very rich thermodynamic behavior, with
two solid phases associated with the ordering of 1NN (S1) or 2NN particles (S2), and two fluid phases, one being
regular (RF ) and the other characterized by a dominance of 0NN particles (F0 phase). However, in most part of
the phase diagram these fluid (F ) phases are indistinguishable. Discontinuous transitions are observed between
all the four phases, yielding several coexistence surfaces in the system, among which a fluid-fluid and a solid-
solid demixing surface. The former one is limited by a line of critical points and a line of triple points (where
the phases RF -F0-S2 coexist), both meeting at a special point, after which the fluid-fluid coexistence becomes
metastable. Another line of triple points is found, connecting the F -S1, F -S2, and S1-S2 coexistence surfaces. A
critical F -S1 surface is also observed meeting the F -S1 coexistence one at a line of tricritical points. Furthermore,
a thermodynamic anomaly characterized by minima in isobaric curves of the total density of particles is found,
yielding three surfaces of minimal density in the activity space, depending on which activity is kept fixed during
its calculation.
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I. INTRODUCTION

In two recent works [1,2], we have investigated three
athermal binary mixtures of hard spheres placed on the cubic
lattice, where they are approximated by kNN particles, i.e.,
particles which exclude up their kth neighbors. The mixtures
considered were composed by pairs of the three smallest
“spheres” (0NN-1NN, 0NN-2NN, and 1NN-2NN) and grand-
canonical phase diagrams for these systems were obtained
through their solution on a Husimi lattice built with cubes
[1,2] [see Fig. 1(a)]. Such mean-field solutions display very
rich entropy-driven thermodynamic behaviors. In a brief,
in the 0NN-1NN case, a fluid (F ) and a solid (S1) phase
(associated with the ordering of 1NN particles) were found,
separated by a continuous and a discontinuous transition line,
both meeting at a tricritical point [1]. The same phases and
behavior were observed in the 1NN-2NN mixture, but now
another solid (S2) phase (associated with the ordering of 2NN
particles) is present in the system and it is separated from the
F and S1 phases by coexistence lines, which meet the F -S1
one at a triple point [1]. For the 0NN-2NN mixture, an even
more interesting scenario was found, with two fluid phases,
one regular (RF ) and another characterized by a dominance of
0NN particles (F0), beyond the S2 phase. Its phase diagram
displays a fluid-fluid demixing transition, characterized by a
RF -F0 coexistence line, which ends in a critical point and
also meet a RF -S2 and a F0-S2 coexistence line in a triple
point [2]. Another interesting feature observed in the 0NN-
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1NN and 0NN-2NN mixtures is a thermodynamic anomaly
characterized by minima in isobaric curves of the total density
of particles. These different behaviors in the binary systems—
especially the absence of the density anomaly in the 1NN-
2NN case and the existence of the fluid-fluid demixing only
the 0NN-2NN mixture—lead us to inquiry how these things
are connected in the more general and interesting case of
the 0NN-1NN-2NN ternary mixture. In this paper we address
this by tackling the challenging problem of building up the
three-dimensional (3D) phase diagram for this ternary model,
once again by solving it on a cubic Husimi lattice.

We remark that ternary mixtures are central in a vast
number of systems. To name a few, we may cite ternary
quasicrystals [3], several chemical reactions involving three
species (e.g., 2H2 + O2 � 2H2O), mixtures of cholesterol and
lipids which play a key role in cell membranes [4,5], water-
oil-surfactant mixtures [6,7], and so on. Moreover, colloids
and granular matter in general are usually modeled as hard
spheres [8]. In fact, (thermal) models of ternary mixtures have
recently been used to investigate, e.g., critical Casimir forces
among colloidal particles dispersed in a binary solvent [9,10]
and the percolation of patchy colloids [11,12]. Regarding the
athermal case, ternary mixtures of hard spheres have been the-
oretically investigated using different approximation methods
[13–16] and in several works such approaches were compared
with both simulations [17–23] and experiments [24–29].

Despite these works considering the hard spheres in the
continuous space, as long as we know, ternary mixtures of
them on the lattice (i.e., of kNN particles) have never been
investigated so far. Actually, even binary mixtures of kNN
particles on the cubic (or any other three-dimensional) lattice
have never be studied before our recent works discussed
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FIG. 1. (a) Illustration of part of a Husimi lattice built with cubes. The ground states of the solid S1 and S2 phases, in the cubic lattice, are
displayed in (b) and (c), respectively. (d) Definition of the sublattice structure in an elementary cube of the Husimi lattice. (e) Representation of
the possible states ( j) for the root sites. They can be empty ( j = ∅) or occupied by a 0NN ( j = 0, open square), an 1NN ( j = 1, full square),
or a 2NN ( j = 2, circle) particle.

above, based on the cubic Husimi lattice solution [1,2]. On
the other hand, the 0NN-1NN mixture has been considered by
several authors on the triangular [30–32] and square lattice
[33–35], beyond a mean-field solution on the Bethe lattice
[36]. A central topic in these studies is the possibility of a
fluid-fluid demixing transition in kNN-binary mixtures. We
remark that in nonadditive mixtures, as is the case in kNN
ones, the demixed phases fill the space more effectively than
the mixed one, so that a demixing is expected; and it has
indeed been observed in several systems [37–47]. In the
kNN systems, while van Duijneveldt and Lekkerkerker [31]
claimed to have found a fluid-fluid demixing in the 0NN-1NN
mixture on the triangular lattice, strong evidence against this
have been presented by other authors [30,32], who observed
only fluid-solid transitions in this model, similarly to what is
found for this mixture on the square [33–35] and hierarchical
lattices [1,36].

Therefore, it seems that among all kNN-binary mixtures
investigated so far the 0NN-2NN case on the cubic Husimi
lattice is the single one presenting a stable fluid-fluid demixing
[2]. Hence, it is quite interesting to analyze what happens
with this transition when 1NN particles are introduced in this
system. As will be demonstrated below, the RF -F0 coexis-
tence still exists for small densities of 1NN particles, giving
rise to a fluid-fluid demixing surface in the 3D phase diagram
of the 0NN-1NN-2NN mixture. Such phase diagram is also
featured by several other coexistence surfaces, including a
solid-solid demixing one, a critical F -S1 surface and lines of
critical, tricritical, and triple points, giving rise to a very rich
thermodynamic behavior.

The rest of the paper is organized as follows. In Sec. II
the model is defined and solved on the cubic Husimi lattice in

terms of recursion relations, which are presented in the Ap-
pendix. Its thermodynamic behavior is discussed in Sec. III.
Our final discussions and concluding remarks are presented
in Sec. IV.

II. MODEL DEFINITION AND SOLUTION ON THE
HUSIMI LATTICE

The model considered here consists of a ternary mixture of
hard spheres, with diameter λ, defined on—and centered at the
vertices of—a cubic lattice. By assuming the lattice spacing
being a, the smallest (0NN) particles corresponds to spheres
of diameter λ = a, so that they occupy a single lattice site and
effectively do not interact with each other. The intermediate
(1NN) and largest (2NN) particles are spheres of diameters
λ = √

2a and λ = √
3a, respectively, which thus exclude up

to their nearest- and next-nearest neighbors of being occupied
by other particles. Let us remark that in our previous works
on binary mixtures [1,2], we have wrongly stated that the
1NN and 2NN particles would correspond to cubes of lateral
sizes λ = √

2a and λ = √
3a, respectively, instead of spheres.

An activity zk is associated with each kNN particle (with
k = 0, 1, 2) in our grand-canonical study of the model. It
is worthy recalling that while the pure 0NN model can be
exactly solved and it does not present any phase transition,
the pure 1NN and 2NN models on the cubic lattice are known
to undergo a continuous [48–51] and a discontinuous [51]
phase transition, respectively, from disordered fluid to ordered
solid phases.

The translational symmetry breaking of these solid phases
display sublattice ordering, as illustrated in Figs. 1(b) and
1(c). In the ground state (the full occupancy limit) the solid
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phase for the pure 1NN system (the S1 phase) is charac-
terized by particles occupying one of two sublattices: either
sublattices with index 1 or 2 in Fig. 1(d). On the other hand,
the solid related to the pure 2NN system (the S2 phase) is
featured by particles occupying one among four sublattices
[Ai, Bi, Ci, or Di, with i = 1, 2, in Fig. 1(d)], so that its ground
state is fourfold degenerated. Thereby, to correctly capture
the symmetries of both solid phases in the 0NN-1NN-2NN
mixture, we have to deal with eight sublattices, as defined in
Fig. 1(d).

Following our recent studies on the corresponding binary
mixtures [1,2], here we will investigate the ternary 0NN-1NN-
2NN case by defining the model on a Husimi lattice built
with cubes [see Fig. 1(a)]. It is important to remark that the
Husimi lattice consists of an infinite Cayley tree where each
vertice is replaced by a polygon or a polyhedron. So, since the
dimension of such lattice is infinity, the critical transition be-
havior is lead by mean-field exponents. Despite this, solutions
on the Husimi lattice carry some degree of correlation of the
system on the relevant lattice (the cubic lattice here), usually
giving better results than other mean-field methods [52]. In
fact, in some lattice gas systems, the Husimi solution even
presents some quantitative agreement with simulation results
on regular lattices [53,54].

To solve the ternary mixture on the Husimi lattice, we
define a root site on an elementary cube [as shown in Fig. 1(a)]
and partial partition functions (ppf’s) according to its state.
For each sublattice, the root site (and any other lattice site
as well) can be empty ( j = ∅), occupied by a 0NN ( j = 0),
by an 1NN ( j = 1), or by a 2NN particle ( j = 2), totaling
4 states [see Fig. 1(e)]. Hence, since we have eight sublat-
tices, there are 32 ppf’s for this system. One cube defines
the 0-generation of the hierarchical lattice; so by attaching
the root sites of seven cubes to the vertices of such cube,
with exception of its root site, one obtains a subtree with
1-generation. Then, by attaching seven of such subtrees to
the vertices of a new cube with exception of its root site, a
2-generation subtree is built. By repeating this process, we
can create a (M + 1)-generation subtree from seven ones with
M generations. Then, by summing over all possibilities of
creating such subtree, by appropriately taking into account the
particle exclusions, with its root site kept fixed in the state s
and sublattice g, one obtains a recursion relation for the ppf
g′

s as function of all ppf’s in the previous generation g j , with
g = a1, a2, . . . , d1, d2 and s, j = ∅, 0, 1, 2. Some details on
such recursion relations (RRs) are presented in the Appendix.

Since we are interested in infinite subtrees, and the RRs
usually diverges in this thermodynamic limit, we will work
with ratios of them, defined as

Gj = g j

g∅
, (1)

where Gj = A1, j, A2, j, . . . , D1, j, D2, j , and j = 0, 1, 2.
Thereby, from the 32 RRs for the ppf’s one obtains 24
RRs for the ratios. The thermodynamic phases of the system
are given by the stable and positive fixed points of these
RRs. To analyze the stability of a given phase, we calculate
the Jacobian matrix and its leading eigenvalue, �, at the
associated fixed point. The phase is stable in the regions of

the parameter space (z0, z1, z2), where � < 1, while � = 1
defines its spinodal.

Similarly to the ppf’s, we can obtain the partition function,
Y , of the model on the tree by summing over all possibilities
of attaching the root sites of eight subtrees to a central cube.
It can be written in a compact form in terms of the ppf’s, e.g.,
as

Y = a1,∅a′
1,∅ + z0a1,0a′

1,0 + z1a1,1a′
1,1 + z2a1,2a′

1,2

= a1,∅b1,∅c1,∅d1,∅a2,∅b2,∅c2,∅d2,∅y, (2)

where y is a function of the ratios [Eq. (1)] and the activities z0,
z1, and z2. Then, the density of kNN particles in the sublattice
A1 at the central cube is given by

ρ
(A1 )
k = A1,k

8Y

∂Y

∂A1,k
, (3)

with k = 0, 1, 2. A similar equation holds for the other sub-
lattices, by replacing A1 with A2, B1, . . ., or D2. Once we have
the density of a kNN particle in all sublattices, its total density
is ρk = ρ

(A1 )
k + ρ

(A2 )
k + · · · + ρ

(D1 )
k + ρ

(D2 )
k . From the partition

function we can also calculate the bulk free energy per site.
Following the ansatz proposed by Gujrati [52], and discussed
in detail for a Husimi lattice build with cubes in Ref. [2], for
the ternary mixture one has

φb = −1

8
ln

[
A1,∅B1,∅C1,∅D1,∅A2,∅B2,∅C2,∅D2,∅

y6

]
, (4)

where

A1,∅ ≡ a′
1,∅

b1,∅c1,∅d1,∅a2,∅b2,∅c2,∅d2,∅

, (5)

and the other ratios can be obtained by the sublattice per-
mutation scheme described in the Appendix. The bulk free
energy is handy to determine where a first-order transition
takes place. In a region where two or more phases have � < 1,
the equality of their bulk free energies determines the point,
line, or surface of coexistence among these phases.

III. THERMODYNAMIC BEHAVIOR OF THE MODEL

A. Summary of results for the binary mixtures

Once the binary mixtures 0NN-1NN (z2 = 0), 0NN-2NN
(z1 = 0), and 1NN-2NN (z0 = 0) are the boundary planes of
the (z0, z1, z2) space for the ternary case, it is interesting to
start the presentation of results by discussing in detail the
thermodynamic behavior of such planes [1,2].

For the 0NN-1NN mixture—the plane (z0, z1, 0)—we have
found two thermodynamic stable phases [1]: a disordered fluid
(F ) phase, where the RRs for the ratios assume a homo-
geneous solution A1, j = B1, j = · · · = C2, j = D2, j with j =
0, 1, 2, and the solid S1 phase, associated with the ordering
of the 1NN particles, where the RRs take the form Ai, j =
Bi, j = Ci, j = Di, j = ri, j , with i = 1, 2 and j = 0, 1, 2, and
r1, j > r2, j for j = 0, 1, while r1,2 < r2,2, when the sublattices
with index 1 are the ones more occupied. Namely, in this
phase one has ρ

(A1 )
j = · · · = ρ

(D1 )
j > ρ

(A2 )
j = · · · = ρ

(D2 )
j , for

j = 0, 1 and the opposite for j = 2. (Note that these fixed
points and densities are for these phases in the ternary case;
and obviously ρ

(X )
2 = 0, ∀ sublattice X , in the 0NN-1NN
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FIG. 2. Phase diagrams for the binary mixtures in the (z0, z1, z2)
space. The solid and dashed lines are continuous and discontinuous
transition lines between the indicated phases they are separating. The
squares are triple points, the circles are tricritical points and the star
is a critical point. The dotted lines are the LMDs.

mixture). For small z0 there is a continuous F -S1 transition,
while for large z0 such transition becomes discontinuous.
The critical and the coexistence F -S1 lines meet at a tricrit-
ical point, located at (z0, z1, z2)TC = (0.5958, 1.1277, 0) [see
Fig. 2]. Interestingly, this mixture presents a thermodynamic
anomaly, characterized by minima in isobaric curves of the
total density of particles as function of one activity (z0 or
z1). A line of minimum density (LMD) exists within the fluid
phase, starting at z0 ≈ 0.20 for z1 → 0 and ending close to the
tricritical point in a region where the F phase is metastable
(see Fig. 2).

A similar anomaly has also been observed in the 0NN-2NN
mixture—the plane (z0, 0, z2). In this case, the LMD starts
at z0 ≈ 0.333 for z2 → 0 and, as in the 0NN-1NN case, it
ends inside the region where the fluid phase is metastable
[2] (see Fig. 2). Actually, beyond the RF phase (whose RRs
have the symmetry just mentioned for the F phase), the 0NN-
2NN mixture displays another stable disordered fluid phase
characterized by a dominance of 0NN particles, reason for
which it was baptized as the F0 phase in Ref. [2]. The RRs
are also featured by A1, j = B1, j = . . . = C2, j = D2, j = r j in
the F0 case, but with r1 ≈ 1, r2 ≈ 0, and r3 ≈ 0, while in
RF case the values of r j strongly depend on the activities.
These very same symmetries apply for the particle densities:
While in RF phase ρ0, ρ1, and ρ2 considerably vary with
z0, z1, and z2, in the stable region of the F0 phase one
has ρ0 � ρ1 and ρ0 � ρ2. Beyond these two fluid phases,
the solid S2 phase is also present in the phase diagram,
which is associated with the ordering of the 2NN particles
and characterized by a fixed point with A1, j = A2, j > B1, j =
C1, j = · · · = C2, j = D2, j , for j = 0, 1, 2, when the sublattices
A1 and A2 are the more populated ones. This yields den-
sities ρ

(A1 )
j = ρ

(A2 )
j > ρ

(B1 )
j = · · · = ρ

(D2 )
j , for j = 0, 1, 2. A

stable fluid-fluid demixing is observed in this system, whose
discontinuous RF -F0 transition line ends at a critical point
(CP), located at (z0, z1, z2)CP = (0.6297, 0, 5.4243), so that
for z2 < z2,CP the RF and F0 phases cannot be distinguished.
Hereafter, whenever this happens we will refer to these phases
simply as the fluid (F ) phase. The S2 phase is the most stable
one for large z2 and it is separated from the two fluid phases

by discontinuous transition lines. The three coexistence lines
RF -F0, RF -S2, and F0-S2 meet at a triple point (TP) located
at (z0, z1, z2)TP = (0.6774, 0, 6.5671) [see Fig. 2].

Finally, in the 1NN-2NN mixture—the plane (0, z1, z2)—
we have found the fluid F and the two solid S1 and S2
phases [1]. Similarly to the 0NN-1NN mixture, continu-
ous and discontinuous F -S1 transition lines are observed,
which meet at a tricritical point, located at (z0, z1, z2)TC =
(0, 1.5273, 2.5016). The solid S1 and S2 phases are observed
in the regions of large z1 and z2, respectively, and are sepa-
rated by a discontinuous transition line. Another coexistence
line exists between the F -S2 phases, which meet the F -S1
and S1-S2 ones in a triple point, located at (z0, z1, z2)TP =
(0, 2.3102, 7.8746) (see Fig. 2). In contrast with the previous
binary mixtures, no density anomaly was found in the 1NN-
2NN case.

The summary of the behavior for the binary mixtures,
displayed in Fig. 2, indicates that the 3D phase diagram for
the ternary case is quite complex and interesting. For instance,
the presence of the two fluid-S2 discontinuous transition
lines in the planes (0, z1, z2) and (z0, 0, z2) strongly suggests
the existence of a coexistence fluid-S2 surface in the 3D
parameter space. Similarly, the F -S1 transitions in the planes
(z0, z1, 0) and (0, z1, z2) strongly indicates that a critical and
a coexistence F -S1 surface exist in the full phase diagram,
both meeting at a line of tricritical points (a TC line). Besides
these features, everything else is less clear. For example, it is
unclear from the binary mixtures what can be expected for the
LMD lines found in the planes (z0, z1, 0) and (z0, 0, z2), since
the values of z0 where they start in each plane do not coincide.
So this could indicate either a complex scenario with two (or
more) surfaces of minimum density, or that one or both of
such surfaces do not exist. In the same token, it is not possible
to known at this point whether the fluid-fluid demixing is a
particular feature of the case z1 = 0, or if it extends for z1 > 0,
giving rise to a RF -F0 coexistence surface, as well as to a line
of triple points (where the phases RF -F0-S2 coexist) and a
critical line in the 3D phase diagram. In what follows, these
points will be addressed in great detail.

B. The fluid-fluid transition

From all thermodynamic properties observed in the binary
mixtures discussed above, the fluid-fluid demixing transition
in the 0NN-2NN (z1 = 0) system is the most surprising one, in
face it is absence in other kNN mixtures studied so far. For this
reason, we will start the building up of the 3D phase diagram
for the ternary mixture by analyzing the RF -F0 transition.

In order to do this, we investigate the phase behavior of
slices of the 3D space for fixed values of z1. Some relevant
examples of such slices are shown in Fig. 3. For small z1,
specifically for z1 < 0.3177 [see Fig. 3(a) for the case z1 =
0.1], the same thermodynamic behavior of the case z1 = 0
is found, with the phases RF , F0, and S2 pairwise separated
by discontinuous transition lines which meet at a triple point,
while the fluid-fluid demixing transition ends in a critical
point. This demonstrates that in the 3D phase diagram there
exist coexistence surfaces separating the RF -F0, RF -S2, and
F0-S2 phases, all of them meeting at a line of triple points
(the RF -F0-S2 TP line). Moreover, there is a line of critical
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FIG. 3. Phase diagrams for fixed (a) z1 = 0.10, (b) z1 = 0.3177,
and (c) z1 = 1.10. In all panels, the dashed lines represent stable
coexistence lines between the phases they are separating, while the
dashed-dotted lines are the metastable RF -F0 coexistence lines.
The solid line in (c) is the F -S1 critical line. The square in (a) is
the RF -F0-S2 TP, while the stars are the RF -F0 CP and the triangle
in (b) represents the special point where the TP line ends.

points (a CP line), where the RF -F0 coexistence surface
ends. Substantially, this confirms that the fluid-fluid demixing
transition is not restricted to the z1 = 0 case, being a feature
of the ternary mixture.

FIG. 4. Part of the 3D phase diagram for the ternary mixture in
the activity space, highlighting the region around which the fluid-
fluid demixing surface [the shaded (orange) one in the plot] takes
place. All the surfaces presented here (separating the phases RF - or
F -S2, F0-S2, and RF -F0) are coexistence surfaces. The triangle is
the special point, where the CP line meets the RF -F0-S2 TP line. The
star and the square represent the CP and the TP point, respectively,
in the (z0, 0, z2) plane.

Quantitatively, we observe that while the (z0, z2) coordi-
nates of the TP line mildly change with z1, the z2 one for
the CP line presents a strong variation with z1, leading the
stable region of the RF -F0 coexistence to decrease as z1

increases. For instance, the RF -F0 coexistence line occurs
in an interval �z2 ≈ 1.14 for z1 = 0 but only �z2 ≈ 0.76 for
z1 = 0.1. In fact, by increasing z1 one observes that the CP
line becomes closer to the TP line, and at the special point
(z0, z1, z2)∗ = (0.6987, 0.3177, 7.0280) both lines meet, so
that the stable fluid-fluid demixing transition disappears at
this point. This gives rise to the phase diagram displayed in
Fig. 3(b), for z1 = z∗

1, with the (now completely metastable)
RF -F0 coexistence line ending at the special point, so that the
RF -S2 coexistence surface for z1 < z∗

1 now becomes a F -S2
coexistence, which meets the F0-S2 coexistence line at the
special point.

For not so large values of z1 > z∗
1, one still finds the RF -F0

coexistence ending at the CP line, as shows Fig. 3(c) for z1 =
1.1, but now this line is also metastable, occurring inside the
region where the S2 phase is the most stable one. Therefore,
the more complex scenario observed for small z1 gives place
to a simple F -S2 discontinuous transition. Namely, for z1 >

z∗
1 the fluid-fluid demixing transition becomes preempted by

the fluid-solid transition. Hence, at the special point the CP
line becomes metastable and the RF -F0-S2 TP line ends.
A summary of these behaviors in the 3D space is presented
in Fig. 4.

Although in general we will not be interested in discussing
metastable transitions here, it is interesting to take a close
look on this for the fluid-fluid demixing, to verify how further
the RF -F0 coexistence surface goes as z1 increases. First, we
notice that, regardless the value of z1, the metastable part of
this surface is always limited from above, i.e., it ends when
it meets the spinodal of the RF phase, as shown in Figs. 5(a)
and 5(b). Second, for large z1 the S1 phase also appears in
the phase diagram in the region of small z0 and z2, as seen
in Fig. 3(c), and the fluid phase let to be stable in such
region. This is clearly seen by comparing the phase diagram
in Fig. 5(c) with the spinodals of the fluid phases in Fig. 5(b).
Curiously, by increasing z1 the spinodal of the fluid phase
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FIG. 5. Spinodals of the disordered fluid phases (solid lines)
and the metastable RF -F0 coexistence lines (dash-dotted lines) for
fixed (a) z1 = 2.3 and (b) z1 = 2.5. The lines with triangles, circles,
and crosses are the RF , F0, and fluid (where RF and F0 phases
cannot be distinguished) spinodals, respectively. The star in (a) is the
metastable CP. For comparison, the phase diagram for z1 = 2.5 is
presented in (c), where the dashed lines represent coexistence lines
between the indicated phases they are separating and the square is
the TP. The phase diagram for z1 = 2.3 is quite similar to this one.

develops a cusp, which approximates of the (metastable) CP
line as z1 increases, see Fig. 5(a) for z1 = 2.3. Such approx-
imation occurs until z1 ≈ 2.3731, after which the cusp meets
the RF and F0 spinodals (in the point where there was the CP

line), changing completely the scenario of such spinodals. In
fact, as demonstrated in Fig. 5(b), for z1 = 2.5, the stability
region of RF phase becomes now limited to a closed domain
of the (z0, z2) phase diagram, and the (metastable) RF -F0
coexistence line ends at the point where the spinodal of the
F0 phase crosses the one for the RF phase. Therefore, the CP
line ends at z1 ≈ 2.3731, while the fluid-fluid demixing still
exists for larger values of z1. However, by increasing z1, one
observes that the domain of the RF stability shrinks, yielding
a decreasing in the in RF -F0 coexistence line, which finally
disappears at z1 = 5.7157.

C. The phase diagram for the ternary mixture

From the results in the previous subsection, one knows that
for z1 < z∗

1 the 3D phase diagram presents three coexistence
surfaces (RF -F0, RF -S2, and F0-S2), a RF -F0-S2 TP line
and a CP line, which meet (and ends or becomes metastable)
at the special point, as depicted in Fig. 4. Moreover, for z1 >

z∗
1, but not so large, this behavior gives place to a simple F -S2

coexistence surface.
As shows Fig. 3(c), a critical F -S1 transition line is found

in slices of the phase diagram for z1 fixed (and large enough),
giving rise to a critical F -S1 surface in the 3D space, as
expected from the behavior of the binary mixtures. Such
surface starts at z1 = 0.7284—which turns out to be the point
of minimum (in relation to z1) of the F -S1 critical line in
the 0NN-1NN mixture [i.e., in the plane (z0, z1, 0)] [1]—and
exists in a limited region of the parameter space. Namely,
it gives place to a discontinuous F -S1 transition surface for
large z1, as confirmed in Fig. 5(c). These features are better
seen in slices of fixed and small z0, as the one in Fig. 6(a)
for z0 = 0.2, where one finds a phase diagram similar to
the one for z0 = 0, with a continuous and a discontinuous
F -S1 transition line meeting at a TC point. This confirms
not only the existence of a critical and a coexistence F -S1
surface, but also the presence of a TC line where they meet
in the 3D space. By analyzing several slices for fixed z0 or z2,
we have accurately determined the TC line, which connects
the two tricritical points found in the planes (z0, z1, 0) and
(0, z1, z2). Interestingly, it presents a complex non-monotonic
behavior, attaining a maximum point, with respect to z1 and z2,
at (z0, z1, z2)TC,max = (0.6719, 1.4216, 4.6678). This line, as
well as the critical and coexistence F -S1 surfaces are depicted
in Fig. 7, which shows this part of the 3D phase diagram in
detail.

The z0 slices, as those in Figs. 6(a) and 6(b), also confirm
the presence of the discontinuous F -S2 surface, as well as un-
veil the existence of a surface of solid-solid (S1-S2) demixing
in the ternary mixture. Moreover, one always observes that the
F -S1, F -S2, and S1-S2 coexistence surfaces meet in a line of
triple points (the F -S1-S2 TP line), as seen in Figs. 5(c) and
6. This line starts at the triple point of the 1NN-2NN mixture
[i.e., in the (0, z1, z2) plane] and extends to z0, z1, z2 → ∞; its
behavior is also shown in Fig. 7. It is important to notice that,
since the TC line (and then the critical F -S1 surface) ends at
a finite value of z0, for large values of this activity everything
we find in this part of the 3D phase diagram are the F -S1,
F -S2, and S1-S2 coexistence surfaces meeting at the TP line
[see Fig. 6(b)].
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FIG. 6. Phase diagrams for fixed (a) z0 = 0.20 and (b) z0 =
1.20. The solid and dashed lines represent critical and coexistence
lines, respectively, between the indicated phases they are separating.
The black squares and the circle denote the TP and the TC point,
respectively.

FIG. 7. Part of the 3D phase diagram for the ternary mixture in
the activity space, highlighting the region where the critical F -S1
surface [the shaded (red) one in the plot] takes place. The the dashed
lines indicate the F -S1 coexistence surface, which meets the critical
surface at the TC line and is limited from above by the F -S1-S2 TP
line. The circles and the square mark the location of the TC line and
TP line, respectively, in the boundary planes.

The existence of the F -S1-S2 TP line in the limit of
z0, z1, z2 → ∞ can be justified by the existence of a F0-S1,
a F -S2, and a S1-S2 coexistence line in the binary mixtures,
all of them extending to infinity [1,2]. Since the RRs assume
simple forms in such limit, it is straightforward to determine
the behavior of the TP line there. For instance, the fixed point
for the RRs in the fluid phase has the form Ai,0 = Bi,0 =
Ci,0 = Di,0 = 1 and Ai, j = Bi, j = Ci, j = Di, j = 0 for i = 1, 2
and j = 1, 2. For the S1 phase one finds A1, j = B1, j = C1, j =
D1, j = 1 for j = 0, 1, while all others RRs vanish, when the
sublattices indexed by 1 are the more populated ones. In the
S2 phase, if the sublattices A1 and A2 are the ones more
populated, one has Ai, j = 1 and Bi, j = Ci, j = Di, j = 0, for
i = 1, 2 and j = 0, 1, 2. Using these solutions, it is simple
to calculate the free energies in this limit, being φ(F ) = (1 +
z0)8, φ(S1) = (1 + z0 + z1)4, and φ(S2) = (1 + z0 + z1 + z2)2.
By making φ(F ) = φ(S1) = φ(S2) and solving in terms of z0,
one finds

z1 = z2
0 + z0 (6)

and

z2 = z4
0 + 4z3

0 + 5z2
0 + 2z0. (7)

Therefore, as z0 → ∞ this TP line behaves has z1 ≈ z2
0 and

z2 ≈ z4
0. This result can be understood as follows: At full

occupancy an 1NN particle effectively occupies the volume
of two 0NN ones, while a 2NN particle occupies the volume
of four 0NN ones, in agreement with the exponents above.
The calculated free energies also allow us to determine the
behavior of the F -S1, F -S2, and S1-S2 coexistence surfaces
in the limit of z0, z1, z2 → ∞, where one finds z1 ≈ z2

0 and
z2 ≈ z4

0 for the F -S1 and F -S2 cases, respectively. Therefore,
in slices of the 3D phase diagram for very large and fixed
z0, these surfaces shall appear as straight lines at constant
z1 and z2, respectively. The S1-S2 coexistence surface, on
the other hand, behaves as z2 ≈ (z0 + z1)2, being a quadratic
function of z1 (z0) for fixed z0 (z1). In fact, these results are
somewhat confirmed in Fig. 6(b) for z0 = 1.2, where we see
that the F -S1 and F -S2 lines occur at almost constant values
(specially the former one), while the S1-S2 line is not so
straight, indicating the existence of a nonlinear dependence
between z2 and z1. Results (not shown) for slices for much
larger values of z0 indeed confirm the correctness of the
predicted surfaces.

Figure 8 presents the complete 3D phase diagram in the
space of activities, summarizing all the features discussed so
far. In face of its complexity—it has a fluid-fluid, a solid-solid,
and several fluid-solid coexistence surfaces, with three of
them (F -S1, F -S2, and S1-S2) extending to z0, z1, z2 → ∞,
beyond a critical fluid-solid surface, a CP line, a TC line, and
two TP lines—it is a bit hard drawing this phase diagram
in an intelligible way. Notwithstanding, it is important to
make clear how the partial diagrams depicted in Figs. 4 and
7 connect, what the sizes of the transition surfaces are (at least
the ones which exist in limited domains), and so on.

At this point, it is important to stress that we have carefully
looked for new phases in the general case, but only the four
phases already present in the binary mixtures were found.
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FIG. 8. Phase diagram for the ternary mixture in the activity
space, indicating all phases and transition surfaces and lines, fol-
lowing the same scheme of symbols and colors from the previous
figures.

D. The surfaces of minimum density

As discussed in Sec. III A, two lines of minimum density
(LMDs) were found in the binary mixtures inside the fluid
phase, one in the 0NN-1NN (z2 = 0) and other in the 0NN-
2NN (z1 = 0) case. In the former system, the LMD starts at
z0 ≈ 0.333 when z1 → 0, while in the last one it starts at
z0 ≈ 0.20 when z2 → 0, and in both cases they end at the
spinodal of the fluid phase, inside regions where the corre-
sponding solid phases are more stable than the fluid [1,2]. The
difference between these starting points suggests a complex
scenario for the ternary mixture with at least two surfaces
of minimum density (SMDs). Before discussing them, how-
ever, it is important to remark that such starting points were
calculated through a limiting process. For example, for the
0NN-1NN mixture, we located the (z0, z1) coordinate where
the total density—defined as ρT = ρ0 + 2ρ1 + 4ρ2—presents
a minimum for a given pressure, P,1 i.e., along an isobaric
curve of ρT × z0 (or z1) (see, e.g., Fig. 5 in Ref. [2]). Then, by
varying P we can build up the LMD curve and determine it
as close as we want of the z0 axis by making z1 → 0. Exactly
on the z0 axis, however, one has ρT = z0/(1 + z0), so that no
anomaly exists there.

Now, if we take slices of fixed z2 > 0, then one still finds
LMDs in the way just described, forming a SMD in the 3D
space. Such z2-SMD (since it is obtained for fixed values of z2)
starts at the LMD in the plane (z0, z1, 0) and varies smoothly
in the space, ending at the spinodal of the fluid phase, deep
inside the region where the fluid is metastable. Although this
surface does not exist exactly in the plane (z0, 0, z2), using
the limiting process we can obtain it as close as we want of
this plane, so that there exists a LMD for z1 → 0 limiting
this surface (see Fig. 9). Proceeding in the same way, but now
considering slices of fixed z1, a second SMD (the z1-SMD) is
obtained, which starts in the LMD on the plane (z0, 0, z2) and
also ends at the spinodal of the fluid phase in the metastable
region. In this case, the SMD does not exist exactly in the
plane (z0, z1, 0), but it can be determined in the limit of
z2 → 0. This z1-SMD is also shown in Fig. 9. The existence
of these two SMDs indicates, for sake of completeness, the
existence of a third one for fixed z0. As shown in Fig. 9, such
z0-SMD indeed exists in the 3D space and, albeit it cannot be

1In our grand-canonical formalism P = −φ/a3.

FIG. 9. Surfaces of minimum density in the activity space. The
dash-dotted (green), continuous (black) and dashed (red) lines are the
z0-, z1-, and z2-SMD, respectively. The dotted (black) line is the LMD
where all three SMDs seems to end. The shaded (blue) surface is
part of the F -S2 coexistence surface, above which the SMDs become
metastable.

observed exactly in the planes (z0, z1, 0) and (z0, 0, z2), it can
be obtained in the limits z2 → 0 and z1 → 0, respectively. In
such limits, the starting point of the z0-SMD is at z0 ≈ 0.50
and, similarly to the other SMDs, it also ends in the spinodal
of the fluid phase. As observed in Fig. 9, the three SMDs
become quite close for large z2 and they seem to be limited
from above by a single line. However, it is quite hard to
assure this numerically and it may be the case that they end
at different (but very close) lines, or become a single surface
before this.

IV. CONCLUSIONS

We have determined the thermodynamic behavior of a
ternary mixture of hard spheres, defined on the cubic lattice,
composed by pointlike particles (0NN) and particles which
exclude up to their first (1NN) and second (2NN) neighbors.
We treat this model by solving it on a Husimi lattice built with
cubes, where four phases were found in the phase diagram,
being two fluid and two solid ones, separated by several
coexistence surfaces and a critical surface, which end or meet
in lines of critical, tricritical, and triple points. One of the
disordered phases is a regular fluid (RF ), in the sense that
the particle densities (ρ0, ρ1 and ρ2) strongly depends on the
activities, while in the second disordered fluid (F0) phase one
always has ρ0 � ρ1 and ρ0 � ρ2. The solid S1 (S2) phase is
featured by a sublattice ordering of 1NN (2NN) particles. We
notice that columnar and smectic phases, observed for hard
cubes on the cubic lattice [55,56], are absent in our solution.
Although this can be due to the hierarchical structure of the
Husimi lattice, we remark that these phases have never been
found in previous studies of the pure 1NN and 2NN models on
the cubic lattice [48–51], strongly suggesting that they should
indeed not appear in their mixture.

A fluid-fluid (RF -F0) demixing surface is observed in the
system, which is limited from below [in the (z0, z1, z2) space]
by a line of critical points (CP), whose coordinate z2,c in-
creases fast with z1,c, while the CP line and the whole RF -F0
coexistence surface exist in a narrow range of z0. This shows
that, by increasing ρ1, a large ρ2 is need to yield the demixing,
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confirming that the fluid-fluid transition is not a feature re-
stricted to the 0NN-2NN mixture, but the presence of the 1NN
particles turns its appearance more difficult. In fact, although
the demixing surface extends for a large portion of the phase
diagram, it is stable only in a small area, when compared with
the other transition surfaces. Such stable part is limited from
above by the RF -F0-S2 triple point line, which ends when it
meets the CP line at a special point [located at (z0, z1, z2)∗ =
(0.6987, 0.3177, 7.0280)]. Therefore, the demixing surface
becomes completely metastable (i.e., preempted by the F -S2
transition) already for z1 > z∗

1, corresponding to a very small
density of 1NN particles: ρ1 > ρ∗

1 = 0.014. This scenario lets
clear why a fluid-fluid demixing has not been observed in
the 0NN-1NN and 1NN-2NN binary mixtures. A possible
explanation for this fact is that, although these are nonadditive
mixtures, the particle sizes are not so dissimilar as in the
0NN-2NN case to yield a demixing. Further investigations of
kNN mixtures with larger k’s are necessary to confirm this.

We have also observed an anomaly in isobaric curves of the
total density of particles (versus zi, with i = 0, 1, 2), inside
the fluid phase, which increase after passing to a minimum.
Three surfaces of minimum density (SMDs) were found in

the 3D parameter space, each one defined for one of the
activities kept fixed. These SMDs start at different lines when
we approximate the planes (z0, 0, z2) and (z0, z1, 0) by making
z1 → 0 and z2 → 0, respectively, and ends at the spinodal
surface of the fluid phase. For very large z2, deep inside the
metastable fluid region, these three surfaces either become
quite close or collapse into a single surface. Although it is
hard to decide this numerically, it is simple to figure out
that this occurs because in this region one has ρ2 � ρ0 and
ρ2 � ρ1, so that ρT ≈ 4ρ2 independently of the activity being
fixed. We remark that density anomalies are typically found
in complex polymorphic fluids, whose modeling is usually
very elaborated (as is the case, e.g., in lattice gases with
directional interactions) [57]. Therefore, the existence of this
kind of anomaly in the simple athermal system analyzed here
indicates that mixtures of hard spheres (and hard disks as
well [35]) might be useful as a starting point to understand
anomalies in more complex fluids.
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APPENDIX: RECURSION RELATIONS FOR THE TERNARY MIXTURE

The RRs for the partial partition functions (ppf’s) of the 0NN-1NN-2NN mixture were obtained using the method described
in Sec. II. For the root site in the sublattice A1, they are given by

a′
1,∅ = b1,∅c1,∅d1,∅a2,∅b2,∅c2,∅d2,∅

{
(1 + z0B1,0)(1 + z0C1,0)(1 + z0D1,0)(1 + z0A2,0)(1 + z0B2,0)(1 + z0C2,0)

×(1 + z0D2,0) + z1(B1,1 + C1,1 + D1,1 + A2,1 + B2,1 + C2,1 + D2,1)

+ z2
1[B1,1(D1,1 + A2,1 + B2,1 + C2,1) + C1,1(B2,1 + C2,1 + D2,1) + D1,1(A2,1 + C2,1 + D2,1) + A2,1C2,1 + B2,1D2,1]

+ z3
1[B1,1D1,1(A2,1 + C2,1) + B1,1A2,1C2,1 + C1,1B2,1D2,1 + D1,1A2,1C2,1]

+ z4
1B1,1D1,1A2,1C2,1 + z0z1[B1,1(D1,0 + A2,0 + B2,0 + C2,0) + C1,1(B2,0 + C2,0 + D2,0)

+ D1,1(B1,0 + A2,0 + C2,0 + D2,0) + A2,1(B1,0 + D1,0 + C2,0) + B2,1(B1,0 + C1,0 + D2,0)

+C2,1(B1,0 + C1,0 + D1,0 + A2,0) + D2,1(C1,0 + D1,0 + B2,0)]

+ z2
0z1[B1,1D1,0(A2,0 + B2,0 + C2,0) + B1,1A2,0(B2,0 + C2,0) + B1,1B2,0C2,0 + C1,1B2,0(C2,0 + D2,0)

+C1,1C2,0D2,0 + D1,1B1,0(A2,0 + C2,0 + D2,0) + D1,1A2,0(C2,0 + D2,0) + D1,1C2,0D2,0

+ A2,1B1,0(D1,0 + C2,0) + A2,1D1,0C2,0 + B2,1B1,0(C1,0 + D2,0) + B2,1C1,0D2,0

+C2,1B1,0(C1,0 + D1,0 + A2,0) + C2,1C1,0(D1,0 + A2,0) + C2,1D1,0A2,0 + D2,1C1,0(D1,0 + B2,0) + D2,1D1,0B2,0]

+ z3
0z1[B1,1D1,0A2,0(B2,0 + C2,0) + B1,1D1,0B2,0C2,0 + B1,1A2,0B2,0C2,0 + C1,1B2,0C2,0D2,0

+ D1,1B1,0A2,0(C2,0 + D2,0) + D1,1B1,0C2,0D2,0 + D1,1A2,0C2,0D2,0 + A2,1B1,0D1,0C2,0 + B2,1B1,0C1,0D2,0

+C2,1B1,0C1,0(D1,0 + A2,0) + C2,1B1,0D1,0A2,0 + C2,1C1,0D1,0A2,0 + D2,1C1,0D1,0B2,0]

+ z4
0z1(B1,1D1,0A2,0B2,0C2,0 + D1,1B1,0A2,0C2,0D2,0 + C2,1B1,0C1,0D1,0A2,0)

+ z0z2
1[B1,1D1,1(A2,0 + C2,0) + B1,1A2,1(D1,0 + C2,0) + B1,1C2,1(D1,0 + A2,0) + C1,1B2,1D2,0 + C1,1D2,1B2,0

+ D1,1A2,1(B1,0 + C2,0) + D1,1C2,1(B1,0 + A2,0) + A2,1C2,1(B1,0 + D1,0) + B2,1D2,1C1,0]

+ z2
0z2

1(B1,1D1,1A2,0C2,0 + B1,1A2,1D1,0C2,0 + B1,1C2,1D1,0A2,0 + D1,1A2,1B1,0C2,0

+ D1,1C2,1B1,0A2,0 + A2,1C2,1B1,0D1,0) + z0z3
1(B1,1D1,1A2,1C2,0 + B1,1D1,1C2,1A2,0 + D1,1A2,1C2,1B1,0

+ B1,1A2,1C2,1D1,0) + z2(B1,2 + C1,2 + D1,2 + A2,2 + B2,2 + C2,2 + D2,2)

+ z2
2(B1,2B2,2 + C1,2C2,2 + D1,2D2,2) + z0z2(B1,2B2,0 + C1,2C2,0 + D1,2D2,0 + B2,2B1,0 + C2,2C1,0 + D2,2D1,0)

+ z1z2(B1,2B2,1 + C1,2C2,1 + D1,2D2,1 + B2,2B1,1 + C2,2C1,1 + D2,2D1,1)
}

(A1a)

062102-9



NATHANN T. RODRIGUES AND TIAGO J. OLIVEIRA PHYSICAL REVIEW E 101, 062102 (2020)

a′
1,0 = b1,∅c1,∅d1,∅a2,∅b2,∅c2,∅d2,∅

{
(1 + z0B1,0)(1 + z0C1,0)(1 + z0D1,0)(1 + z0A2,0)(1 + z0B2,0)(1 + z0C2,0)

×(1 + z0D2,0) + z1(C1,1 + A2,1 + B2,1 + D2,1) + z2
1(C1,1B2,1 + C1,1D2,1 + B2,1D2,1) + z3

1C1,1B2,1D2,1

+ z0z1[C1,1(B2,0 + C2,0 + D2,0) + A2,1(B1,0 + D1,0 + C2,0) + B2,1(B1,0 + C1,0 + D2,0) + D2,1(C1,0 + D1,0 + B2,0)]

+ z2
0z1[C1,1B2,0(C2,0 + D2,0) + C1,1C2,0D2,0 + A2,1B1,0(D1,0 + C2,0) + A2,1D1,0C2,0

+ B2,1B1,0(C1,0 + D2,0) + B2,1C1,0D2,0 + D2,1C1,0(D1,0 + B2,0) + D2,1D1,0B2,0]

+ z3
0z1(C1,1B2,0C2,0D2,0 + A2,1B1,0D1,0C2,0 + B2,1B1,0C1,0D2,0 + D2,1C1,0D1,0B2,0)

+ z0z2
1(C1,1B2,1D2,0 + C1,1D2,1B2,0 + B2,1D2,1C1,0) + z2A2,2

}
(A1b)

a′
1,1 = b1,∅c1,∅d1,∅a2,∅b2,∅c2,∅d2,∅

{
1 + z0(C1,0 + A2,0 + B2,0 + D2,0) + z2

0[C1,0(A2,0 + B2,0 + D2,0)

+ A2,0(B2,0 + D2,0) + B2,0D2,0] + z3
0[C1,0A2,0(B2,0 + D2,0) + C1,0B2,0D2,0 + A2,0B2,0D2,0]

+ z4
0C1,0A2,0B2,0D2,0 + z1(C1,1 + A2,1 + B2,1 + D2,1) + z2

1(C1,1(B2,1 + D2,1) + B2,1D2,1)

+ z3
1C1,1B2,1D2,1 + z0z1[C1,1(B2,0 + D2,0) + B2,1(C1,0 + D2,0) + D2,1(C1,0 + B2,0)]

+ z2
0z1(C1,1B2,0D2,0 + B2,1C1,0D2,0 + D2,1C1,0B2,0)

+ z0z2
1(C1,1B2,1D2,0 + C1,1D2,1B2,0 + B2,1D2,1C1,0) + z2A2,2

}
(A1c)

a′
1,2 = b1,∅c1,∅d1,∅a2,∅b2,∅c2,∅d2,∅(1 + z0A2,0 + z1A2,1 + z2A2,2), (A1d)

where Ai, j , Bi, j , Ci, j , and Di, j , with i = 1, 2 and j = 0, 1, 2, are the ratios defined in Eq. (1). The RRs for the other sublattices can
be obtained from cyclic permutations of the sublattice labels: A1 → B2, B2 → C1, C1 → D2, D2 → A1, together with C2 → D1,
D1 → A2, A2 → B1, B1 → C2. Following this order, we can find the RRs for the sublattices D2, C1, and B2. Those for sublattices
A2, B1, C2, and D1 can be obtained from the ones for A1, B2, C1, and D2, respectively, by exchanging all the sublattice indexes i
(1 ↔ 2). Once we have the RRs for the ppf’s at hand, the ones for their ratios are obtained by simply dividing the corresponding
equations, e.g., by dividing Eqs. (A1b), (A1c), and (A1d) by (A1a).

[1] N. T. Rodrigues and T. J. Oliveira, Phys. Rev. E 100, 032112
(2019).

[2] N. T. Rodrigues and T. J. Oliveira, J. Chem. Phys. 151, 024504
(2019).

[3] Quasicrystals: Structure and Physical Properties, edited by
H.-R. Trebin (Wiley, New York, 2006).

[4] R. Elliott, I. Szleifer, and M. Schick, Phys. Rev. Lett. 96,
098101 (2006).

[5] D. Wüstner and K. Solanko, Biochim. Biophys. Acta 1848,
1908 (2015).

[6] S. Abbott, Surfactant Science: Principles & Practice (Destech,
Lancaster, Pennsylvania, 2017).

[7] W. F. C. Sager, Microemulsion templating, in Nanostructured
Soft Matter: Experiment, Theory, Simulation and Perspec-
tives, edited by A. V. Zvelindovsky (Springer, Berlin, 2007),
pp. 3–44.

[8] Granular Matter: An Interdisciplinary Approach, edited by A.
Mehta (Springer-Verlag, New York, 1994).

[9] N. Tasios and M. Dijkstra, J. Chem. Phys. 146, 134903 (2017).
[10] A. Maciolek and S. Dietrich, Rev. Mod. Phys. 90, 045001

(2018).
[11] F. Seiferling, D. de las Heras, and M. M. Telo da Gama,

J. Chem. Phys. 145, 074903 (2016).
[12] P. I. C. Teixeira and J. M. Tavares, Curr. Opin. Colloid Interface

Sci. 30, 16 (2017).
[13] D. Gazzillo, Mol. Phys. 84, 303 (1995).
[14] K. Fotouh and K. Shukla, Chem. Eng. Sci. 51, 4923 (1996).

[15] E. Paschinger, A. Reiner, and G. Kahl, Mol. Phys. 94, 743
(1998).

[16] A. König and N. W. Ashcroft, Phys. Rev. E 63, 041203 (2001).
[17] H. M. Schaink, Physica A 210, 113 (1994).
[18] S. B. Yuste, A. Santos, and M. López de Haro, J. Chem. Phys.

108, 3683 (1998).
[19] A. Santos, S. B. Yuste, and M. López de Haro, J. Chem. Phys.

117, 5785 (2002).
[20] A. Malijevský, A. Malijevský, S. B. Yuste, A. Santos, and M.

López de Haro, Phys. Rev. E 66, 061203 (2002).
[21] A. Malijevský, S. Labík, and A. Malijevský, Phys. Chem.

Chem. Phys. 6, 1742 (2004).
[22] C. N. Patra and S. K. Ghosh, J. Chem. Phys. 118, 3668 (2003).
[23] Y.-X. Yu, J. Chem. Phys. 121, 1535 (2004).
[24] K. Hoshino, J. Phys. F: Met. Phys. 13, 1981 (1983).
[25] K. Fotouh and K. Shukla, Chem. Eng. Sci. 51, 4933 (1996).
[26] S. Matsunaga, S. Tamaki, and S. Takeda, Phys. Chem. Liq. 37,

395 (1999).
[27] A. Baylaucq, M. Moha-ouchane, and C. Boned, Phys. Chem.

Liq. 38, 353 (2000).
[28] B. J. Anderson, V. Gopalakrishnan, S. Ramakrishnan, and C. F.

Zukoski, Phys. Rev. E 73, 031407 (2006).
[29] L. Y. Yi, K. J. Dong, R. P. Zou, and A. B. Yu, Ind. Eng. Chem.

Res. 50, 8773 (2011); Powder Technol. 224, 129 (2012); R. P.
Zou, X. Bian, D. Pinson, R. Y. Yang, A. B. Yu, and P. Zulli,
Part. Part. Syst. Charact. 20, 335 (2003).

[30] D. Frenkel and A. A. Louis, Phys. Rev. Lett. 68, 3363 (1992).

062102-10

https://doi.org/10.1103/PhysRevE.100.032112
https://doi.org/10.1103/PhysRevE.100.032112
https://doi.org/10.1103/PhysRevE.100.032112
https://doi.org/10.1103/PhysRevE.100.032112
https://doi.org/10.1063/1.5109896
https://doi.org/10.1063/1.5109896
https://doi.org/10.1063/1.5109896
https://doi.org/10.1063/1.5109896
https://doi.org/10.1103/PhysRevLett.96.098101
https://doi.org/10.1103/PhysRevLett.96.098101
https://doi.org/10.1103/PhysRevLett.96.098101
https://doi.org/10.1103/PhysRevLett.96.098101
https://doi.org/10.1016/j.bbamem.2015.05.010
https://doi.org/10.1016/j.bbamem.2015.05.010
https://doi.org/10.1016/j.bbamem.2015.05.010
https://doi.org/10.1016/j.bbamem.2015.05.010
https://doi.org/10.1063/1.4979518
https://doi.org/10.1063/1.4979518
https://doi.org/10.1063/1.4979518
https://doi.org/10.1063/1.4979518
https://doi.org/10.1103/RevModPhys.90.045001
https://doi.org/10.1103/RevModPhys.90.045001
https://doi.org/10.1103/RevModPhys.90.045001
https://doi.org/10.1103/RevModPhys.90.045001
https://doi.org/10.1063/1.4960808
https://doi.org/10.1063/1.4960808
https://doi.org/10.1063/1.4960808
https://doi.org/10.1063/1.4960808
https://doi.org/10.1016/j.cocis.2017.03.011
https://doi.org/10.1016/j.cocis.2017.03.011
https://doi.org/10.1016/j.cocis.2017.03.011
https://doi.org/10.1016/j.cocis.2017.03.011
https://doi.org/10.1080/00268979500100221
https://doi.org/10.1080/00268979500100221
https://doi.org/10.1080/00268979500100221
https://doi.org/10.1080/00268979500100221
https://doi.org/10.1016/0009-2509(96)00325-9
https://doi.org/10.1016/0009-2509(96)00325-9
https://doi.org/10.1016/0009-2509(96)00325-9
https://doi.org/10.1016/0009-2509(96)00325-9
https://doi.org/10.1080/002689798167584
https://doi.org/10.1080/002689798167584
https://doi.org/10.1080/002689798167584
https://doi.org/10.1080/002689798167584
https://doi.org/10.1103/PhysRevE.63.041203
https://doi.org/10.1103/PhysRevE.63.041203
https://doi.org/10.1103/PhysRevE.63.041203
https://doi.org/10.1103/PhysRevE.63.041203
https://doi.org/10.1016/0378-4371(94)00107-3
https://doi.org/10.1016/0378-4371(94)00107-3
https://doi.org/10.1016/0378-4371(94)00107-3
https://doi.org/10.1016/0378-4371(94)00107-3
https://doi.org/10.1063/1.475762
https://doi.org/10.1063/1.475762
https://doi.org/10.1063/1.475762
https://doi.org/10.1063/1.475762
https://doi.org/10.1063/1.1502247
https://doi.org/10.1063/1.1502247
https://doi.org/10.1063/1.1502247
https://doi.org/10.1063/1.1502247
https://doi.org/10.1103/PhysRevE.66.061203
https://doi.org/10.1103/PhysRevE.66.061203
https://doi.org/10.1103/PhysRevE.66.061203
https://doi.org/10.1103/PhysRevE.66.061203
https://doi.org/10.1039/B315353C
https://doi.org/10.1039/B315353C
https://doi.org/10.1039/B315353C
https://doi.org/10.1039/B315353C
https://doi.org/10.1063/1.1537249
https://doi.org/10.1063/1.1537249
https://doi.org/10.1063/1.1537249
https://doi.org/10.1063/1.1537249
https://doi.org/10.1063/1.1763142
https://doi.org/10.1063/1.1763142
https://doi.org/10.1063/1.1763142
https://doi.org/10.1063/1.1763142
https://doi.org/10.1088/0305-4608/13/10/010
https://doi.org/10.1088/0305-4608/13/10/010
https://doi.org/10.1088/0305-4608/13/10/010
https://doi.org/10.1088/0305-4608/13/10/010
https://doi.org/10.1016/0009-2509(96)00326-0
https://doi.org/10.1016/0009-2509(96)00326-0
https://doi.org/10.1016/0009-2509(96)00326-0
https://doi.org/10.1016/0009-2509(96)00326-0
https://doi.org/10.1080/00319109908031444
https://doi.org/10.1080/00319109908031444
https://doi.org/10.1080/00319109908031444
https://doi.org/10.1080/00319109908031444
https://doi.org/10.1080/00319100008030282
https://doi.org/10.1080/00319100008030282
https://doi.org/10.1080/00319100008030282
https://doi.org/10.1080/00319100008030282
https://doi.org/10.1103/PhysRevE.73.031407
https://doi.org/10.1103/PhysRevE.73.031407
https://doi.org/10.1103/PhysRevE.73.031407
https://doi.org/10.1103/PhysRevE.73.031407
https://doi.org/10.1021/ie200765h
https://doi.org/10.1021/ie200765h
https://doi.org/10.1021/ie200765h
https://doi.org/10.1021/ie200765h
https://doi.org/10.1016/j.powtec.2012.02.042
https://doi.org/10.1016/j.powtec.2012.02.042
https://doi.org/10.1016/j.powtec.2012.02.042
https://doi.org/10.1016/j.powtec.2012.02.042
https://doi.org/10.1002/ppsc.200390040
https://doi.org/10.1002/ppsc.200390040
https://doi.org/10.1002/ppsc.200390040
https://doi.org/10.1002/ppsc.200390040
https://doi.org/10.1103/PhysRevLett.68.3363
https://doi.org/10.1103/PhysRevLett.68.3363
https://doi.org/10.1103/PhysRevLett.68.3363
https://doi.org/10.1103/PhysRevLett.68.3363


FLUID-FLUID DEMIXING AND DENSITY ANOMALY IN A … PHYSICAL REVIEW E 101, 062102 (2020)

[31] J. S. van Duijneveldt and H. N. W. Lekkerkerker, Phys. Rev.
Lett. 71, 4264 (1993); J. Stat. Phys. 78, 103 (1995).

[32] A. Verberkmoes and B. Nienhuis, Phys. Rev. E 60, 2501 (1999).
[33] D. Poland, J. Chem. Phys. 80, 2767 (1984).
[34] D.-J. Liu and J. W. Evans, J. Chem. Phys. 114, 10977 (2001).
[35] T. J. Oliveira and J. F. Stilck, Phys. Rev. E 92, 032101 (2015).
[36] T. J. Oliveira and J. F. Stilck, J. Chem. Phys. 135, 184502

(2011).
[37] R. Dickman and G. Stell, J. Chem. Phys. 102, 8674 (1995).
[38] M. Dijkstra, Phys. Rev. E 58, 7523 (1998).
[39] M. Schmidt, J. Phys.: Condens. Matter 16, L351 (2004).
[40] J. M. Brader and R. L. C. Vink, J. Phys.: Condens. Matter 19,

036101 (2007).
[41] R. van Roij, B. Mulder, and M. Dijkstra, Physica A 261, 374

(1998).
[42] H. H. Wensink, G. J. Vroege, and H. N. W. Lekkerkerker,

J. Chem. Phys. 115, 7319 (2001).
[43] S. Dubois and A. Perera, J. Chem. Phys. 116, 6354 (2002).
[44] S. Varga, A. Galindo, and G. Jackson, J. Chem. Phys. 117, 7207

(2002).

[45] M. Schmidt and A. R. Denton, Phys. Rev. E 65, 021508
(2002).

[46] Y. Martínez-Ratón, E. Velasco, and L. Mederos, Phys. Rev. E
72, 031703 (2005).

[47] D. de las Heras, Y. Martínez-Ratón, and E. Velasco, Phys. Rev.
E 76, 031704 (2007).

[48] D. S. Gaunt, J. Chem. Phys. 46, 3237 (1967).
[49] A. Yamagata, Physica A 215, 511 (1994).
[50] J. R. Heringa and H. W. J. Blöte, Physica A 232, 369 (1996).
[51] A. Z. Panagiotopoulos, J. Chem. Phys. 123, 104504 (2005).
[52] P. D. Gujrati, Phys. Rev. Lett. 74, 809 (1995).
[53] C. Buzano, E. De Stefanis, and M. Pretti, J. Chem. Phys. 129,

024506 (2008).
[54] T. J. Oliveira, J. F. Stilck, and Marco Aurélio A. Barbosa, Phys.

Rev. E 82, 051131 (2010).
[55] L. Lafuente and J. A. Cuesta, J. Chem. Phys. 119, 10832 (2003).
[56] N. Vigneshwar, D. Mandal, K. Damle, D. Dhar, and R. Rajesh,

Phys. Rev. E 99, 052129 (2019).
[57] Liquid Polymorphism, Advances in Chemical Physics Vol. 152,

edited by H. E. Stanley (Wiley, New York, 2013).

062102-11

https://doi.org/10.1103/PhysRevLett.71.4264
https://doi.org/10.1103/PhysRevLett.71.4264
https://doi.org/10.1103/PhysRevLett.71.4264
https://doi.org/10.1103/PhysRevLett.71.4264
https://doi.org/10.1007/BF02183340
https://doi.org/10.1007/BF02183340
https://doi.org/10.1007/BF02183340
https://doi.org/10.1007/BF02183340
https://doi.org/10.1103/PhysRevE.60.2501
https://doi.org/10.1103/PhysRevE.60.2501
https://doi.org/10.1103/PhysRevE.60.2501
https://doi.org/10.1103/PhysRevE.60.2501
https://doi.org/10.1063/1.447023
https://doi.org/10.1063/1.447023
https://doi.org/10.1063/1.447023
https://doi.org/10.1063/1.447023
https://doi.org/10.1063/1.1374209
https://doi.org/10.1063/1.1374209
https://doi.org/10.1063/1.1374209
https://doi.org/10.1063/1.1374209
https://doi.org/10.1103/PhysRevE.92.032101
https://doi.org/10.1103/PhysRevE.92.032101
https://doi.org/10.1103/PhysRevE.92.032101
https://doi.org/10.1103/PhysRevE.92.032101
https://doi.org/10.1063/1.3658045
https://doi.org/10.1063/1.3658045
https://doi.org/10.1063/1.3658045
https://doi.org/10.1063/1.3658045
https://doi.org/10.1063/1.468970
https://doi.org/10.1063/1.468970
https://doi.org/10.1063/1.468970
https://doi.org/10.1063/1.468970
https://doi.org/10.1103/PhysRevE.58.7523
https://doi.org/10.1103/PhysRevE.58.7523
https://doi.org/10.1103/PhysRevE.58.7523
https://doi.org/10.1103/PhysRevE.58.7523
https://doi.org/10.1088/0953-8984/16/30/L01
https://doi.org/10.1088/0953-8984/16/30/L01
https://doi.org/10.1088/0953-8984/16/30/L01
https://doi.org/10.1088/0953-8984/16/30/L01
https://doi.org/10.1088/0953-8984/19/3/036101
https://doi.org/10.1088/0953-8984/19/3/036101
https://doi.org/10.1088/0953-8984/19/3/036101
https://doi.org/10.1088/0953-8984/19/3/036101
https://doi.org/10.1016/S0378-4371(98)00429-4
https://doi.org/10.1016/S0378-4371(98)00429-4
https://doi.org/10.1016/S0378-4371(98)00429-4
https://doi.org/10.1016/S0378-4371(98)00429-4
https://doi.org/10.1063/1.1403686
https://doi.org/10.1063/1.1403686
https://doi.org/10.1063/1.1403686
https://doi.org/10.1063/1.1403686
https://doi.org/10.1063/1.1458544
https://doi.org/10.1063/1.1458544
https://doi.org/10.1063/1.1458544
https://doi.org/10.1063/1.1458544
https://doi.org/10.1063/1.1507112
https://doi.org/10.1063/1.1507112
https://doi.org/10.1063/1.1507112
https://doi.org/10.1063/1.1507112
https://doi.org/10.1103/PhysRevE.65.021508
https://doi.org/10.1103/PhysRevE.65.021508
https://doi.org/10.1103/PhysRevE.65.021508
https://doi.org/10.1103/PhysRevE.65.021508
https://doi.org/10.1103/PhysRevE.72.031703
https://doi.org/10.1103/PhysRevE.72.031703
https://doi.org/10.1103/PhysRevE.72.031703
https://doi.org/10.1103/PhysRevE.72.031703
https://doi.org/10.1103/PhysRevE.76.031704
https://doi.org/10.1103/PhysRevE.76.031704
https://doi.org/10.1103/PhysRevE.76.031704
https://doi.org/10.1103/PhysRevE.76.031704
https://doi.org/10.1063/1.1841195
https://doi.org/10.1063/1.1841195
https://doi.org/10.1063/1.1841195
https://doi.org/10.1063/1.1841195
https://doi.org/10.1016/0378-4371(95)00051-8
https://doi.org/10.1016/0378-4371(95)00051-8
https://doi.org/10.1016/0378-4371(95)00051-8
https://doi.org/10.1016/0378-4371(95)00051-8
https://doi.org/10.1016/0378-4371(96)00148-3
https://doi.org/10.1016/0378-4371(96)00148-3
https://doi.org/10.1016/0378-4371(96)00148-3
https://doi.org/10.1016/0378-4371(96)00148-3
https://doi.org/10.1063/1.2008253
https://doi.org/10.1063/1.2008253
https://doi.org/10.1063/1.2008253
https://doi.org/10.1063/1.2008253
https://doi.org/10.1103/PhysRevLett.74.809
https://doi.org/10.1103/PhysRevLett.74.809
https://doi.org/10.1103/PhysRevLett.74.809
https://doi.org/10.1103/PhysRevLett.74.809
https://doi.org/10.1063/1.2919126
https://doi.org/10.1063/1.2919126
https://doi.org/10.1063/1.2919126
https://doi.org/10.1063/1.2919126
https://doi.org/10.1103/PhysRevE.82.051131
https://doi.org/10.1103/PhysRevE.82.051131
https://doi.org/10.1103/PhysRevE.82.051131
https://doi.org/10.1103/PhysRevE.82.051131
https://doi.org/10.1063/1.1615511
https://doi.org/10.1063/1.1615511
https://doi.org/10.1063/1.1615511
https://doi.org/10.1063/1.1615511
https://doi.org/10.1103/PhysRevE.99.052129
https://doi.org/10.1103/PhysRevE.99.052129
https://doi.org/10.1103/PhysRevE.99.052129
https://doi.org/10.1103/PhysRevE.99.052129

