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The standard formulation of thermostatistics, being based on the Boltzmann-Gibbs distribution and loga-
rithmic Shannon entropy, describes idealized uncorrelated systems with extensive energies and short-range
interactions. In this Rapid Communication, we use the fundamental principles of ergodicity (via Liouville’s
theorem), the self-similarity of correlations, and the existence of the thermodynamic limit to derive generalized
forms of the equilibrium distribution for long-range-interacting systems. Significantly, our formalism provides a
justification for the well-studied nonextensive thermostatistics characterized by the Tsallis distribution, which it
includes as a special case. We also give the complementary maximum entropy derivation of the same distributions
by constrained maximization of the Gibbs-Shannon entropy. The consistency between the ergodic and maximum
entropy approaches clarifies the use of the latter in the study of correlations and nonextensive thermodynamics.
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Introduction. The ability to describe the statistical state
of a macroscopic system is central to many areas of physics
[1–4]. In thermostatistics, the statistical state of a system of N
particles in equilibrium is described by the distribution func-
tion wz over z where z = ({q1, . . . , qN }, {p1, . . . , pN }) defines
a point (the microstate) in the concomitant 6N-dimensional
phase space. The central question addressed in this Rapid
Communication is, what is the generalized form of wz for a
composite system at thermodynamic equilibrium that features
correlated subsystems?

This question has been the subject of intense research for
more than a century [3–23]. Correlations and nonextensive
energies are associated with long-range-interacting systems,
which are at the focus of much of the effort (in particular,
see [13,18–20,22]). The most widespread approach to finding
wz is the maximum entropy (MaxEnt) principle introduced by
Jaynes [6,7] on the basis of information theory. The principle
entails making the least-biased statistical inferences about a
physical system consistent with prior expected values of a set
of its quantities { f̄ (1), f̄ (2), . . . , f̄ (l )}. It requires the distribu-
tion wz to maximize the Gibbs-Shannon (GS) logarithmic en-
tropy functional SGS({wz}) subject to constraints

∑
z f (i)

z wz =
f̄ (i). Here, SGS({wz}) = −k

∑
z wz ln(wz) for constant k > 0.

Despite outstanding success [24,25] in capturing the ther-
modynamics of weakly interacting gases, the principle—in
its original form—does not describe correlated systems. At-
tempts have been made to generalize the principle; however,
as there is no accepted method for doing so, controversy has
ensued [26–28].

One approach is based on the extension of the MaxEnt
principle by Shore and Johnson [29], and entails generalizing
the way knowledge of the system is represented by constraints
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[25,29]. Information about correlations are incorporated, e.g.,
by modifying the partition function [30] or the structure of
the microstates [27]. Another widely used approach is to
generalize the MaxEnt principle to apply to a different entropy
functional in place of SGS({wz}). At the forefront of this
effort is the so-called q thermostatistics based on Tsallis’
entropy STs

q ({wz}) ∝ (1 − ∑
z w

q
z )/(q − 1) and expressing the

constraints as averages with respect to escort probabilities
{wq

z } [4,8]. q thermostatistics is used to describe a wide
range of physical scenarios [3,13,20,23,31–46], including
high-Tc superconductivity, long-range-interacting Ising mag-
nets, turbulent pure-electron plasmas, N-body self-gravitating
stellar systems, high-energy hadronic collisions, and low-
dimensional chaotic maps. The approach has also been refined
and extended [3,47–50].

A contentious issue, however, is that the Tsallis entropy
does not satisfy Shore and Johnson’s system-independence
axiom [26–29]. Although Jizba and Korbel [22] recently made
some headway towards a resolution, objections remain [51],
and the generalization of the MaxEnt principle continues
to be controversial. This brings into focus the need for an
independent approach to our central question.

We propose an answer by introducing a general formalism
based on ergodicity [1] for deriving equilibrium distribu-
tions, including ones for correlated systems. Previously this
derivation was thought impossible as correlations have been
linked with nonergodicity (see, e.g., [4], pp. 68 and 320).
However, we circumvent these difficulties by showing how
the self-similarity of correlations can be invoked to derive the
distribution wz under well-defined criteria. Then we show how
to employ the MaxEnt principle consistently with correlations
encoded as a self-similarity constraint function. After compar-
ing our results with previous works, we present a numerical
example for completeness and end with a conclusion.

Key ideas. Our approach rests on two key ideas.
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(i) Liouville’s theorem for equilibrium systems. Consider
a generic, classical, dynamical system described by Hamilto-
nian H and phase-space distribution w(z; t ). Being a Hamil-
tonian system guarantees the incompressibility of phase-space
flows, which is represented via Liouville’s equation [1,5] by
w being a constant of motion along a trajectory, i.e.,

∂w

∂t
+ ż · ∇w = ∂w

∂t
+ {w, H} = dw

dt
= 0, (1)

where { , } denotes the Poisson bracket. Imposing the equilib-
rium condition ∂w/∂t = 0 implies

∂w/∂t = −{w, H} = 0, (2)

i.e., the existence of a steady state, w(z; t ) = wz ∀ t . Any
Hamiltonian ergodic system at equilibrium will obey this
condition. A possible solution of Eq. (2) is given by wz =
a f (bHz + c), where f (·) is any differentiable function, for
macrostate-defining and normalization constants a, b, and c

(see, e.g., [1,52]). We only consider solutions of this form,
which is equivalent to invoking the fundamental postulate of
equal a priori probabilities for accessible microstates [1]. For
brevity, we shall write the solution as

wz = GX (Hz) (3)

and leave the dependence on the parameters a, b, and c as
being implicit in the label X .

(ii) Deriving equilibrium distributions. Consider the equi-
librium distributions wA,wB and Hamiltonians HA, HB of two
isolated, conservative, short-range-interacting systems labeled
A and B where

HAB
zAB

= HA
zA

+ HB
zB

, (4)

wAB
zAB

= wA
zA

wB
zB

(5)

are the total Hamiltonian and joint distributions, respectively,
for the isolated, composite system AB at equilibrium, and
zAB ≡ (zA, zB). From (3), each distribution is a function of
its respective Hamiltonian. Taken together, Eqs. (3)–(5) imply
the general solution wX

zX
is the Boltzmann-Gibbs (BG) distri-

bution GX (HX
zX

) = aebHzX for macrostate-dependent constants
a, b and X = A, B and AB.

This well-known result can easily be generalized. For
example, replacing Eq. (5) with

wAB
zAB

= wA
zA

⊗q wB
zB

, (6)

where ⊗q is the q product [15], correspondingly implies
that the general solution is given by the Tsallis distribution

GX (HzX ) = ae
bHzX
q where ex

q is the q exponential of x provided
due care is taken with respect to applying the q algebra [15,53]
and normalization [52]. Note that each wX

zX
is the equilibrium

distribution for system X in isolation, and Eq. (6) represents
a correlated state of A and B, where wA

zA
and wB

zB
are not

the marginals of wAB
zAB

for q �= 1. As this result has previously
been regarded [4] as incompatible with Eq. (2), it shows that
Liouville’s theorem has an underappreciated application for
describing highly correlated systems.

Finding a generalized distribution. With these ideas in
mind, we derive our main results for a composite, self-similar,
classical Hamiltonian system in thermodynamic equilibrium.

For brevity, we explicitly treat a composite system AB com-
posed of two subsystems A and B, although our results are
easily extendable to compositions involving an arbitrary num-
ber of macroscopic subsystems. Let the tuples (wAB

zAB
, HAB

zAB
),

(wA
zA

, HA
zA

), and (wB
zB

, HB
zB

) denote the composite and isolated
equilibrium distributions and Hamiltonians of the composite
AB, and separate A and B subsystems, respectively; wX

zX
is the

equilibrium probability that system X is in phase space point
zX . The following criteria encapsulate properties of the system
required for subsequent work. They immediately lead to two
key theorems, which generalize thermostatistics.

Criterion I—Thermodynamic limit. Consider a sequence of
systems A1, A2, . . . for which the solution Eq. (3) for the nth
term is given by wAn

zAn
= G (n)

An
(HAn

zAn
). A sequence that increases

in size is said to have a thermodynamic limit if G (n)
An

attains
a limiting parametrized form as An becomes macroscopic,
i.e., if G (n)

An
→ GA as n → ∞. The distribution wA

zA
= GA(HA

zA
),

where the dependence on system, macrostate, and normal-
ization constants is implicit in the label A on GA, is said
to represent the thermostatistical properties of the physical
material comprising A in the thermodynamic limit.

Examples of limiting forms include the BG distribution
G(Hz) = ae−bHz and the Tsallis distribution G(Hz) = ae−bHz

q
for macrostate-dependent parameter b and normalization con-
stant a.

Criterion II—Compositional self-similarity. We define a
system as having compositional self-similarity if there ex-
ist mapping functions C and H such that the composite
equilibrium distribution and energy of macroscopic AB are
related to the isolated equilibrium distribution and energy of
macroscopic A and B by the following relations:

HAB
zAB

= H
(
HA

zA
, HB

zB

)
, (7a)

wAB
zAB

= C
(
wA

zA
,wB

zB

)
, 0 � C � 1, (7b)

for all zAB, where H embodies the nature of the interactions,
and C embodies the nature of the correlations. For example,
short-range interactions are well approximated by HAB

zAB
=

HA
zA

+ HB
zB

and wAB
zAB

= wA
zA

wB
zB

, whereas the Tsallis distribu-
tion in Eq. (6) has been applied to a wide range of physical
situations [3,13,20,23,31–46] exhibiting strong correlations
and long-range interactions. Other relations hold in general,
as shown in Table I [52]. For brevity we will henceforth use
“self-similar” to refer to compositional self-similarity.

Theorem 1. For systems satisfying compositional self-
similarity in the thermodynamic limit, the equilibrium dis-
tribution is given by wX

zX
= GX (HX

zX
) where the function GX

satisfies

C
(
GA

(
HA

zA

)
,GB

(
HB

zB

)) = GAB
(
H

(
HA

zA
, HB

zB

))
. (8)

Proof. This follows directly from criteria I and II. �
Hence, finding a G that satisfies Eq. (8) allows one to calcu-

late the equilibrium distribution in Eq. (3). See Supplemental
Material [52] for a simple example. In general, finding G is
difficult; however, the next theorem supplies a solution for an
important class of situations.
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TABLE I. A summary of appropriate choices for {F ,H} to reproduce well-established classes of thermostatistics, which allowed us to
also indicate their potential limitations. We have included the conventional partition-funtion-type normalization constants in some cases for
completeness. Note, however, that such constants can be reexpressed as a and b or β and Ho, i.e., ZBG = e−βHo and Zq = e

−βqHo
q (where

βq = β[1 + (1 − q)βHo]−1).

Type of
thermostatistics Correlations Hamiltonian F (w) H(H ) Distribution Fails to describe:

This work C(wA, wB ) (self-similar) H(HA, HB )
(arbitrary)

F (w) H(H ) Eq. (10) systems failing criteria I
and II

Conventional correlations,

thermostatistics [5–7] wAwB (independent) HA + HB

(noninteracting)
ln(w) H 1

ZBG
e−βH (exponential class) nonadditive

Hamiltonians

Tsallis’ (q-) nonadditive

wA ⊗q wB (correlated) HA + HB

(noninteracting)
lnq (w) H 1

Zq
e
−βqH
q (q-deformed class)thermostatistics [4,8] Hamiltonians

An exactly solvable
example exhibiting

wA ⊗q wB (correlated) HA ⊕p HB

(interacting)
lnq (w) ln

(
eH

p

)
expq

[ − β ln
(
eH

p

) + Ho
]

both correlations and
nonextensive energies

Theorem 2. Given single-variable invertible maps F and H
satisfying the functional equations

FAB(C(wA,wB)) = FA(wA) + FB(wB), (9a)

HAB(H(HA, HB)) = HA(HA) + HB(HB), (9b)

then there exists a family of equilibrium distributions given by

wX
z ≡ GX

(
HX

z

) = F−1
X

[
aXH

(
HX

z

) + bX
] ∀z, (10)

where aX and bX are constants obeying the system composi-
tion rules

aAB = aA = aB, bAB = bA + bB. (11)

Note that aX and bX are generalizations of a common inverse-
temperature-like quantity β = aX and an extensive average-
energy-like quantity HX

o = −bX /β in the more familiar form
of Eq. (10), wX = F−1{β[H(HX ) − HX

o ]}.
Proof. We defer the proof and a nontrivial example to the

Supplemental Material [52].
In our generalized thermostatistic formalism, the solutions

to Eq. (8) give the most general form of the equilibrium
distribution and Eq. (10) provides a recipe for finding it for the
cases satisfying Eq. (1). Solutions to Eq. (1) can be guessed
for a number of cases of practical interest, as shown below.
However, the analytical forms of F and H are expected to
be difficult to find, in general. Nevertheless, we demonstrate
below a systematic numerical method that can find F and H
for a given C and H, and thus determine the corresponding
equilibrium thermostatistics in the general case.

MaxEnt principle with correlations. We now show that
the MaxEnt principle for SGS gives an independent derivation
of Eq. (8) when the self-similar correlations, along with the
normalization and mean energy, are treated as prior data
conditions [25,29]. For composite system AB, the constraints
for the normalization and mean energy are the conventional
ones, i.e., I ({wAB

zAB
}) = ∑

zAB
wAB

zAB
− 1 = 0 and E ({wAB

zAB
}) =∑

zAB
wAB

zAB
HAB

zAB
− H̄AB = 0, respectively, where H̄AB is the

average energy. The prior knowledge of the self-similar cor-
relations is represented by Eq. (7b) as a functional constraint
over the phase space. Thus, the constrained maximization of
SGS({wAB

z })/k leads to

∂

∂wAB
z′

AB

{
−

∑
zAB

ln wAB
zAB

+ aI
({

wAB
zAB

}) + bE
({

wAB
zAB

})

+
∑
zAB

czAB

[
wAB

zAB
− C

(
wA

zA
,wB

zB

)]} = 0 (12)

with Lagrange multipliers a, b, and {czAB}, where czAB is a
function over the phase space.

In [52], we show Eq. (12) yields

1

bAB

[
lnC

(
wA

zA
,wB

zB

)−aAB−cAB
zAB

]

= H

(
1

bA

[
ln wA

zA
−aA−cA

zA

]
,

1

bB

[
ln wB

zB
−aB−cB

zB

])
,

(13)

where equilibrium distributions are given by ln wX
zX

= aX +
bX HX

zX
+ cX

zX
for phase-space functions cAB

zAB
, cA

zA
, and cB

zB
that

satisfy the above equation. Setting G−1(wX
zX

) = 1
bX [ln wX

zX
−

aX −cX
zX

] shows that Eq. (13) is equivalent to Eq. (8), and so
the solutions found here are equivalent to those given by the
solutions of Eqs. (3) and (8) for corresponding values of the
Lagrange multipliers aX and bX .

Relationship with previously studied thermostatistic
classes. Table I compares the forms of F and H, and limi-
tations of various classes of distributions.

An interesting result demonstrated in the third row of the
table is that the Tsallis distribution, 1

Zq
e
−βqH
q , corresponds

to systems satisfying criteria I and II that have additive
Hamiltonians. This effectively rules out the validity of the
Tsallis distribution for systems with an interaction term in
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the Hamiltonian. This is also true for examples of multi-
fractal and φ-exponential-class thermostatistics [3,4] that are
characterized by the Tsallis distribution. Although the Tsallis
distribution is known to exhibit nonadditive average energy
[4], evidently the nonadditivity is due to correlations forming
between subsystems and not interactions [54]. Nevertheless,
the distribution derived for nonadditive Hamiltonians of the
type given in the fourth row of Table I, may give better
fits to experimental data for systems that have long-range
interactions compared to the Tsallis distribution (e.g., see
[39]).

Moreover, our formalism covers thermostatistics of ex-
treme cases of correlations, most notably the well-studied case
of one-dimensional Ising ferromagnets at vanishing tempera-
ture (see [52] for details). Aside from such trivial maximally
correlated cases and the long-range Ising models [23,40,44–
46,55] (corresponding to the third row of Table I as long as
subsystems are macroscopic), we are not aware of any pre-
vious thermostatistic formalism that can describe nontrivial
long-range-interacting systems, as in the last row, by finding
the equilibrium distribution.

Numerical example. The well-studied examples discussed
above all have analytic solutions. Next, we demonstrate the
versatility of our approach by numerically evaluating the
statistics of a complex long-range-interacting model (an ex-
treme case of correlations and nonadditivity). To demonstrate
how our approach might handle a practical problem, we
intentionally choose composition rules,

C(wA,wB) = wAwB (3.3 − wA)(3.3 − wB)

2.32
, (14)

H(HA, HB) = 0.7(HA + HB), (15)

which have no known analytical solution for w within our
formalism, and which would require extremely long-range
interactions for the energy composition rule.

In Fig. 1, we show F and Q, where H(H ) = Q(e−H )
[in BG, F ∝ Q ∝ ln(x)], for Eqs. (14) and (15), and w

versus H , where w(H ) = F−1{β[H(H ) − Ho]}. Here, Ho en-
sures normalization

∫
w(H )dH = 1̄ = 1 and β = −1 ensures∫

Hw̄(H )dH = H̄ = 1, which corresponds, in BG thermo-
statistics, to having an inverse temperature of βBG = −1 in
unitless parameters. It is interesting to see the significant
differences between the generalized distribution w̄(H ) and the
normalized wBG = e−H (bottom plot), being flatter for small
energies and decaying more rapidly for larger energies. Full
details of the numerical implementation are discussed in the
Supplemental Material [52].

Conclusions. We employed an approach based on Liou-
ville’s theorem for equilibrium conditions obeying a thermo-
dynamic limit and self-similarity criterion, to provide an alter-
native derivation of consistent generalized thermostatistics for
systems with correlations and nonadditive Hamiltonians (this
is in comparison to the conventional MaxEnt formulations
[3,4,6,7]). In our formalism, the equilibrium distributions of
such systems are fully characterized by G in Eq. (3) or by
{F ,H} maps in Eq. (1) for the special cases. Upon appropriate
choices of {F ,H}, our generalized thermostatistic class re-
covers well-established families, i.e., the standard Jaynes and

FIG. 1. The top two panels show the mapping functions F and Q
for w̄ and q = e−H , respectively (solid lines), and their BG equiva-
lents (dotted lines). The bottom panel shows the distribution w(H ) =
F−1{β[H(H ) − Ho]} (solid line) for the mappings in Eqs. (14) and
(15), and the normalized BG distribution with the same average
energy (dotted line).

Tsallis q thermostatistics as demonstrated in Table I. Interest-
ingly, our formalism implies that, for systems satisfying our
criteria, the latter family of thermostatistics can only capture
the thermodynamics of systems with additive Hamiltonians.

Our extension of the MaxEnt principle with SGS to in-
clude self-similar correlations as priors, gives an independent
derivation of the same equilibrium distributions derived using
Liouville’s theorem. This independent derivation confirms the
central role of the MaxEnt principle applied to SGS as a basis
for statistical inference in thermostatistics [29]. Moreover,
it also clarifies the controversy surrounding the heuristic
application of the MaxEnt principle to generalized entropy
functionals, such as the Tsallis entropy. Our derivation of the
Tsallis distribution from Liouville’s theorem and the MaxEnt
principle applied to SGS, with a self-similar correlation prior,
provides it with the mathematical support it previously lacked.

It would be interesting to examine the thermodynamics
of low-dimensional long-range Ising-type models [23,40,44–
46,55–58], which exhibit phase transitions under certain con-
ditions [56–58]. In the context of our formalism, such phase
transitions are driven by the set of control parameters given
above as {aX , bX } (and which include the temperature through
a global function [54]).
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