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In this paper, field-theoretic renormalization group (RG) methods [1] are utilized to study the universal dynamical critical
scaling properties of O(n)-symmetric systems with reversible mode-coupling terms subject to detailed-balance violations,
implemented through distinct heat bath temperatures for the critical order parameter S and dynamically coupled noncritical
conserved fields M.

Unfortunately, in the perturbative evaluation of the three-point vertex functions for the reversible mode couplings g for the
O(n)-symmetric Sásvari-Schwabl-Szépfalusy (SSS) model [2], we erroneously attached the combinatorial factors n − 1 to the
first-order fluctuation corrections [3] on the right-hand sides of Eqs. (A11) and (A12) listed in the Appendix. Interestingly, away
from thermal equilibrium, this in fact invalidates the renormalization constant relation Zg = Z1/2

M̃
= Z−1/2

M that follows from the
Ward identity (3.17) [3]. It should also be noted that in generic nonequilibrium circumstances, the field renormalizations obtained
from the two-point vertex functions are not the same as those in the corresponding dynamical response functions [4,5].

Consequently, the ensuing renormalization constants are not uniquely determined. Remarkably, there appear to exist (at least)
two different consistent prescriptions to fix the resulting redundancies:

(1) One may exploit the structure of the Poisson brackets underlying the system’s reversible dynamics, in symbolic shorthand
{S, S} = 0, {S, M} = gS, and {M, M} = g′M, which imply the identities Zg = Z1/2

M = Zg′ [6] (where the distinction between the
nonlinear mode couplings g and g′ appearing in the Langevin equations for the order parameter S and the conserved quantity M
has been made for book-keeping purposes only).

(2) One can rescale the fields in the original Langevin equations (2.27) and (2.28) or in the Janssen–De Dominicis response
functional (2.31), (2.33), and (2.35) precisely with the prescriptions (2.21) and (2.32), whereupon the noise strengths λ̃ → λ

and D̃ → D in the correlators (2.28) and (2.29), and u → ũ, g → g̃, and g′ → g̃′ as defined in Eqs. (2.34) and (2.36). Formally,
this rescaling procedure restores the Einstein relations between noise strengths and relaxation rates, at the price of introducing
distinct mode-coupling constants; their ratio yields the nonequilibrium parameter � = g̃′/̃g = λ̃Dg′/λD̃g = TS/TM or effective
temperature ratio for the heat baths coupled to the order parameter and conserved fields, respectively.

Naturally, procedures 1 and 2 above lead to different intermediate results for renormalization constants and RG flow functions,
yet after straightforward analysis they ultimately result in the following identical RG β functions for the couplings w = λ/D,
�, f = g̃2/λD = g2D̃/λD2 = w f̄ , and ũ:

βw = w f

[(
1

2
− n − 1

1 + w

)
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w2
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(
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βũ = ũ

[
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(1 + w)3
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]
+ 6 (n − 1)

1 + w
f 2 � (1 − �), (3.63)

where d = 4 − ε is the spatial dimension. Note that βw and βũ are as previously listed.
The modifications for β� and β f do not alter the ensuing RG fixed point structure discussed, nor do they affect the stability of

the equilibrium fixed point [6]. While the nonequilibrium fixed point with �∗ = ∞ and its properties remain unmodified as well,
there are pertinent changes for the other nonequilibrium fixed point with �∗ = 0: While still w∗ = ∞, the correct mode-coupling
fixed point value is f̄ ∗ = ε/2, and consequently the n dependence changes as well for ũ∗ = nu∗

H = 6nε/(n + 8). At this weak
dynamic scaling fixed point, one now obtains to first order in the ε expansion zS = 2 − (n − 1)ε/2 < zM = 2 [6].

Finally, similar corrections need to be implemented [3] for the analysis of the SSS model with spatially anisotropic
nonequilibrium perturbations: There should be no factor n − 1 in Eq. (3.14) of Ref. [4], which invalidates (3.15) and
several additional intermediate results. Yet the ensuing fixed point structure and stability are not affected; only the isotropic
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nonequilibrium fixed point with T ∗ = 1/�∗ = ∞ needs to be altered as stated above. Correspondingly, the dynamic critical
exponents at the anisotropic nonequilibrium fixed point with T ‖∗ = ∞ and T ⊥∗ = 0 in the longitudinal sectors are z‖

S =
2 − (n − 1)ε/2 < z‖

M = 2, while those in the transverse sector remain z⊥
S = 2 = z⊥

M .

I am deeply indebted to Luca Di Carlo and Giulia Pisegna at the University of Rome Sapienza for spotting and pointing out
my error to me; I am also grateful to Luca Di Carlo, Giulia Pisegna, Andrea Cavagna, Irene Giardina, and Tomas S. Grigera for
subsequent very fruitful discussions.
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