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Full-waveform inversion based on Kaniadakis statistics
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Full-waveform inversion (FWI) is a wave-equation-based methodology to estimate the subsurface physical
parameters that honor the geologic structures. Classically, FWI is formulated as a local optimization problem, in
which the misfit function, to be minimized, is based on the least-squares distance between the observed data and
the modeled data (residuals or errors). From a probabilistic maximum-likelihood viewpoint, the minimization
of the least-squares distance assumes a Gaussian distribution for the residuals, which obeys Gauss’s error law.
However, in real situations, the error is seldom Gaussian and therefore it is necessary to explore alternative misfit
functions based on non-Gaussian error laws. In this way, starting from the κ-generalized exponential function,
we propose a misfit function based on the κ-generalized Gaussian probability distribution, associated with the
Kaniadakis statistics (or κ-statistics), which we call κ-FWI. In this study, we perform numerical simulations on a
realistic acoustic velocity model, considering two noisy data scenarios. In the first one, we considered Gaussian
noisy data, while in the second one, we considered realistic noisy data with outliers. The results show that the
κ-FWI outperforms the least-squares FWI, providing better parameter estimation of the subsurface, especially in
situations where the seismic data are very noisy and with outliers, independently of the κ-parameter. Although
the κ-parameter does not affect the quality of the results, it is important for the fast convergence of FWI.

DOI: 10.1103/PhysRevE.101.053311

I. INTRODUCTION

Full-waveform inversion (FWI) is a wave-equation-based
methodology to estimate the physical parameters of the sub-
surface structures by exploiting the full information of the
waveforms recorded in a seismic survey [1–3]. The FWI is
a nonlinear inverse problem, in which the forward problem
consists of simulating the wave propagation from a seismic
source to the receivers by using the wave equation solution.
The inverse problem consists of iteratively determining the
coefficients of the wave equation (model parameters) data-
driven by information extracted from the recorded waveforms
(observed seismic data). In this process, the FWI employs
an optimization method, usually a gradient-based algorithm
[4]. However, the FWI is inherently an ill-posed problem in
the sense of Hadamard [5], and therefore it has no unique
solution [4]. Also, the noise decreases the accuracy of the
measurements and makes the FWI unstable, increasing the
ill-posedness of the problem.

Usually, this technique is formulated as a least-squares
constrained optimization problem [3] to find an earth model
that minimizes the difference between the observed and
the modeled seismic data (residuals or errors) [6]. In this
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approach, the least-squares solution of the inversion problem
is associated with maximum likelihood in the well-known
Gauss’s error law. However, we are challenged because the
distribution of residuals is seldom Gaussian in typical nonlin-
ear problems [7,8]. Several studies have shown that criteria
based on non-Gaussian approaches have been successful in
FWI applications to real data, for instance, using the Cauchy
distribution and sech criterion [9]. Reference [10] compare
several criteria showing that the FWI based on non-Gaussian
statistics has better performance, with more reliable results.
Recently, FWI based on a non-Gaussian distribution has been
successfully used in noise environments [11].

In this study, we use the κ-generalized exponential function
of the Kaniadakis framework proposed in Refs. [12–14] to
introduce an alternative misfit function which is based on
the κ-generalized Gauss’s law of error [15]. This probability
distribution is obtained from the maximization of Kaniadakis
entropy and it is known as the κ-Gaussian probability distri-
bution [13,15]. The κ-Gaussian distribution is an ingenious
extension of the Gaussian distribution derived from funda-
mental statistical mechanics assumptions [16]. A wide class of
systems obeys κ-Gaussian statistics, such as in the derivation
of the equipartition law of energy to obtain a modified gravi-
tational constant [17], a generalization of Gauss’s law of error
[15], stellar systems [18,19], as well as detection of extreme
changes in stock prices [20].

This paper is organized as follows: In Sec. II we briefly
review the usual formulation of the FWI. In Sec. III we use
the κ-generalized exponential to generalize the Gaussian
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distribution, and in Sec. IV, we apply the probabilistic
maximum-likelihood method [8,21] to obtain the κ-misfit
function. In addition, we explicitly derive the gradient func-
tion that corresponds to this misfit function. In Sec. V, we
describe in detail the parameters used in the numerical exper-
iments to test the accuracy of our methodology on a classical
model used in exploration geophysics. We compare the stan-
dard Gaussian least-squares FWI results with the FWI based
on κ-statistics in Sec. VI. Finally, in Sec. VII, we discuss the
advantages of our approach and show the superiority of the
methodology to overcome large errors in the empirical data.

II. FULL-WAVEFORM INVERSION

The conventional FWI approach is formulated as a least-
squares optimization problem [3] given by

min
m

φG(m) := 1

2

∑
s,r

∫ T

0
[�s,rus(m, t ) − ds,r (t )]2dt, (1)

where t denotes the time, m represents the model parameters
(coefficients of the wave equation), and T is the maximum
value of the recording time. In addition, �s,rus and ds,r are
the modeled and observed seismic data with �s,r representing
the sampling operator (onto the receiver r of the source s).
Finally, the variable us is the wave field which satisfies the
acoustic wave equation:

∇2us(x, t ) − m(x)
∂2us(x, t )

∂t2
= f (t )δ(x − xs), (2)

where x is the position (spatial coordinates) and ∇2 the Lapla-
cian operator. The term denoted by f (t )δ(x − xs) represents
the seismic source at the position xs and δ is the Dirac Delta
function. In this framework, the model parameters are the in-
verse of the squared velocity: m(x) = 1

c2(x) , for a medium with
acoustic velocity c. Equation (2) can be compactly written as

A(m)us(t ) = fs(t ), (3)

where A(m) = ∇2 − m(x) ∂2

∂t2 is the space-time differential
operator and fs(t ) = f (t )δ(x − xs). It is important to point
out that the spatial coordinate (x) is implicit in Eq. (3) and
henceforth.

In this usual approach, the statistical interpretation of the
misfit, ε = �s,rus − ds,r , is that all errors (ε) are randomly
distributed by a standard Gaussian probability distribution. In
this way, note that the minimization of the expression (1) is
equivalent to maximizing the Gaussian likelihood:

LG(m) ∝
∏
s,r

exp

{
−1

2

∫ T

0
[�s,rus(m, t ) − ds,r (t )]2dt

}
, (4)

which is equivalent to minimizing the negative logarithm of
LG(m).

III. KANIADAKIS PROBABILITY DISTRIBUTION

Based on the kinetic interaction principle, Kaniadakis
proposed a generalized statistics [12–14] by introducing the
κ-generalized exponential function which is defined as

expκ (y) = (
√

1 + κ2y2 + κy)
1
κ , (5)

FIG. 1. Probability plots of κ-Gaussian distributions for typical
values of κ . The κ-Gaussian resembles the Gaussian distribution,
but with a long tail. The solid black curve represents the limit case
corresponding to the Gaussian distribution (κ → 0).

where κ is a real parameter that characterizes the deviation of
the system from the standard Gaussian behavior. In the κ → 0
case, Eq. (5) recovers the usual exponential function [12].

We use the Kaniadakis exponential to generalize the Gaus-
sian distribution. In this way, the κ-Gaussian probability dis-
tribution associated with the κ-parameter can be defined as

pκ (y) = Cκ expκ

(− 1
2 y2

)
, (6)

where Cκ is the normalizing factor to satisfy Kolmogorov
probability axioms. So, Eq. (6) can be rewritten as

pκ (y) = Cκ

[√
1 + κ2

4
y4 − κ

2
y2

]1/κ

. (7)

We notice that in the limit κ → 0 the standard Gaussian
distribution is recovered.

Figure 1 shows the probability plots for typical values of
κ , in which the solid black curve represents the Gaussian dis-
tribution (κ → 0). In the κ > 0 cases, κ-Gaussian resembles
the Gaussian distribution being symmetrical and bell-shaped,
but with long tails that decrease as a power law: pκ (y) ∝ y2/k .
In the κ → ∞ particular case, κ-Gaussian tends to a flat
distribution.

IV. KANIADAKIS MISFIT FUNCTION

One important motivation of our study comes from the er-
ror (ε) distribution being, usually, non-Gaussian in nonlinear
problems [7,8]. In this section, we will follow the opposite
way from Sec. II. Given the probability function, what is the
associated misfit function? Thus, assuming that all residual
data (y = y1, y2, . . . , yn) are independent and randomly dis-
tributed by a κ-Gaussian distribution, the misfit function is
given by the negative log-likelihood κ-function:

− ln[Lκ (y)] = − ln

[
n∏

i=1

pκ (yi )

]
, (8)

which is

− ln[Lκ (y)] = − ln

⎡
⎣ n∏

i=1

Cκ

(√
1 + κ2

4
y4

i − κ

2
y2

i

) 1
κ

⎤
⎦ (9)
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and also can be written as

− ln[Lκ (y)] = − ln (Cκ ) − 1

κ

n∑
i=1

ln

(√
1 + κ2

4
y4

i − κ

2
y2

i

)
.

(10)

However, in optimization problems, the main goal is to
obtain the position of the optimal minimum instead of the
amplitude of the misfit function. Therefore, we can ignore the
term from the normalization constant in Eq. (10) [21], since
any two functions f (x) and g(x) = f (x) + constant share the
same minimum for a given x value. In this way, minimizing
Eq. (10) is equivalent to minimizing the function

φκ (y) = − 1

κ

n∑
i=1

ln

(√
1 + κ2

4
y4

i − κ

2
y2

i

)
, (11)

which can also be written as

φκ (y) = −
n∑

i=1

ln

[
expκ

(
−y2

i

2

)]
. (12)

We assume that φκ (y) is the κ-misfit function and there-
fore the FWI problem becomes the following optimization
problem:

min
m

φκ (m) := −
∑
s,r

∫ T

0
ln

{
expκ

[
−1

2
�d2

s,r (m, t )

]}
dt,

(13)
in which �ds,r (m, t ) = �s,rus(m, t ) − ds,r (t ) is the residual
data.

Note that at the limit κ → 0, the κ-misfit function becomes
the standard FWI misfit function:

lim
κ→0

φκ (m) = −
∑
s,r

∫ T

0
ln

{
exp0

[
−1

2
�d2

s,r (m, t )

]}
dt,

(14)
in which exp0(y) = exp(y) and ln[exp(y)] = y; thus,

lim
κ→0

φκ (m) = −
∑
s,r

∫ T

0

[
−1

2
�d2

s,r (m, t )

]
dt, (15)

which is equivalent to Eq. (1), which means

lim
κ→0

φκ (m) = φG(m). (16)

Equation (13) is the κ-misfit function, and we call κ-FWI
the formulation of the FWI that employs the Kaniadakis
statistics.

Gradient of κ-FWI misfit function

FWI is typically performed by an iterative gradient-based
method, in which the model parameters are updated along the
gradient-descent direction of a misfit function φ [3]. Starting
from a model m0 (initial model), the minimization problems
formulated in Eqs. (1) and (13) are solved according to

m j+1 = m j − α jD∇mφ(m j ), (17)

where α j is a step length computed through a search strategy
[22] in the jth iteration, and D is a positive-definite matrix
[22]. The gradient of the misfit function φ(m j ) with respect to
model parameters is denoted by ∇mφ(m j ) = ∂φ(m j )

∂m .

FIG. 2. Behavior of κ-misfit function and its derivative. The
black curve represents the conventional misfit function (κ → 0).

To obtain the gradient of the κ-misfit function φκ (m), one
can compute the partial derivatives related to each model
parameter ml by

∂φκ (m)

∂ml
= −

∑
s,r

∫ T

0

∂
∂ml

{
expκ

[− 1
2�d2

s,r (m, t )
]}

expκ

[− 1
2�d2

s,r (m, t )
] dt (18)

or

∂φκ (m)

∂ml
=

∑
s,r

∫ 0

T
Js,r (m, t )Bκ

s,r (m, t )dt (19)

with

Js,r (m, t ) = ∂

∂ml
[�s,rus(m, t )] (20)

and

Bκ
s,r (m, t ) = κ�ds,r (m, t )

[
1 − κ�d2

s,r (m, t )
]

expκ

[− 1
2�d2

s,r (u, t )
] , (21)

where Js,r is known as the Fréchet derivative [3].
For comparison, the gradient of the conventional misfit

function is given by

∂φG(m)

∂ml
=

∑
s,r

∫ 0

T
Js,r (m, t )�ds,r (m, t )dt . (22)

Figure 2 shows the behavior of the κ-misfit function,
and its derivative, for the conventional FWI (κ → 0) and
the κ-FWI with κ = 0.1, 0.5, 1.5, and 3.5. The conventional
misfit function high-weights large errors [solid black curve in
Fig. 2(b)], while in our proposal, the errors are down-weighted
according to their residual amplitudes and the κ-parameter.
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FIG. 3. Acoustic wave velocity models used in this study:
(a) Marmousi model (true model) and (b) starting model (initial
model), which was obtained by Gaussian smoothing of the true
model.

This characteristic is the main reason κ-FWI is expected to be
less sensitive to large errors.

V. NUMERICAL EXPERIMENTS

To illustrate how the κ-FWI improves the robustness of
FWI to noise, we used the Marmousi acoustic velocity model
as a benchmark (true model). This model is based on the
geology of the Kwanza basin region (Angola) [23] and it is
widely employed in seismic imaging studies because of its
complexity [24]. The model contains a geometry with many
reflectors and abrupt velocity variations: from 1.5 km/s to
4.7 km/s; the Marmousi model is depicted in Fig. 3(a). This
model consists of 701 and 351 grid cells in the horizontal
and vertical directions, respectively (246 051 total model
parameters). In addition, the maximum depth is 3.5 km, and
the maximum lateral distance is 7.0 km.

A Ricker wavelet [25] is used as the seismic source for all
numerical experiments. In the time domain, it is defined as

f (t ) = (
1 − 2π2ν2

pt2) exp
(−π2ν2

pt2), (23)

where νp is the peak frequency (most energetic frequency). In
this study, we considered the peak frequency νp = 10 Hz, as
depicted in Fig. 4 together with its spectrum.

By using the true model, Fig. 3(a), and the seismic source
defined in Eq. (23), the data set was generated with 82 equally
spaced sources located every 80 m, from 250 m to 6730 m,
at 10 m depth. The seismic wave field modeling is calculated
with Eq. (2) using a classical 9-point finite-difference stencil
with the perfectly matched layer absorbing boundaries [26]
to simulate an infinite medium. We considered an acquisition

FIG. 4. Seismic source: (a) Ricker wavelet with a peak frequency
of 10 Hz and amplitude given by Eq. (23), and its (b) frequency
amplitude spectrum |F (ν )|, where ν is the frequency.

with 171 receivers located every 40 m, from 40 m to 6860 m,
deployed at 500 m depth, and the recording time was T = 5 s.

We performed simulations taking into account two differ-
ent noise scenarios: (i) a data set contaminated by Gaussian
noise with a signal-to-noise ratio (SNR) of 20 dB, and (ii) the
same data set with Gaussian noise plus spiky noise (outliers).
The SNR is computed by the ratio between the signal power
and the noise power. The spikes were added over 15% of the
recorded seismic traces (chosen randomly using a uniform
distribution) by rescaling the signal amplitudes by a factor of
15α, in which α follows a standard Gaussian distribution that
simulates a realistic noise [27]. Tests have been carried out
for the noiseless data case, but the results from conventional
FWI and κ-FWI methods were similar, and therefore we will
not report this ideal case in this article. Figures 5(a) and 5(b)
show examples of the observed data (seismograms) for these
two scenarios, respectively, for the 41st seismic source.

In the minimizing problem, we used an optimization al-
gorithm of quasi-Newton methods named limited-memory
Broyden-Fletcher-Goldfarb-Shanno (l-BFGS) [22]. In this
approach, the matrix D in Eq. (17) is an approximation of
the inverse of the Hessian matrix computed from previous
gradients [22,28]. The step length is computed through a line
search procedure that satisfies the Wolfe conditions [22]. The
initial model was constructed from the true model using a
Gaussian smoother with a standard deviation of 325 m, as
depicted in Fig. 3(b). For each numerical experiment, we
computed 50 l-BFGS iterations.

The gradient of the misfit function φ(m) is computed
efficiently using the adjoint-state method [29], in which it
is performed by cross-correlating the forward wave field us
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FIG. 5. Example of the observed data. Seismograms of the 41st
source for scenarios with (a) Gaussian noise (first scenario), and
(b) Gaussian noise plus spiky noise (second scenario).

[solution of Eq. (2)] with the adjoint wave field λs [2,30],

∇mφ(m) =
∑

s

〈
∂A(m)

∂m
us(t ), λs(t )

〉
, (24)

where 〈.〉 is the inner product in the wave field space. In this
approach, the wave field λs is the solution of the adjoint-wave
equation [29]:

A†(m)λs(t ) =
∑

r

J†
s,rμs,r (m, t ), (25)

where the superscript symbol † refers to the adjoint operator
(transpose conjugate) and μs,r is the adjoint source.

The adjoint source is equivalent to the multiplicative term
of the Fréchet matrix [29]. In this way, the adjoint source
for the conventional FWI is given by the residual data [3],
while for our proposal it is given by Eq. (21). Comparing the
gradients of the conventional FWI and the κ-FWI, Eqs. (22)
and (19), one notices that the gradient of the proposed mis-
fit function is the conventional FWI gradient weighted by
the factor κ[1 − κ�d2

s,r (m, t )]/ expκ [− 1
2�d2

s,r (u, t )]. In other
words, the ith term of Eq. (19) is down-weighted by the
magnitude of the ith residual.

Figure 6 shows the adjoint sources, at the first iteration, for
the 41st seismic source. The adjoint wave field computed with
conventional FWI is sensitive to large errors [see Fig. 6(a)],
which means that the gradient shows a strong noise foot-
print. In contrast, the adjoint wave field computed from the
κ-FWI becomes less sensitive to outliers in the data set when
compared to the gradient of the conventional misfit function,
in which large errors are dampened in the data inversion. This
phenomenon is depicted in Figs. 6(b)–6(d) for κ = 1.0, 5.0,
and 10.0. We emphasize that the adjoint sources, for the
first noise scenario, are quite similar; therefore they are not
illustrated here.

FIG. 6. Adjoint sources for the second scenario, at the first
iteration, for (a) conventional FWI, and κ-FWI with (b) κ = 1.0,
(c) κ = 5.0, and (b) κ = 10.0, for the 41st source.

Finally, for each noise scenario, we perform four inver-
sions, in which the first one is based on the conventional
approach, and the last three are based on our proposal with
κ = 1.0, 5.0, and 10.0. We emphasize that the position of the
seismic source and receivers and the initial model are the same
in all numerical experiments.

VI. RESULTS

Herein we compare the inversion results obtained from the
κ-FWI and the conventional FWI, for the two noise scenarios
described in Sec. V. The inversion results for the first scenario
are depicted in Figs. 7(a)–7(d), for the conventional FWI
and κ-FWI with κ = 1.0, 5.0, and 10, respectively. Both the
conventional FWI and κ-FWI yield estimations close to the
true model as expected due to weak Gaussian noise. In fact,
the first scenario considered was just a test of the stability of
these methods in order to show the good functioning of the
algorithms developed by the authors.

Since the true model is known we compare it quantita-
tively with the FWI reconstructions to test the quality of the
inversion results. In this perspective, we compute three sta-
tistical measures: the normalized root-mean-square (NRMS),
Pearson’s correlation coefficient (R) [31], and the structural
similarity (SSIM) index [32].

We define the NRMS as

NRMS =
[∑

i

(
ctrue

i − cinv
i

)2

∑
i

(
ctrue

i

)2

]1/2

, (26)

where ctrue is true model and cinv corresponds to the inversion
result. The NRMS varies from 0 (perfect fit) to ∞ (bad
fit). Pearson’s correlation coefficient measures the statistical
relationship between the true model and the inverted model
based on the method of covariance [31]. Finally, the SSIM
is a metric of similarity between images. Both R and SSIM
metrics will vary between −1 (bad similarity) to 1 (perfect
similarity). The statistical measures for the first noise scenario
are summarized in Table I.

Our simulations show that both methods are comparable
for the weak Gaussian noise scenario (see Fig. 7). However,
the measures presented in Table I show that the velocity model
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FIG. 7. Inversion results for the first scenario with (a) conven-
tional FWI, and κ-FWI for (b) κ = 1.0, (c) κ = 5.0, and (d) κ =
10.0.

TABLE I. Main statistics at the first scenario: The normalized
root-mean-square (NRMS) is based on the misfit between the true
model and the inverted model. Pearson’s correlation coefficient
(R) and the structural similarity index (SSIM) measure similarities
between models.

Strategy NRMS R SSIM

Conventional FWI 0.089 0.963 0.579
Our proposal (κ = 1.0) 0.084 0.967 0.601
Our proposal (κ = 5.0) 0.086 0.966 0.599
Our proposal (κ = 10.0) 0.087 0.965 0.588

FIG. 8. Inversion results for the second scenario with (a) conven-
tional FWI, and κ-FWI for (b) κ = 1.0, (c) κ = 5.0, and (d) κ = 10.0.

reconstructed with the κ-FWI has greater similarity (R and
SSIM) and less error (NRMS) compared to the conventional
FWI, especially in the κ = 1.0 case.

The second scenario consists of a more realistic applica-
tion. The results are presented in Fig. 8. Note that the inversion
with the conventional FWI fails to retrieve the velocity model
satisfactorily [see Fig. 8(a)]. The standard inversion shows
many artifacts, while our proposal provides images close to
the true model, independently of the value of κ .

As expected, when non-Gaussian noisy data are used, the
conventional FWI fails to recover most of the velocity model.
Otherwise, the performance of the κ-FWI is very satisfactory

053311-6
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TABLE II. Main statistics at the second scenario: The normal-
ized root-mean-square (NRMS) is based on the misfit between the
true model and the inverted model. Pearson’s correlation coefficient
(R) and the structural similarity index (SSIM) measure similarities
between models.

Strategy NRMS R SSIM

Conventional FWI 0.144 0.907 0.363
Our proposal (κ = 1.0) 0.097 0.955 0.529
Our proposal (κ = 5.0) 0.086 0.966 0.587
Our proposal (κ = 10.0) 0.084 0.967 0.597

and it is comparable to the conventional FWI result in the first
scenario. Finally, Table II lists the NRMS, R, and SSIM for the
inversion results obtained in the second scenario, in which it
indicates that our proposal with κ = 10 produces the velocity
model with lowest NRMS and the highest similarity (R and
SSIM).

However, in real applications, we do not know the true
model, and therefore the results are judged in the domain of
seismic images. In the present work, we used the reverse time
migration (RTM), which provides a subsurface reflectivity
using the observed data and the estimated velocity model
[1,33]. Figure 9 shows the RTM images from the velocity
models shown in Fig. 8; it is notable that the κ-FWI produces
a more accurate reflector map [see Figs. 9(b)–9(d)] than the
conventional FWI [see Fig. 9(a)], especially for reflectors of
deep structures. In addition, for shallow structures (approxi-
mately up to 2 km), the RTM image for the conventional FWI
result, Fig. 9(a), has many artifacts that do not match the true
model.

Figure 10 shows the evolution of the misfit functions, per
iteration, for these two scenarios. In the first scenario, the
conventional FWI showed a faster decay of the misfit function
[solid black line in Fig. 10(a)] followed by the κ-FWI with
κ = 1.0, 5.0, and 10.0. In contrast, the κ-FWI with κ = 10.0
showed a faster misfit function decay [dash-dotted purple line
in Fig. 10(b)] followed by the κ-FWI with κ = 5.0 and 1.0,
and the conventional FWI, in the second scenario.

VII. CONCLUSION

We have presented a misfit function to mitigate the in-
fluence of noise in the reconstruction of the velocity mod-
els by using the FWI method. Based on the κ-generalized
exponential function, we proposed a misfit function based
on the κ-Gaussian probability distribution, which is linked
with the κ-generalization of Gauss’s law of error [15]. We
call our proposal by the abbreviation κ-FWI, in reference to
the Kaniadakis statistics (or κ-statistics). A numerical study
with a complex acoustic velocity model demonstrates the
effectiveness and robustness of our proposal for two noisy
circumstances: first, a simple case with a weak Gaussian
noise, and in the second one, a realistic noise circumstance.
The first scenario was just a test to show the stability of these
methods.

The results show that the κ-FWI is a powerful methodology
in noisy environments. The proposed misfit function is less
sensitive to the presence of noise, especially to non-Gaussian

FIG. 9. RTM images for (a) conventional FWI resulting model,
and κ-FWI resulting model with (b) κ = 1.0, (c) κ = 5.0, and
(d) κ = 10.0.

noise with outliers. In addition, the κ-FWI provides a better
model parameter estimation than the traditional approach, for
no additional computational cost.

We notice that the quality of the results was not affected by
the value of κ . The long tail of the κ-Gaussian distribution
incorporated the weighted residuals, in which the residual
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FIG. 10. Convergence. Evolution of misfit functions by iteration
for (a) first and (b) second scenarios.

values that are much greater than the minimal error tend
toward zero, as explicit in Eq. (19). However, the κ-parameter
influences the FWI convergence. In the first scenario, we
already expected that the conventional FWI convergence to
be faster than our proposal, since the conventional FWI starts
from the assumption that the errors are Gaussian, while our
proposal deforms the Gaussian distribution. As the value of
κ increases, the convergence is more slow. In contrast, in the
second and more realistic scenario, the κ-FWI with κ = 10.0
shows the fastest convergence, followed by the κ-FWI cases

with κ = 5.0 and 1.0, and the conventional FWI. As the
value of κ increases, the convergence is more fast because the
assumed distribution for the errors will be more distant from
the usual Gaussian.

As a perspective, we intend to study the effect of the
κ-parameter in the inversion considering other types of noise.
In fact, the choice of the optimal κ is a challenging task to
be addressed in this methodology. Our experience indicated
that the best κ should be related to the quality of the data.
To conclude, the κ-FWI is a valuable tool in exploration
geophysics. We believe that this methodology is especially
suited for robust inversion used in automated approaches,
which means, without heavy data preprocessing work.
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