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Three-dimensional lattice Boltzmann flux solver for simulation of fluid-solid conjugate heat transfer
problems with curved boundary
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A three-dimensional (3D) lattice Boltzmann flux solver is presented in this work for simulation of fluid-solid
conjugate heat transfer problems with a curved boundary. In this scheme, the macroscopic governing equations
for mass, momentum, and energy conservation are discretized by the finite-volume method, and the numerical
fluxes at the cell interface are reconstructed by the local solution of lattice Boltzmann equation. For solving
the 3D fluid-solid conjugate heat transfer problems, the density distribution function (D3Q15 model) is utilized
to compute the numerical fluxes of continuity and momentum equations, and the total enthalpy distribution
function (D3Q7 model) is introduced to calculate the numerical flux of the energy equation. The connections
between the macroscopic fluxes and the local solution of the lattice Boltzmann equation are provided by the
Chapman-Enskog expansion analysis. As compared with the lattice Boltzmann method, in which the time step
and grid spacing are correlated, the local solution of the lattice Boltzmann equation at each cell interface used
in the present scheme is independent of each other. As a result, the drawback of the tie-up between the time step
and grid spacing can be effectively removed and the developed method applies very well to nonuniform mesh
and curved boundaries. To validate the performance of the developed method, the steady and unsteady natural
convection in a finned 3D cavity and in a finned 3D annulus are simulated. Numerical results showed that the
present scheme can effectively solve the 3D conjugate heat transfer problems with a curved boundary.
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I. INTRODUCTION

Heat transfer between different components is one of the
fundamental issues in multiphase/multicomponent systems. It
has numerous applications in many areas, such as in electronic
cooling devices [1–3], thermal design of buildings [4–6],
crystal growth [7,8], and solar collectors [9,10]. In these flow
problems, the thermophysical properties can change sharply
between different components such as solid and fluid, or
different solid media. Furthermore, the fluid flow and heat
transfer are coupled in the fluid-solid conjugate heat transfer
problems. These features increase the difficulty of numerical
simulation, especially for three-dimensional (3D) fluid-solid
conjugate heat transfer problems with complicated geometry.

As a new numerical approach, the lattice Boltzmann
method (LBM) [11–14] has drawn increasing attention for its
simplicity and been widely applied to simulate heat and mass
transfer between multiphases or different materials. Aiming
to solve the steady-state conjugate heat transfer problems, a
half-lattice division LBM was proposed by Wang et al. [15].
In their method, the continuity conditions of both temperature
and heat flux are satisfied automatically by placing the con-
jugate interface in the middle of two lattice nodes which are
located in different components. This method has been suc-
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cessfully applied to predict the effective thermal conductively
of various porous [16] and simulated heat transfer between
two flows at different temperatures separated by a solid wall
with finite thickness [17]. Meng et al. [18] developed an
on-node LBM, in which the conjugate interface is located
exactly on the lattice nodes, for simulation of both steady and
transient conjugate heat transfer problems. In this scheme,
the continuity conditions of temperature and heat flux are
imposed by modifying the distribution functions around the
conjugate interface. Imani et al. [19] have successfully applied
this scheme to simulate multiple heated obstacles mounted
in a channel. However, it should be pointed out that the
above two schemes are limited to straight-interface geometry.
To simulate conjugate heat transfer problems with a curved
boundary, a general interface scheme was proposed by Li
et al. [20] and further extended to the discontinuity conjugated
interfacial conditions by Guo et al. [21], Hu et al. [22], and
Mu et al. [23]. Similar to the work of Meng et al. [18], the
essential idea of the general interface scheme is to satisfy the
conjugate conditions by establishing an analytical relationship
for the distribution functions around the conjugate interface.
In addition, Karani and Huber [24], Rihab et al. [25], and Chen
et al. [26] simulated the conjugate heat transfer problems
by applying the thermal lattice Boltzmann equation with an
additional source term. Very recently, Nouri et al. [27] further
extended the method of Rihab et al. [25] to simulate the 3D
conjugate heat transfer problems in heterogeneous media.
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In the above LBM, the conventional lattice Boltzmann
models for thermal flow, such as the model of energy [28] and
the model of temperature [29], can be applied directly to solve
the conjugate heat transfer problems. A comprehensive review
of the thermal LBM can be found in the work of Li et al. [30].
However, a specific treatment of the distribution functions
around the conjugate interface or an additional source term
is required, which complicates the implementation of LBM.
To keep the inherent simplicity of the standard LBM, con-
siderable efforts have been devoted to modifying the thermal
lattice Boltzmann models. By introducing a reference specific
heat to decouple the specific heat and the thermal conductivity,
Huang and Wu [31] proposed a D2Q9 model of total enthalpy.
Subsequently, a D2Q5 model of total enthalpy was developed
by Chen et al. [32] and Lu et al. [33] independently for higher
computational efficiency. Both the D2Q9 and D2Q5 models
have been successfully applied to simulate conjugate heat
transfer problems [34,35]. Recently, a D3Q7 model of total
enthalpy was further proposed by Li et al. [36], Lu et al. [37],
and Hosseini et al. [38] for simulation of 3D solid-liquid phase
change with a simple boundary. Since the energy equation of
conjugate heat transfer problems can be recovered exactly by
this kind of model, the standard LBM can still be adopted
to solve the multiphase/multicomponent system with different
thermophysical properties without introducing any extra cor-
rections. However, although the modified distribution model
retains the unique merits of standard LBM, its drawbacks are
also kept, such as tie-up between time step and grid spacing,
limitation on uniform grids, and requirement of substantial
virtual memory. It causes the effective simulation of 3D
conjugate heat transfer problems with a curved boundary to
still be challenging.

Recently, the lattice Boltzmann flux solver (LBFS) was
proposed by Shu and co-workers [39,40] to effectively remove
the above drawbacks of standard LBM. LBFS is a finite-
volume solver based on the local solution of the Boltzmann
equation for evaluation of numerical fluxes at the cell in-
terface. Specifically, the macroscopic governing equations
are solved directly in LBFS, and the numerical fluxes are
evaluated in a mesoscopic way by the local solution of lattice
Boltzmann equation at the cell interface. Since the lattice
Boltzmann solution at each cell interface is independent of
each other and the streaming time step is unrelated to the
marching time step for solving the macroscopic governing
equations, the LBFS applies very well to nonuniform mesh
and curved boundaries. Besides, the virtual memory for dis-
tribution functions is avoided in LBFS to conserve the virtual
memory, especially for 3D scenarios. Due to its distinguish-
ing features, the LBFS has been widely used to simulate
multiphase flows with large density ratio and high Reynolds
number [41] and investigate variable property effects on the
flow and heat transfer characteristics of natural convection in
the horizontal concentric annulus [42]. By reconstructing the
numerical flux of the energy equation via local solution of the
Boltzmann equation with the D2Q9 model of Huang and Wu
[31], Yang et al. [43] developed an LBFS for two-dimensional
(2D) conjugate heat transfer problems and validated its ac-
curacy and flexibility by several test cases. In the present
work, the previous LBFS is further extended to effectively
simulate 3D fluid-solid conjugate heat transfer problems with

complicated geometry. At first, a Chapman-Enskog expansion
analysis with the collision time as the expansion parameter for
recovering the continuity, momentum, and energy equations is
presented to reveal the connections between the macroscopic
fluxes and solution of the LBE. Then, a 3D local coordinate
system aligned to the normal direction and two tangential
directions of the cell interface and a corresponding coordinate
transformation from the local coordinate system to the global
coordinate system are introduced to calculate the macroscopic
fluxes at the cell interface. After that, the conservative vari-
ables at cell centers are updated by evolving the macroscopic
governing equations in time. The performance of the devel-
oped method will be demonstrated by simulating steady and
unsteady natural convection in a finned 3D cavity and in a
finned 3D annulus.

II. LATTICE BOLTZMANN MODELS AND
CHAPMAN-ENSKOG EXPANSION ANALYSIS

According to kinetic theory, the macroscopic governing
equations can be recovered from the Boltzmann equation
with a continuum assumption. In this process, the relation-
ships between the two systems can be established. LBFS
is actually based on these relationships to reconstruct the
numerical fluxes of macroscopic governing equations. For the
incompressible fluid-solid conjugate heat transfer problems
considered in this work, two Boltzmann equations with the
Bhatnagar-Gross-Krook (BGK) approximation are commonly
used:

∂ fi

∂t
+ ei · ∇ fi = f eq

i − fi

τμ

, (1)

∂gi

∂t
+ ei · ∇gi = geq

i − gi

τκ

, (2)

where fi and gi are the density distribution function and
the total enthalpy distribution function along the direction of
discrete velocity ei. f eq

i and geq
i are the equilibrium states

approached by fi and gi through particle collision within the
collision timescales τμ and τκ , respectively. Equation (1) is
used to recover the continuity and momentum equations, and
Eq. (2) is utilized to recover the energy equation.

In this work, a 15-bit lattice velocity model (D3Q15) is
used for the density distribution function, which is given by

f eq
i = ρωi

[
1 + ei · u

c2
s

+
(
eiei − c2

s I
)
: uu

2c4
s

]
, (3a)

ei =
⎧⎨
⎩

(0, 0, 0)T , i = 0
(±1, 0, 0)T , (0,±1, 0)T , (0, 0,±1)T , i = 1 ∼ 6
(±1,±1,±1)T , i = 7 ∼ 14

,

(3b)

where ρ is the density and u is the velocity vector of the mean
flow, I is the unit tensor, ωi denotes the weight coefficient, and
cs represents the sound speed. In the D3Q15 model, ω0 = 2/9,
ω1∼6 = 1/9, ω7∼14 = 1/72, and cs = 1/

√
3.

For the total enthalpy distribution function, a seven-bit
lattice velocity model (D3Q7) is utilized, which is given
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by [36]

geq
i =

{
CPT − CP,0T + ωiCP,0T, i = 0
ωiT

[
CP,0 + 4CPei · u

]
, i �= 0

(4a)

ei =
{

(0, 0, 0)T , i = 0
(±1, 0, 0)T , (0,±1, 0)T , (0, 0,±1)T , i = 1 ∼ 6

.

(4b)

The corresponding weight coefficients have values of ω0 =
1/4 and ω1∼6 = 1/8. T is the temperature, and Cp is the
specific heat at constant pressure. CP,0 denotes the reference
specific heat, which remains unvaried in the whole domain.

First, we seek the connections between Eq. (1) and the
continuity and momentum equations through the Chapman-
Enskog expansion analysis. From the D3Q15 model, the
following relationships can be obtained:

ρ =
∑

i

f eq
i , (5a)

ρuα =
∑

i

ei,α f eq
i , (5b)

ρuαuβ + ρc2
s δαβ =

∑
i

ei,αei,β f eq
i , (5c)

ρc2
s (uαδβχ + uβδχα + uχδαβ ) =

∑
i

ei,αei,βei,χ f eq
i , (5d)

where ei,α , ei,β , ei,χ and uα , uβ , uχ are the components of
particle velocity and macroscopic flow velocity in the α,
β, and χ direction, respectively. In addition, according to
the compatibility condition, we know that the collision term
does not make contributions to the calculation of conservative
variables, which yields∑

i

ϕi

(
f eq
i − fi

) =
∑

i

ϕiτμD fi = 0, (6)

where ϕi = (1, ei )T stands for the moment vector and D fi =
(∂t + ei · ∇ ) fi is the substantial derivative of the distribution
function fi.

According to the Chapman-Enskog expansion analysis, to
recover Navier-Stokes equations, the distribution function can
be expanded to the first order of the collision time as follows:

fi = f eq
i − τμD fi = f eq

i − τμD f eq
i + O

(
τ 2
μ

)
. (7)

Note that the expression of fi = f eq
i − τμD fi [i.e., Eq. (1)]

has been substituted into D fi to derive the above expression.
Applying the operator D to Eq. (7), we can get

D fi = D f eq
i − D

(
τμD f eq

i

) + O
(
τ 2
μ

)
. (8)

By multiplying ϕi on both sides of Eq. (8) and performing
a summation over the particle velocity space for the resultant
equation yields

∂t

∑
i

ϕi f eq
i + ∇ ·

∑
i

eiϕi f eq
i

= ∂t

∑
i

ϕiτμD f eq
i + ∇ ·

∑
i

eiϕiτμD f eq
i + O

(
τ 2
μ

)
. (9)

Note that the compatibility condition has been used in
deriving the above equation. By substituting Eq. (7) into the

first term on the right-hand side of Eq. (9) and utilizing the
compatibility condition, we can obtain

∂t

∑
i

ϕi f eq
i + ∇ ·

∑
i

eiϕi f eq
i =∇ ·

∑
i

eiϕiτμD f eq
i + O

(
τ 2
μ

)
.

(10)
The first component of ϕi is 1, which gives the following

relationship when being substituted into Eq. (10):

∂t

∑
i

f eq
i + ∇ ·

∑
i

ei f eq
i = ∇ ·

∑
i

eiτμD f eq
i + O

(
τ 2
μ

)
,

(11)
Utilizing Eqs. (5a), (5b), (7), and the compatibility condi-

tion (6), the above equation can be rewritten as

∂tρ + ∇ · (ρu) = O
(
τ 2
μ

)
, (12)

which recovers the continuity equation in the order of O(τ 2
μ).

Considering the second component of ϕi in Eq. (10) gives

∂t

∑
i

ei f eq
i + ∇ ·

∑
i

eiei f eq
i

= ∇ ·
[
τμ

(
∂t

∑
i

eiei f eq
i + ∇ ·

∑
i

eieiei f eq
i

)]
+ O

(
τ 2
μ

)
.

(13)

Substituting the conservative relationships in Eqs. (5b) and
(5c) into the left-hand side of Eq. (13), we have

∂t (ρu) + ∇ · (ρuu + pI) = O
(
τμ

)
, (14)

where p = ρc2
s is the pressure. Furthermore, substituting the

conservative relationships in Eqs. (5c) and (5d) into the right-
hand side of Eq. (13) yields

∂t

∑
i

eiei f eq
i

= ∂t (ρuu + pI)

= ∂t (ρu)u + u∂t (ρu) − uu∂tρ + c2
s ∂tρI

= −∇ · (ρuuu) − [(∇p)u + u∇p] − ∇ · (pu)I + O
(
τμ

)
,

(15a)

∇ ·
∑

i

eieiei f eq
i

= ∂χ [p(uαδβχ + uβδχα + uχδαβ )]

= p[∇u + (∇u)T ] + [(∇p)u + u∇p] + ∇ · (pu)I.

(15b)

Note that Eqs. (12) and (14) have been used for derivation
of Eq. (15a). Although the truncation error of Eq. (15a) is
O(τμ), it is multiplied by τμ when being substituted into
Eq. (13). Thus, the approximation in Eq. (15a) will not affect
the overall accuracy of Eq. (13), which yields

∂t (ρu) + ∇ · (ρuu + pI)

= ∇ · {μ[∇u + (∇u)T ]} + O
(
τ 2
μ, τμ|u|3), (16)
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where the dynamic viscosity μ is connected to the collision
time τμ by

τμ = μ

p
= μ

ρc2
s

. (17)

Equation (16) proves that the momentum equation can
be recovered from the Boltzmann equation in the order of
O(τ 2

μ, τμ|u|3).
Second, we seek the connections between Eq. (2) and the

energy equation of conjugate heat transfer problems. From the
D3Q7 model, the following conservative relationships can be
obtained:

CPT =
∑

i

geq
i , (18a)

CpT uα =
∑

i

ei,αgeq
i , (18b)

1

4
CP,0T δαβ =

∑
i

ei,αei,βgeq
i . (18c)

After a similar derivation process to Eq. (10), we have

∂t

∑
i

geq
i + ∇ ·

∑
i

eig
eq
i = ∇ ·

∑
i

eiτκDgeq
i + O

(
τ 2
κ

)
. (19)

Substituting Eqs. (18a)–(18c) into Eq. (19) and neglecting
the higher order term ∇ · [τκ∂t (CpT u)], we can get

∂t (CpT ) + ∇ · (CpT u) = ∇ ·
{τκ

4
∇(CP,0T )

}
. (20)

Since CP,0 is a constant, Eq. (20) can be reformulated as

∂t (CpT ) + ∇ · (CpT u) = ∇ ·
(

κ

ρ0
∇T

)
. (21)

As a result, the thermal conductivity can be expressed by

τκ = 4κ

ρ0CP,0
. (22)

Here ρ0 is the reference density, which is set as ρ0 = 1 in
our simulations.

It should be noted that the collision time is used in the
above analysis as the expansion parameter. This strategy is
different from many LBM studies [14]. Since the expan-
sions to the temporal derivative and the spatial derivative are
avoided, the present analysis is more concise than that of
the conventional LBM. Equations (10) and (19) suggest that
one can use f eq

i − τμD f eq
i to reconstruct the numerical fluxes

at the cell interface of continuity and momentum equations
and utilize geq

i − τκDgeq
i to compute the flux of the energy

equation. These relations are the foundation of the present
scheme for calculation of macroscopic numerical fluxes.

III. LATTICE BOLTZMANN FLUX SOLVER FOR 3D
CONJUGATE HEAT TRANSFER PROBLEMS

A. Finite-volume discretization of 3D macroscopic
governing equations

In the context of LBM and LBFS, the macroscopic gov-
erning equations for incompressible fluid-solid conjugate heat
transfer problems can be written as [44]

∂ρ

∂t
+ ∇ · (ρu) = 0, in the flow domain, (23)

∂ρu
∂t

+ ∇ · (ρuu + pI)

= ∇ · {
μ

[∇u + (∇u)T
]} + fE , in the flow domain,

(24)

∂CpT

∂t
+ ∇ · (CpT u)

= ∇ ·
(

κ

ρ0
∇T

)
, in both the flow and solid domains,

(25)

where fE denotes the buoyancy force, which is calculated by
the Boussinesq approximation,

fE = −ρβ(T − Tm)gj. (26)

Here, β is the thermal expansion coefficient, Tm is the average
temperature, g is the gravity acceleration, and j is the unit
vector in the y direction.

Due to its geometric flexibility, the finite-volume method
is chosen to discretize Eqs. (23)–(25), and the conservative
variables are defined at the cell centers, which yield

dWI

dt
= − 1

�I

Nf∑
j=1

Fn jS j + QI , (27)

where I is the index of control volume, and �I and Nf

represent the volume and the number of faces of the control
volume I, respectively. S j denotes the area of the jth interface
of control volume. For the 3D case, the conservative variable
vector W, flux vector Fn, and source term Q are given by

W = (ρ, ρu, ρv, ρw,CpT )T , (28)

Fn = (Fρ, Fρu, Fρv, Fρw, FT )T , (29)

Q = [0, 0,−ρβ(T − Tm)g, 0, 0]T . (30)

Here, u, v, and w are the velocity components in the x,
y, and z direction, respectively. In order to solve Eq. (27),
the numerical fluxes Fn and the source term Q have to be
determined first. When an explicit method is adopted, Q can
be calculated directly from the conservative variables W at
cell centers. Thus, the only remaining task is to compute the
fluxes Fn.

For the convenience of derivation and application, a local
coordinate system defined on the cell interface is introduced in
this work. In the local coordinate system, the x1 axis is taken

053309-4



THREE-DIMENSIONAL LATTICE BOLTZMANN FLUX … PHYSICAL REVIEW E 101, 053309 (2020)

as the normal direction pointing outwards of the cell interface,
while the x2 axis and x3 axis are chosen as two tangential
directions of the cell interface, which are mutually orthogonal
and form a right-hand coordinate system. These axes are
also consistent with the lattice velocities in the off-diagonal
directions. The conservative variables and numerical fluxes
expressed in the local coordinate system are defined as

W = (ρ, ρu1, ρu2, ρu3,CpT )T (31)

Fn = (
Fρ, Fρu1 , Fρu2 , Fρu3 , FT

)T
(32)

where u1, u2, and u3 are the velocity components in the x1,
x2, and x3 direction, respectively. The conservative variables
and numerical fluxes expressed in two coordinate systems are
correlated by following transformations:

u = n1xu1 + n2xu2 + n3xu3,

v = n1yu1 + n2yu2 + n3yu3, (33a)

w = n1zu1 + n2zu2 + n3zu3

Fρu = n1xFρu1 + n2xFρu2 + n3xFρu3 ,

Fρv = n1yFρu1 + n2yFρu2 + n3yFρu3 , (33b)

Fρw = n1zFρu1 + n2zFρu2 + n3zFρu3

where n1 = (n1x, n1y, n1z ), n2 = (n2x, n2y, n2z ), and n3 =
(n3x, n3y, n3z ) represent the unit vectors of the x1 axis, x2

axis, and the x3 axis, respectively. Equations (33a) and (33b)
suggest that the calculation of Fn is equivalent to evaluating
Fn in the local coordinate system. In the following section, we
will focus on the calculation of Fn.

B. Lattice Boltzmann flux solver for evaluation
of fluxes at the cell interface

For simplicity, we denote the location of the cell interface
as r = 0. According to Eqs. (10) and (19), the numerical
fluxes Fn can be calculated by

Fn(1 : 4) =
∑

i

ei,1ϕ̄i fi(0, t ), (34)

Fn(5) =
∑

i

ei,1gi(0, t ), (35)

where Fn(1 : 4) and Fn(5) denote the first four components
and the fifth component of the flux vector Fn, respectively.
ϕ̄i = (1, ei,1, ei,2, ei,3)T is the moment vector, where ei,1, ei,2,
and ei,3 are the components of particle velocity expressed in
the local coordinate system. fi(0, t ) and gi(0, t ) are respec-
tively the density distribution function and the total enthalpy
distribution function at the cell interface truncated to O(τ 2

μ)
and O(τ 2

κ ), which are given by

fi(0, t ) = f eq
i (0, t ) − τμD f eq

i (0, t ), (36)

gi(0, t ) = geq
i (0, t ) − τκDgeq

i (0, t ). (37)

interface 

LΩ  

mid-point of 
cell interface 

RΩ  

( ),eq
i if t t tδ δ− −e  

( )0,eq
if t  

FIG. 1. Distribution of equilibrium functions at the cell interface
and its surrounding points (D3Q15 model for illustration).

By using the backward difference method to operator D,
the above equations can be approximated by

fi(0, t ) = f eq
i (0, t ) + τμ

δt

[
f eq
i (−eiδt, t − δt ) − f eq

i (0, t )
]
,

(38)

gi(0, t ) = geq
i (0, t ) + τκ

δt

[
geq

i (−eiδt, t − δt ) − geq
i (0, t )

]
.

(39)

Here f eq
i (0, t ) and geq

i (0, t ) are the equilibrium distribution
functions at the cell interface, and f eq

i (−eiδt, t − δt ) and
geq

i (−eiδt, t − δt ) are the equilibrium distribution functions at
the surrounding points of the cell interface, as shown in Fig. 1.
δt is the streaming time step, which can be determined by [43]

δt = 0.4 × min {�l,�r}
max

i
(|ei|) = 0.4 × min {�l,�r}, (40)

where �l and �r are the shortest edge length of the left and
right cells around the cell interface, respectively.

From the above analysis, the key to compute the numerical
fluxes Fn is to calculate the equilibrium states at the cell
interface and its surrounding points, which are the functions
of flow variables at the corresponding physical locations. For
any variable φ, its value at the surrounding point of the cell
interface can be computed by

φ(−eiδt, t − δt ) =
⎧⎨
⎩

φL − ∇φL · eiδt, if ei,1 > 0
φR − ∇φR · eiδt, if ei,1 < 0
φM − ∇φM · eiδt, if ei,1 = 0

, (41)

where φ represents the variables of ρ, u1, u2, u3, and T . ∇φ

is the first-order derivative of φ. The superscripts "L" and "R"
denote the values at the left and right sides of cell interface,
and the superscript "M" represents the arithmetic mean at the
cell interface. Once ρ, u1, u2, u3, and T at the surrounding
points of the cell interface are obtained, f eq

i (−eiδt, t − δt ) and
geq

i (−eiδt, t − δt ) can be computed by substituting Eq. (41)
into Eqs. (3a) and Eq. (4a), respectively.
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For the flow variables at the cell interface, they can be
calculated by the compatibility condition. By taking moments
of Eqs. (38) and (39), we have

W
face

(1 : 4) =
∑

i

ϕ̄i f eq
i (0, t ) =

∑
i

ϕ̄i f eq
i (−eiδt, t − δt ),

(42)

W
face

(5) =
∑

i

geq
i (0, t ) =

∑
i

geq
i (−eiδt, t − δt ), (43)

where W
face

(1 : 4) and W
face

(5) denote the first four compo-
nents and the fifth component of the conservative variable vec-
tor at the cell interface, respectively. Since f eq

i (−eiδt, t − δt )

and geq
i (−eiδt, t − δt ) have been determined previously, W

face

can be computed uniquely from Eqs. (42) and (43). After that,

we can calculate f eq
i (0, t ) and geq

i (0, t ) by substituting W
face

into Eqs. (3a) and (4a), respectively.
For the incompressible fluid-solid conjugate heat transfer

problems, the value of thermal conductivity κ changes sud-
denly at the conjugate interface. Thus, an appropriate method
should be introduced to calculate its value in such circum-
stances. In our previous work [43], the thermal conductivity
at the cell interface is computed with the aid of the concept of
thermal resistance, which yields

κM = κLκR(rL + rR)

κRrL + κLrR
, (44)

where r denotes the distances of cell center to cell interface.
Once the thermal conductivity at the cell interface is obtained,
τκ in Eq. (39) can then be computed by

τκ = 4κM

ρ0CP,0
. (45)

This treatment has been shown to be effective for both
steady and unsteady flows.

IV. NUMERICAL EXAMPLES

In this section, the unsteady heat conduction in an infinite
system filled with two media and the natural convection in a
finned 3D cavity and in a finned 3D annulus are simulated
to validate the present solver. According to the suggestion of
Huang and Wu [31], the harmonic mean is used to calculate
the reference specific heat, i.e., CP,0 = 2CP,1CP,2/[CP,1 + CP,2],
where CP,1 and CP,2 are the specific heats of different media.
The convergence criterion of all test cases is set to be

Error = max (Verror, Terror ) < 1 × 10−8, (46)

where Verror and Terror are the relative error of the velocity
distribution and temperature distribution, which are computed
by

Verror =
∑

I

√(
un+1

I − un
I

)2 + (
vn+1

I − vn
I

)2 + (
wn+1

I − wn
I

)2

∑
I

√(
un+1

I

)2 + (
vn+1

I

)2 + (
wn+1

I

)2
,

(47a)

Terror =
∑

I

∣∣T n+1
I − T n

I

∣∣∑
I T n+1

I

. (47b)
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FIG. 2. Schematic of unsteady heat conduction in an infinite
system.

In addition, the explicit Euler method is adopted to solve
Eq. (27), and the Courant-Friedrichs-Lewy (CFL) number is
taken as 0.1.

Case 1: Unsteady heat conduction in an infinite system
In this section, the unsteady heat conduction in an infinite

system filled with two media is simulated to assess the nu-
merical accuracy of the present solver. As shown in Fig. 2, the
initial temperatures of medium 1 and medium 2 are set as Th

and Tc, respectively. The ratios of the heat conductivity and the
specific heat are taken as κ1/κ2 = 1/4 and Cp,1/Cp,2 = 1/16,
respectively. Under such conditions, the analytical solution of
this problem can be written as [31,33]

T (x, t ) =

⎧⎪⎪⎨
⎪⎪⎩

Th − (Th−Tc )
√

κ2Cp,2√
κ1Cp,1+

√
κ2Cp,2

erfc
( −x

2
√

κ1t
/

Cp,1

)
, x � 0

Tc + (Th−Tc )
√

κ1Cp,1√
κ1Cp,1+

√
κ2Cp,2

erfc
(

x

2
√

κ2t
/

Cp,2

)
, x � 0.

(48)

Here, erfc(x) = 2√
π

∫ +∞
x e−η2

dη is the complementary er-
ror function. In addition, to measure the numerical accuracy
of the present method, the following relative error of the
temperature distribution is calculated:

Error =
√∑Nx

i=1

(
T a

i − T c
i

)2√∑Nx
i=1

(
T a

i

)2
, (49)

where T a
i and T c

i are respectively the analytical temperature
and the calculated temperature at point i. Nx is the number of
cells in the x direction. Four uniform meshes with Nx = 20,
40, 80, and 160 are used to measure the relative error. In the
y and z directions, the number of cells is fixed as 10. Figure
3 shows the relative error calculated by different meshes at
time t = 0.005. It can be seen that the accuracy of the present
solver is the second order in space.

Case 2: Steady and unsteady natural convection in a finned
3D cavity

The natural convection in a finned 3D cavity [45–47] is
a good benchmark test to validate the effectiveness of the
developed method for solving 3D incompressible fluid-solid
conjugate heat transfer problems. The configuration of this
problem is illustrated in Fig. 4. As can be seen in this figure,
a rectangular conducting fin is centrally attached to the hot
wall. The geometric parameters of the fin are set as b/L = 0.5,
s/L = 0.5, and e/L = 0.1, where L = 1 is the characteristic
length of the cubic cavity. On all walls of the cavity and the fin,
the no-slip boundary condition is adopted. Except for the left
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FIG. 3. Accuracy analysis of LBFS for unsteady heat conduction
in an infinite system.

and right walls, which are set as the isothermal wall with fixed
temperatures of T1 = 1 and T0 = 0, respectively, all walls of
the cavity are treated as the adiabatic wall. The heat conductiv-
ity and the specific heat of the fluid are denoted as κ1 and Cp,1,
and those of the fin are defined as κ2 and Cp,2. For simplicity,
Rκ = κ2/κ1 and RC = Cp,2/Cp,1 are introduced to represent the
ratios of heat conductivity and specific heat for the fin and the
fluid, respectively. In addition, the Prandtl number Pr and the
Rayleigh number Ra, are defined as follows:

Pr = ν

α1
, Ra = gβ(T1 − T0)L3

να1
= V 2

c L2

να1
, (50)

where α1 = κ1/(ρ0Cp,1) and ν = μ/ρ0 are the thermal diffu-
sivity and the kinematic viscosity of the fluid, respectively.
Vc = √

gβ(T1 − T0)L denotes the characteristic thermal veloc-
ity. To quantify the heat transfer efficiency of this problem, the

FIG. 4. Schematic of natural convection in a finned 3D cavity.

average Nusselt number on the hot wall is defined as follows:

Nu = − RκL

ξ (T1 − T0)L2

∫ L

0

∫ L

0

∂T

∂x

∣∣∣∣
x=0

dydz, (51)

where ξ is a coefficient which either equals Rκ for the bare
area or equals 1 for the finned area of the hot wall. To be
consistent with the work of Imani [47], we choose Rκ = 10,
Vc = 0.1, and Pr = 0.71 in the present simulations, and the
simulated Rayleigh numbers are changed from 103 to 106. The
computational domain is divided uniformly into 120 × 120 ×
120 cells.

At first, the steady case is simulated. When we reach
steady-state fluid-solid heat transfer, only the thermal con-
ductivity affects the temperature distribution [27]. Thus, the
ratio of specific heat can be taken as RC = 1 for simplicity.
Figure 5 shows isothermal surfaces for steady natural convec-
tion in a finned 3D cavity at Ra = 104 and 106. It can be seen
that the existence of the fin alters the temperature distribution,
and the effect is enhanced as the Rayleigh number increases.
Figure 6 compares the computed temperature contours on
the midplane of z = 0.5 at different Rayleigh numbers of
Ra = 103, 104, 105, and 106, with the results obtained by
FLUENT. The u velocity profile along the vertical centerline
and v velocity profile along the horizontal centerline on the
midplane of z = 0.5 computed by the present solver and
FLUENT are shown in Fig. 7, where Uref = α1/L is the refer-
ence velocity. Clearly, good agreements are achieved for both
the temperature and velocity distributions. At Ra = 103, the
magnitude of velocity is relatively small and the isotherms are
nearly vertical. This means that the heat transfer is dominated
by the thermal conduction in this case, which leads to rela-
tively low heat transfer efficiency. In addition, the conduction
along the fin displaces hot isotherms to the right due to its
greater heat conductivity than the fluid. As the Rayleigh num-
ber is increased, the magnitude of velocity increases greatly
and the isotherms are squeezed closer to the boundaries. At
Ra = 106, distinct thermal stratification appears and more
flow reaches the upper face of the fin, thereby enhancing the
convection heat transfer at the upper part of the hot wall. This
indicates that the heat transfer is dominated by the thermal
convection in this case, which leads to relatively high heat
transfer efficiency. These conclusions can be further verified
via Table I, in which the computed average Nusselt numbers
on the hot wall are compared with the data given by Frederick
and Moraga [45] using the SIMPLER (semi-implicit method
for pressure-linked equations, SIMPLE Revised) method, and
Imani [47] applying the LBM and numerical simulation using
FLUENT. Furthermore, Table II compares the percent contri-
butions to overall heat transfer from the hot wall and fin faces
calculated by different methods. It can be observed that the
present results agree very well with the reference data.

Secondly, the unsteady case with RC = 20 is tested to
validate the performance of the present solver for simulation
of fluid-solid conjugate heat transfer problems with different
specific heats. Initially, the temperature is set as (T0 + T1)/2
and the velocity is taken as 0 in the whole computational
domain. Figure 8 depicts the comparison of the computed
temperature profiles along the horizontal centerline on the
midplane of z = 0.5 at time t = 0.01 s, 0.02 s, and 0.05 s
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FIG. 5. Temperature contours for steady natural convection in a finned 3D cavity at (a) Ra = 104 and (b) Ra = 106.

with the results of FLUENT. In Fig. 9, the simulated u velocity
profiles along the vertical centerline on the midplane of z =
0.5 at different instantaneous times are compared with the
results of FLUENT. Clearly, the present results match very
well with those of FLUENT. In addition, it can be seen from

Fig. 8 that the temperature distributions in the flow domain
are affected significantly by the Rayleigh number due to heat
convection, while the temperature distributions in the fin are
basically the same for the four Rayleigh numbers considered
here. As shown in Fig. 9, the peak velocity for the cases

FIG. 6. Comparison of temperature contours at the z = 0.5 plane for steady natural convection in a finned 3D cavity at (a) Ra = 103, (b)
Ra = 104, (c) Ra = 105, and (d) Ra = 106. (Present: colored background with black solid line; FLUENT: white dashed line.)

053309-8



THREE-DIMENSIONAL LATTICE BOLTZMANN FLUX … PHYSICAL REVIEW E 101, 053309 (2020)

X

u/Uref

v/
U

re
f

Y

0 0.2 0.4 0.6 0.8 1

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

0

0.2

0.4

0.6

0.8

1

Fluent
Present

x-v

y-u

(a)

X

u/Uref

v/
U

re
f

Y

0 0.2 0.4 0.6 0.8 1

-60 -40 -20 0 20 40 60

-80

-60

-40

-20

0

20

40

60

80

0

0.2

0.4

0.6

0.8

1

Fluent
Present

x-v

y-u

(c)

X

u/Uref

v/
U

re
f

Y

0 0.2 0.4 0.6 0.8 1

-20 -10 0 10 20

-20

-10

0

10

20

0

0.2

0.4

0.6

0.8

1

Fluent
Present

x-v

y-u

(b)

(d)

FIG. 7. Comparisons of u velocity profile along the vertical centerline and v velocity profile along the horizontal centerline at the z = 0.5
plane for steady natural convection in a finned 3D cavity at (a) Ra = 103, (b) Ra = 104, (c) Ra = 105, and (d) Ra = 106.

of Ra = 105 and 106 is not monotonically increased with
time. This may be due to the fact that the heat convection is
significantly stronger than the heat conduction in these cases.
Thus, in the initial stage, the velocity field changes faster than
the temperature field. In terms of the computational effort, the
present solver requires 4.667 h to obtain the result at time
t = 0.01 s for the case of Ra = 104, while the computation of

FLUENT requires 4.659 h. Note that the adaptive time stepping
method is utilized in the simulation of FLUENT. This indicates
that the computational efficiency of the present solver is
comparable with that of FLUENT for simulation of unsteady
flows.

Case 3: Steady and unsteady natural convection in a finned
3D annulus

TABLE I. Comparison of average Nusselt number on the hot wall for steady natural convection in a finned 3D cavity.

References Ra = 103 Ra = 104 Ra = 105 Ra = 106

Frederick and Moraga [45] 1.167 1.781 4.256 8.612
Imani [47] 1.166 1.766 4.095 –
FLUENT 1.164 1.903 4.269 8.610
Present 1.164 1.895 4.255 8.547
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TABLE II. Comparison of percent contributions to overall heat transfer from the hot wall and fin faces for steady natural convection in a
finned 3D cavity.

Ra References Hot wall Top Bottom Front Sides

103 Frederick and Moraga [45] 68.119 5.337 10.179 11.941 4.424
FLUENT 68.783 4.182 10.988 11.567 4.479
Present 68.925 4.314 10.805 11.506 4.450

104 Frederick and Moraga [45] 69.870 –1.875 15.606 6.977 9.422
FLUENT 74.919 –2.525 15.607 5.821 6.178
Present 74.969 –2.468 15.483 5.841 6.174

105 Frederick and Moraga [45] 82.447 1.883 7.759 2.395 5.516
FLUENT 83.651 1.576 7.910 2.172 4.691
Present 83.763 1.606 7.767 2.194 4.671

106 Frederick and Moraga [45] 88.610 3.577 3.778 1.036 2.999
FLUENT 88.835 3.441 3.615 0.964 3.146
Present 88.983 3.472 3.501 0.981 3.062
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FIG. 8. Comparison of temperature profile along the horizontal centerline at z = 0.5 plane for unsteady natural convection in a finned 3D
cavity at (a) Ra = 103, (b) Ra = 104, (c) Ra = 105, and (d) Ra = 106.
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FIG. 9. Comparison of u velocity profile along the vertical centerline at the z = 0.5 plane for unsteady natural convection in a finned 3D
cavity at (a) Ra = 103, (b) Ra = 104, (c) Ra = 105, and (d) Ra = 106.

FIG. 10. Schematic of natural convection in a finned 3D annulus.

To validate the performance of the developed scheme on
a nonuniform mesh and curved boundary, the steady and un-
steady natural convection in a finned 3D annulus is simulated
in this section. This test case is actually a variant of the ax-
isymmetric natural convection in an annulus [48]. As shown in
Fig. 10, the annulus consists of two coaxial vertical cylinders
and two adiabatic walls at the top and bottom boundaries. The
inner radius, outer radius, and the height of two cylinders
are taken as Ri = 1, Ro = 2, and L = 1, respectively. The
temperatures of the inner and the outer cylindrical surfaces are
fixed at T1 = 1 and T0 = 0. A coaxial fin is centrally attached
to the inner cylindrical surface. The geometric parameters of

TABLE III. Comparison of average Nusselt number on the hot
wall for steady natural convection in a finned 3D annulus.

References Ra = 104 Ra = 105

FLUENT 2.330 5.332
Present 2.322 5.325
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FIG. 11. Temperature contours for steady natural convection in a finned 3D annulus at (a) Ra = 104 and (b) Ra = 105.

the fin are set as s/L = 0.5 and e/L = 0.1. The thermophysical
properties of the fluid and the fin are taken as κ1, Cp,1 and κ2,
Cp,2, respectively. The ratios of heat conductivity and specific
heat for the fin and the fluid are defined by Rκ = κ2/κ1 and
RC = Cp,2/Cp,1. The definitions of Prandtl number Pr and
Rayleigh number Ra are the same as those in Eq. (50). In
addition, the average Nusselt number on the inner cylindrical
surface is defined as follows:

Nu = − 2RiRκ

πξ (T1 − T0)L

∫ π/2

0

∫ L

0

∂T

∂r

∣∣∣∣
r=Ri

dydθ, (52)

where r and θ are the radial coordinate and the circumferential
coordinate, respectively. Due to the symmetry of the geometry
and the flow field, only a quarter of the annulus is simulated
in the calculation and the symmetry condition is applied along
the circumferential direction. In all simulations, we choose
Rκ = 10, Vc = 0.1, and Pr = 0.71. The simulated Rayleigh
numbers are taken as Ra = 104 and 105. In addition, grid

points in the radial direction, the circumferential direction,
and the axial direction are set as 101, 51, and 101, respectively.

At first, the steady case with RC = 1 is simulated and
the results are compared with those of FLUENT. Figure 11
shows the computed isothermal surfaces at Ra = 104 and 105.
Similar to the natural convection in a finned 3D cavity, the
existence of the fin displaces hot isotherms to the cold wall,
and the effect is enhanced as the Rayleigh number increases.
The comparison of temperature contours on the z = 0 plane
obtained by the present solver and FLUENT is depicted in
Fig. 12, and the comparisons of the u velocity profile along the
vertical centerline and v velocity profile along the horizontal
centerline on the z = 0 plane are shown in Fig. 13. It can
be seen that the present results agree very well with those of
FLUENT. As compared with the natural convection in a finned
3D cavity, this test example has a greater peak negative u
velocity above the fin for the same Rayleigh number, which
indicates that the flow reaches the hot wall above the fin more

FIG. 12. Comparison of temperature contours at z = 0 plane for steady natural convection in a finned 3D annulus at (a) Ra = 104 and (b)
Ra = 105. (Present: colored background with black solid line; FLUENT: white dashed line.)
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FIG. 13. Comparisons of u velocity profile along the vertical centerline and v velocity profile along the horizontal centerline at z = 0 plane
for steady natural convection in a finned 3D annulus at (a) Ra = 104 and (b) Ra = 105.

easily. As a result, more significant convection heat transfer in
this area is achieved for the natural convection in a finned 3D
annulus. The average Nusselt numbers on the inner cylindrical
surface are tabulated in Table III and compared with the
results of FLUENT. Once again, the present results agree well
with the reference data, which demonstrates the accuracy and
effectiveness of the present solver for simulation of steady
fluid-solid conjugate heat transfer problems on nonuniform
mesh and curved boundaries.

In addition, the unsteady fluid-solid conjugate heat transfer
problem in a finned 3D annulus is simulated. Like the un-
steady natural convection in a finned 3D cavity, the ratio of
specific heat is taken as RC = 20, the initial temperature is set
as (T0 + T1)/2, and the initial velocity is specified as 0. The
computed temperature profile along the horizontal centerline
on the z = 0 plane and u velocity profile along the vertical

centerline on the z = 0 plane at time t = 0.01, 0.02, and 0.05
s are shown in Figs. 14 and 15, respectively. Also included in
these figures are the results obtained by FLUENT. Obviously,
the quantitative results obtained from the present solver agree
well with the reference solutions. Moreover, for the case of
Ra = 104, the peak velocity increases monotonically with
time, while for the case of Ra = 105, the peak velocity first
increases and then decreases. This phenomenon is the same
as that of the unsteady natural convection in a finned 3D
cavity.

V. CONCLUSIONS

This work presents a 3D LBFS for simulation of fluid-solid
conjugate heat transfer problems with a curved boundary.
To accurately recover the energy equation of conjugate heat
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FIG. 14. Comparison of temperature profile along the horizontal centerline at z = 0 plane for unsteady natural convection in a finned 3D
annulus at (a) Ra = 104 and (b) Ra = 105.
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FIG. 15. Comparison of u velocity profile along the vertical centerline at z = 0 plane for unsteady natural convection in a finned 3D annulus
at (a) Ra = 104 and (b) Ra = 105.

transfer problems, the total enthalpy distribution function
(D3Q7 model) is chosen to reconstruct the numerical flux of
the energy equation. For calculation of the numerical fluxes of
continuity and momentum equations, the density distribution
function (D3Q15 model) is adopted. Through the Chapman-
Enskog expansion analysis, it is found that the distribution
function truncated to the Navier-Stokes level is actually the
function of equilibrium states at the cell interface and its
surrounding points, which can be computed easily by the
interpolation technique. As a result, the macroscopic fluxes
at the cell interface can be calculated by the moments of these
particle distribution functions.

The steady and unsteady natural convection in a finned
3D cavity and in a finned 3D annulus are simulated to vali-
date the performance of the present solver. Numerical results

are compared well with the reference data and the results
of FLUENT. These test cases demonstrate the accuracy and
flexibility of the present solver for simulation of 3D fluid-
solid conjugate heat transfer problems on a nonuniform mesh
and curved boundary. For simulation of unsteady flows, it is
shown that the computational efficiency of the present solver
is comparable with that of FLUENT. Thus, it is believed that the
present method has great potential for solving the problems of
conjugate heat and mass transfer in practice.
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