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Dynamic coupling between particle-in-cell and atomistic simulations
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We propose a method to directly couple molecular dynamics, the finite element method, and particle-in-cell
techniques to simulate metal surface response to high electric fields. We use this method to simulate the evolution
of a field-emitting tip under thermal runaway by fully including the three-dimensional space-charge effects.
We also present a comparison of the runaway process between two tip geometries of different widths. The
results show with high statistical significance that in the case of sufficiently narrow field emitters, the thermal
runaway occurs in cycles where intensive neutral evaporation alternates with cooling periods. The comparison
with previous works shows that the evaporation rate in the regime of intensive evaporation is sufficient to ignite
a plasma arc above the simulated field emitters.
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I. INTRODUCTION

Field-emitting tips play a detrimental role in various vac-
uum devices that require high electric fields, such as vacuum
interrupters [1], x-ray sources [2], fusion reactors [3], and
particle accelerators [4]. When a field emitter is subjected to
currents exceeding a certain threshold, the emission becomes
unstable and swiftly results in a vacuum arc [5,6]. The latter is
characterized by the ignition of a plasma in the vacuum gap,
which drives a large current and converts the gap into a short
circuit. The ignition of an arc in vacuum (vacuum breakdown)
can cause catastrophic failure in electron sources [5,7].

Although vacuum arcs have been studied more than half
a century and it is well-known that they appear after intense
field electron emission [6,8], the physical mechanisms that
lead from field emission to plasma ignition without the pres-
ence of any ionizable gas are not understood yet. One hypoth-
esis commonly used to explain the plasma build-up in vacuum
after intense field emission is the “explosive emission” sce-
nario [8–10]. According to it, when intensive field emission
takes place, there is a critical current density beyond which
heating is produced at a rate the emitter cannot dissipate,
which leads to heat accumulation, sufficient to cause instant
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explosion and plasma formation. This phenomenological de-
scription does not give an insightful physical understanding
of the underlying processes and cannot a priori predict the
behavior of a specific system. Such empirical considerations
have been common in the vacuum arcing theory since the
1950s, as the modern computational tools necessary to de-
scribe the physical processes of such a complex phenomenon
as vacuum arcing were not available. Thus, there is a growing
need for the development of theoretical concepts and compu-
tational tools that describe the vacuum arc ignition in a rigor-
ous quantitative manner and provide a deep understanding of
the physical processes that lead to it.

This has changed recently, since various computational
methods have been employed to study vacuum arcs. In a
recent work [11], plasma formation in Cu cathodes was
studied by means of particle-in-cell simulations. It was found
that plasma can build up in the vicinity of an intensively
field-emitting cathode, assuming that not only electrons but
also neutral atoms are emitted from the cathode surface.
Moreover, it was shown that it is sufficient to supply about
0.015 neutrals per electron to initiate the ionization avalanche
leading to the formation of a stable plasma. Recent multiscale
atomistic simulations on Cu nanotips [12] revealed a thermal
runaway process which causes field-assisted evaporation of
Cu atoms and nanoclusters at a rate exceeding the threshold
found in Ref. [11]. Thus, combining these two independently
obtained results, one can consider intensively field-emitting
tips as plausible sources of plasma, since they can supply both
species, electrons and neutrals, at individual rates.

However, it is not clear yet whether a field-emitting tip
is indeed able to produce sufficient densities to initiate the
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ionization avalanche, since there is no technique which can
address this issue concurrently. To answer this question, a
fully coupled molecular dynamics (MD) and particle-in-cell
(PIC) simulation technique must be developed. The MD part
will describe the behavior of atoms under given conditions,
such as heat generated by field emission currents and stress
exerted by the field, while the PIC part will follow the
dynamics of the particles above the surface. In this way, the
space-charge buildup above the field-emitting tip can also be
found directly without a need for simplifying assumptions.

In Ref. [12] we attempted to take into account the space-
charge effect by using a semiempirical approximate model,
as proposed in Ref. [13]. This model treats the emitter as
planar, using a universal correction factor to account for the
three-dimensional (3D) nature of the geometry, which was
an external adjustable parameter for our simulations, with
its value roughly approximated based on previous PIC cal-
culations [14]. Although we obtained promising results with
this model, the semiempirical correction does not capture the
complex 3D distribution of the space charge developed around
the dynamically varying tip geometry. Moreover, the accuracy
of the calculations of the space charge affects directly the
value of the field emission currents and all the subsequent
processes developing in the tip due to the field emission
process.

In this paper, we present an approach of the coupled MD-
PIC technique for a more accurate estimation of processes
contributing to plasma onset. In particular, we develop a
method that directly couples PIC and MD simulations of the
metal surface response to the field aided by the use of the
finite element method (FEM). We use the model to simulate
similar process as in Ref. [12], but including accurately the
3D space-charge distribution that builds up above the highly
curved nanometric field-emitting tip. There are some attempts
in the literature to simulate the evolution of the space charge
using an MD-like method [15,16] where all interelectron
interactions are considered. For specific applications, such
models may be sufficient, but for computational efficiency
we prefer to use the PIC method. The latter provides a
sufficiently reliable kinetic description of space charge or
plasma evolution and allows incorporating the complex nature
of the atomic processes and plasma-surface interactions, while
maintaining a feasible computational load as compared to the
MD-like methods [11,17]. We also present a comparison of
the runaway process between two tip geometries of different
widths. That comparison takes us closer to obtaining an es-
timation for the runaway occurrence probability in structures
observed in experiments [18]. The incorporation of the PIC
method into our simulations forms a decisive step towards the
direct coupling between atomistic and plasma simulations, in
order to fully reveal the processes that take place during the
initiation of a vacuum arc.

II. METHOD

We present here a model that combines classical MD,
FEM, PIC, and electron emission calculations (Fig. 1). The
model allows us to assess the effect of different physical
processes on the dynamic evolution of the atomic structure
of metal surfaces exposed to high electric fields. While the

FIG. 1. The relation between different components in the pro-
posed multiscale-multiphysics model.

movement of the atoms is followed by an MD algorithm,
the movement of the emitted electrons is tracked using the
PIC method. FEM provides the tools for concurrent and self-
consistent electric field and heat diffusion calculations, whose
output affects the force and velocity calculations in MD and
the force exerted on the electrons in PIC. Such a methodology
forms the conceptual basis for the full coupling between metal
surface and plasma simulations. A full schematic of the model
is provided in Appendix A.

The model is based upon the previously developed frame-
work FEMOCS [19]. In FEMOCS, an unstructured mesh is
dynamically built around surface atoms, the density of which
is controlled independently in all regions of the simulation
domain. The mesh consists of linear hexahedral elements that
are built into tetrahedra that allow achieving satisfactory accu-
racy while keeping the computational cost within reasonable
limits. For more details about meshing, local solution extrac-
tion, and optimization features in FEMOCS, see Ref. [19].
In the following sections we provide more details about the
newly developed methodology for calculating electric field,
electrostatic forces, and velocity perturbation.

A. Electric field

A common way to take into account an electric field within
a computational model is to define it as the negative gradient
of the electrostatic potential � that, in turn, can be calculated
by solving the Poisson’s equation in the vacuum (domain �1

in Fig. 2)

�∇ · (ε �∇�) = −ρ, (1)

Wide extension

Thin extension

MD
region

FIG. 2. Boundary regions and geometry of the simulation
domain, which consists of an atomistic region and an extension.
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FIG. 3. Electric field calculation by means of particle-in-cell method.

where ε is the dielectric constant and ρ is the space-charge
density. We solve Eq. (1) iteratively with the boundary condi-
tions (BC) defined in the vacuum (see Fig. 2) as

�∇� · �n = E0 on �1,

�∇� · �n = 0 on �2, (2)

� = 0 on �3,

where E0 is the long-range applied electric field. The bound-
ary value problem (1)–(2) is solved in FEMOCS by means
of FEM. The derivation of weak and algebraic formulation of
Eqs. (1)–(2) is provided in Appendix B.

B. PIC method

To obtain the space-charge distribution ρ(�r) in the vacuum
above the metal surface, which enters Eq. (1), we use the PIC
method [20–22]. Within PIC, the space charge is formed by a
set of superparticles (SPs), which is a common approach for
space-charge and plasma simulations. Each SP is a group of
charges of the same type, electrons or ions, that act within the
model as a single particle. In other words, the SPs represent a
sampling of the continuous phase space occupied by the real
particles like electrons or ions. Such a grouping is justified by
the fact that the electrostatic and electrodynamic interactions
depend on the charge-to-mass ratio instead of the charge or the
mass of the particles. The size of each SP is determined by its
weight wsp, which corresponds to the (fractional) number of
particles it represents. The SP weight is determined indepen-
dently for each simulation, in order to achieve a sufficiently
smooth charge distribution with a feasible number of SPs.

The movement of SPs is affected by the global electric
field, which includes the long-range electrostatic interactions
between particles. The short-range interactions with nearby
SPs are taken into account by means of binary Monte Carlo
collisions (see Appendix F for details). This makes it possi-
ble to significantly enhance the computational efficiency and
simulate large systems for long times. Furthermore, the binary
collision technique can be used to consider the interactions of
different types of particle species in a plasma, such as impact
ionizations. Our current model, however, includes only the
electrons, ignoring the presence of ions as well as electron-
neutral interactions. Within this approximation, we can study
the processes at the early stage of plasma formation, which
is the focus of the current work. However, the model can
be extended further if later stages of plasma evolution are of
interest. In the following four sections, we give an overview
of the various stages of the PIC model, which are summarized
in Fig. 3.

1. Particle mover

The propagation of SPs is performed by solving iteratively
Newton’s equations of motion for each SP:

�̇r = �v,
(3)

�̇v = q

m
�E ,

where q
m is the charge-to-mass ratio of SPs. In Eq. (3), SPs are

affected only by the electrostatic field, since the magnetic field
which is induced by the currents within the tip is negligible.
We solve Eq. (3) numerically by using the leapfrog integration
scheme [20]. In this method, the positions and the velocities
of SPs are calculated as

�vk+0.5 = �vk + Q �Ek, (4a)

�rk+1 = �rk + �t �vk+0.5, (4b)

�vk+1 = �vk+0.5 + Q �Ek+1, (4c)

where the subscript indicates the time step, Q = q
m

�t
2 , and �t

is the PIC time step. Note that the calculation of �vk+1 requires
the value of the electric field at the time step k + 1. This is
obtained in the field solver between steps (4b) and (4c), using
as input the positions �rk+1.

Since we have used periodic BCs for the electric field in
the lateral directions, we apply the same type of symmetry
for the SPs. This means that an SP that crosses the side
boundaries �2, will reappear at the symmetric point at the
opposite boundary of the box. Such a mapping, however,
occurs extremely rarely, as the simulation box is chosen wide
enough to prevent particles reaching sides before hitting the
top boundary �1 where they are absorbed. For that reason,
the contribution of mirror images of the simulation box to the
total SP flux is negligible. Note that the top boundary with a
Neumann BC does not represent a physical anode electrode,
but rather the uniform far field behavior of the gap between
two macroscopically flat electrodes. Thus the box is chosen
in our simulation to be sufficiently high so that the electric
field becomes uniform and the space charge negligible, which
motivates the SP removal at that side.

Next to the top boundary �1, the cathode boundary �3

also acts as a particle absorber. On �3, the absorbed particles
may cause secondary effects, such as secondary and higher
order emission, plasma recycling, impurity sputtering, etc.
Since these effects are beyond the scope of the current model
and almost all electrons are removed at the top boundary, we
leave their implementation for future work. Some attempts to
take into account the above-mentioned effects can be found
elsewhere [23–27].
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2. Particle weighting

An important part of any PIC simulation, both conceptually
and computationally, is mapping of the electric field to the
position of SPs. In our model, we first locate the finite element
that surrounds the particle and then use the shape functions of
that element to interpolate the electric field at the position of
the SP. The search for the element is carried out in a similar
manner as during the particle injection (see Appendix E), but
instead of the three barycentric coordinates, here we need
four, i.e., one for each tetrahedral vertex.

To solve Eq. (1) by solving a matrix equation (B7), an
inverse operation needs to be performed since the SP charge
is required in the right-hand side (RHS) fi of Eq. (B7). This,
however, cannot be done immediately, as the SP in PIC is
assigned a discrete charge q, while in Eq. (1) the charge
appears in a form of charge density ρ. To overcome this issue,
we represent the charge of each SP by means of the δ function,
so that

ρ(�r) =
∑

i

qiδ(�r − �ri ), (5)

where δ(�r − �ri ) is the Dirac δ function and the summation
goes over the SPs that are located in the finite element where
ρ is evaluated. By doing such a substitution, the RHS of
Eq. (B7) becomes

fi = qwsp

ε

∑
j

Ni(�r j ) +
∫

�1

NiE0 d�, (6)

where �r j are the coordinates of the jth SP that is located in
the element where fi is computed. It is important to note that
to prevent self-forces, the same shape functions Ni are used as
during the mapping of the field to the position of the SPs and
during the distribution of the charge inside an element.

3. Particle injection

In our simulations, the space charge is built up due to
intensive electron emission. Using the field emission tool
GETELEC [28], we calculate the current density Je in the
centroid of each quadrangle that is located at the metal-
vacuum boundary. Je determines the number of electron SPs,
nsp, that will be injected from a given quadrangle with area A
at given time step:

nsp = JeA�t

ewsp
, (7)

where e is the elementary charge. In general, nsp is a real
number that has integer and fractional parts. Since the number
of injected SPs can be only integer, we use a uniformly
distributed random number R ∈ [0, 1] to decide whether to
round nsp up or down:

n′
sp = floor(nsp) if R � nsp − floor(nsp),

n′
sp = ceil(nsp) otherwise. (8)

This discretization scheme guarantees that on average, the
number of emitted SPs remains the same as given by Eq. (7).
The emitted SPs are distributed uniformly on the quadrangle
surface. More details about it can be found in Appendix E.
After injection, the electric field �E = �E (�r) is used to give

them an initial velocity

�v0 = q

m
�E�t

(
1

2
+ R

)
(9)

and displacement

��r = �v0�tR. (10)

We add a term 1
2 in Eq. (9) to accelerate the particle by half

a time step and initialize the velocity for proper leapfrog
stepping. It is needed, because to enhance computational
efficiency, we inject SPs between particle mover steps of (4a)
and (4b) that were described in Sec. II B 1. The additional
random number R provides a fractional push by a small
random fraction of the previous time step, preventing the par-
ticles from forming artificial bunches [11]. This small initial
push enhances computational stability, without significantly
affecting the results, as shown in Sec. III A.

4. Electron superparticle collisions

In addition to interaction with the field, every electron
experiences the effect of other charges present in the system.
A naive approach to take into account the Coulomb forces
would be to calculate exactly the interaction between each pair
of particles within the Debye sphere. This, however, would
result in O(n2) complexity and is therefore not suitable for the
large systems aimed in the present work. Instead, we applied
a more reasonable Monte Carlo binary collision model [29].
More details about it can be found from Appendix F.

C. Electrostatic forces

The charge induced by an electric field on the metal surface
affects the dynamics of the atomic system due to additional
electostatic interactions. To assess this effect, the value of the
induced charge on the atoms must be estimated and introduced
to the MD simulations where electrostatic interaction between
the atoms is included as a force perturbation. In this way the
total force on an atom becomes �F = �FEAM + �FL + �FC , where
�FEAM is the force obtained from the interatomic potential. The
main perturbation is due to the Lorentz force

�FL(�r) = 1
2 q �E (�r). (11)

In this equation, the term 1
2 originates from the Maxwell stress

tensor [30] and takes into account that only half of the charge
is exposed to the field; the rest is shadowed by the material
domain. A less significant contribution to the total force �F
comes from the Coulomb interactions between the surface
charges

�FC (�ri ) = 1

4πε0

∑
j �=i

qiq j

ri j
r̂i j exp(−ξri j ), (12)

where qi is the charge of ith atom, ri j the distance between
the ith and jth atoms, and r̂i j the unit vector in the direction
of �ri j . The exponent in Eq. (12) describes the screening of the
ith charge by the conduction electrons in metals and the value
of the screening parameter ξ depends on the material and its
crystallographic orientation. In our case, ξ (Cu) = 0.6809 Å−1

as defined in Ref. [31].
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The surface charge can be estimated according to Gauss’s
law [31] ∮

�

�E · �dA = Q

ε0
, (13)

where Q is the charge inside a closed surface �. Using
Eq. (13), one can discretize the continuous distribution of
surface charges on a metal surface to assign a partial charge
to each atom on the surface corresponding to the value of
the electric field applied at the atom position. However, it
is not trivial to decide how to identify the area which con-
tributes to the charge on a given atom. In Refs. [12,31], a
rectangular geometry of the grid points associated with each
atom was suggested. Yet this approach is limited by a high
computational cost for large-scale simulations. In the current
work, we selected a different approach to calculate the surface
charge, which allowed for higher computational efficiency
while maintaining satisfactory accuracy. This approach con-
sists of two steps. First, we calculate the charge of the mesh
faces in the metal-to-vacuum boundary, hereafter referred to
as face charge:

Qi = ε0EiAi, i = 1, 2, . . . , nfaces. (14)

Notice that in Eq. (14) it is enough to use the scalar field
and area, since �E ‖ �A due to the Dirichlet BC. By using a
weight function wi j ≡ w(�ri − �r j ) (not to be confused with the
PIC superparticle weight wsp), the face charge is distributed
between the atoms as

q j =
∑

i

wi jQi, j = 1, 2, . . . , natoms. (15)

The total charge must remain conserved, therefore the weight
function must satisfy ∑

i

wi j = 1 ∀ j. (16)

As the exact mathematical form of wi j can be chosen quite
arbitrarily, we chose a form that is computationally cheap and
prevents singularities for close points:

wi j = exp(−|�ri − �r j |/rc)∑
j exp(−|�ri − �r j |/rc)

, (17)

where the cutoff distance rc determines the range where the
charge Qi is distributed. The tests show that on flat regions the
results are almost independent of the exact value of rc until
it exceeds the maximum edge length of surface triangles. For
this reason in our simulations we use an empirical rc value of
0.1 nm.

The face-charge method allows calculating an accurate
surface charge for atoms that are located on atomic planes.
Charges in the regions with protruding features require further
effort to achieve satisfactory accuracy. We improve the accu-
racy by building the Voronoi tessellation around the surface
atoms in those regions as shown in Fig. 4. The facets of the
Voronoi cells are assumed to constitute the surface area for
the given atom to estimate the charge on it. Before generation,
however, additional support points need to be built above
the surface to limit the extension of the Voronoi cells into
the infinity. We build such support cloud by the following
process:

Bulk
atom

Voronoi facets
exposed to vacuum

Surface
atom

Support
point

Triangles

Voronoi
cell

Shift
vector

FIG. 4. Generation and usage of Voronoi cells for surface charge
calculation.

(1) Copy surface atom as a new point �p
(2) Locate the triangle f where the projection of �p, in

direction of f normal �n, lies within f
(3) Move �p in the direction of �n for distance λ

(4) Loop until each surface atom has a support point.
Empirical tests have shown that good results are obtained

if the length of the shift vector λ equals one lattice constant
of the atomistic system. The coordinates of the surface atoms
and the support points are input in the TetGen [32] to generate
a Voronoi tesselation around these atoms. Note that the bulk
atoms are in Fig. 4 shown for visual purposes only and are not
considered during the Voronoi tesselation generation.

For each surface atom, we determine the Voronoi facets
that are exposed to the vacuum, which are used in Eq. (13) to
assess the partial charge associated with the atom. Assuming
that the electric field in the location of the facets equals
approximately the field at the atom position, �Ei ≈ �Ej , we
approximate Eq. (13) for atoms in the regions with increased
roughness as

q j = ε0 �Ej ·
∑

i

�Ai, (18)

where the summation goes over the Voronoi facets of the jth
atom that are exposed to vacuum.

D. Heating

We have shown previously [12,33,34] that thermal effects
caused by field emission play a significant role in the evolution
of nanotips under a high field. To take these effects into
account, we calculate the electron emission current density Je

and the Nottingham heat PN [35,36] on the emitting surface
by using our field emission tool GETELEC [28]. To calculate
the volumetric resistive heating power density, we use Joule’s
law as

PJ (T ) = σ (T )( �∇�)2, (19)

where σ (T ) is the electric conductivity and � is the electric
potential obtained by solving the continuity equation in a
metal (domain �2 in Fig. 2)

�∇ · (σ �∇�) = 0, (20)
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which comes with the following boundary conditions:

σ �∇� = �Je on �3,

σ �∇� = 0 on �4,

� = 0 on �5. (21)

The resistive and Nottingham heat cause a nonuniform
temperature distribution inside the tip. This distribution is
found by solving the time-dependent heat equation in a metal
(domain �2)

�∇ · (κ �∇T ) + PJ = Cv

∂T

∂t
, (22)

where Cv is the volumetric heat capacity. The initial and
boundary conditions for Eq. (22) are

T (t = t0) = Tamb on �2,

κ �∇T · �n = PN on �3,
(23)

κ �∇T · �n = 0 on �4,

T = Tamb on �5,

where Tamb is the ambient temperature and PN is the boundary
heat flux due to the Nottingham heating. In Eq. (22) and (23),
κ = κ (T ) is the heat conductivity as given by the Wiedemann-
Franz law [37]

κ (T ) = LT σ (T ), (24)

where L is the Lorentz number (see the next paragraph).
Equations (20) and (22) with the corresponding boundary
conditions are solved in FEMOCS by means of FEM. The
details about how we discretized these equations can be found
in Appendixes C and D.

Since we aim to simulate the dynamic evolution of nan-
otips, the mean-free path of electrons inside such systems
becomes comparable with the dimensions of the tip itself.
Similarly to our previous work [12], we took into account
the finite-size effects (FSEs) by modifying the bulk value of
σ (T ) [38] by a correction factor ν = ν(T, d ), as calculated
by a simulation method developed by Yarimbiyik et al. [39].
The characteristic size of the nanotip d equals the mean
diameter along the tip for the initial geometry. Similarly, for
the Lorentz number in Eq. (24) we use an FSE-reduced value
of L = 2.0 × 10−8 W � K−2, as reported for a Cu film of
40 nm thickness [40].

The resulting temperature distribution is used to adjust
the atomistic velocities in MD. For this, the atoms are first
grouped according to mesh tetrahedra that surround them.
After this, a Berendsen thermostat [41] is applied separately to
each such group. The target temperature T of the thermostat
is obtained by averaging nodal temperatures of a tetrahedron,
while the macroscopic temperature of the atomistic domain
T0 equals the average of microscopic temperatures of all the
atoms of the same group. For the control, we use a time
constant of τ = 1.5 ps. Such τ has shown previously [12] to
prevent the simulation artifacts in MD, while being signifi-
cantly lower than the relaxation time of the heat equation.

100 200 300 400 500 600 700 800 900 1000
Voltage [V]

10-3

10-2

Cu
rr

en
t [

A]

Child-Langmuir
Semianalytic
PIC

FIG. 5. Current-voltage dependence from various models.

III. RESULTS AND DISCUSSION

A. Model validation

Prior to using the proposed model for actual simulations of
physical systems, we validate our space charge and surface
charge calculation methods. The field solver and emission
module were verified earlier in Refs. [19] and [28].

1. Validation of PIC

We validate our PIC model by calculating the current-
voltage curve for a planar cathode-anode system, for which
a 1D semianalytical solution of Poisson’s equation is avail-
able [13,42,43]. For this, we apply a voltage V between
two parallel plane electrodes of area A = 135 nm2 that are
separated by a gap distance of d = 18.2 nm and run PIC
simulations for a few tens of fs until the total emission current
I converges to a steady-state value.

For this geometry, the current density J can be accurately
calculated by utilizing a stationary-point iteration to obtain the
self-consistent values of the cathode electric field as obtained
by the analytical solution of Poisson’s equation and the current
density J as found by the Fowler-Nordheim equation [12].
For high voltages, this curve asymptotically converges to the
Child-Langmuir law [42,44,45].

The results of the PIC simulation, together with the semi-
analytical and the Child-Langmuir curves, are shown in Fig. 5.
We observe that our PIC model is in very good agreement with
the semianalytical curve with an RMS error of 1.9%.

2. Validation of surface charge model

To validate the surface charge calculation method, we
compare it against our earlier model HELMOD [31]. For
this, we calculate the charge distribution on the apex of an
R = 3 nm, h = 11.5 nm nanotip that is placed on a W = 93.2
nm substrate. Both the tip and substrate are cut out from a
single-crystalline 〈100〉 Cu block.

We measure the surface charge both with HELMOD and
with the model presented here and calculate the relative
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Polar angle [deg]

FIG. 6. Relative difference between the surface charges obtained
with HELMOD [31] and with the current model. The difference is
calculated along the surfaces of a {100} and a {110} slice of the apex.

difference ε between them. The variation of ε along the
surface of the {100} and {110} slice of the apex is presented
in Fig. 6. The data show that the current model tends to
provide slightly smaller charges than HELMOD with a mean
difference of 6.5% ± 1%. The largest deviation occurs on sites
that correspond to atoms below atomic steps and kinks. This
indicates that Voronoi cells that are built around those sites
tend to be poorly exposed to vacuum, and for that reason, a
smaller surface area is assigned for those sites as compared
with HELMOD. From the {110} slice it is also visible that
{110} surfaces are a source of systematic difference. This
occurs because the Voronoi cell-based model tends to assign
charge also for atoms on the second layer of the {110} surface,
while HELMOD considers those atoms as totally shadowed.

B. Simulation setup

We used the model described in Sec. II to simulate the
behavior of a Cu nanotip under a high electric field. The ex-
pected outcome of the simulation is that the upper part of the
tip will experience extensive deformations, while the lower
section remains practically constant. Such a scenario helps us
to optimize the computational cost by simulating in MD only
the upper half of the initial system. The bottom region, which
completes the geometry for calculating the physical quantities
that affect the atom motion, is built separately and remains
unchanged for the whole simulation. We choose different
widths for this extension in order to investigate the impact of
the heat dissipation on the processes at the apex of the tip.

The geometry of the tip that defines the vacuum domain �1

and the metal domain �2 is illustrated in Fig. 2. In �1, PIC and
electric field calculations are performed, while MD and the
heat solver operate in �2. Notice that MD uses only the upper
part of �2 (enclosed with dashed lines in Fig. 2), while FEM
covers all of it. A conical tip with an aperture angle γ = 3◦,
initial height h = 93 nm, and a hemispherical cap of radius
R = 3 nm is placed into a simulation box of height H = 10h

(H is adjusted with the change in nanotip height). The tip lies
on a substrate of width W = 620 nm and height Hb = 7.3 nm.
The atomistic region is cut out from a monocrystalline 〈100〉
Cu box with a lattice constant of 3.64 Å. The bottom layer of
the atoms is fixed in place to ensure a smooth transition to the
extended part. Two different extension geometries were used,
with characteristic radii of rthin = 17 nm and rwide = 54 nm.

The simulation geometry is motivated from the experimen-
tal observations that suggest the existence of field emitters
with an aspect ratio of 20–100 [46] on flat Cu surfaces. The
size of the tip is chosen to be large enough to prevent instabil-
ity due to excess surface energy [47,48] and sufficiently small
to result in a reasonable computational cost. In order to obtain
results that are directly comparable to our previous work [12],
we chose the dimensions of the thin system to be identical to
the ones used in Ref. [12]. In order to obtain sufficient mesh
density, the characteristic distance between mesh nodes in the
apex region is chosen to be one half of lattice constant of the
initial atomistic system.

The MD simulations were carried out by means of the clas-
sical MD code PARCAS [49–51]. The FEM calculations in
FEMOCS are based on open-source C++ library Deal.II [52].
For the MD simulations we used the interatomic EAM poten-
tial developed by Mishin et al. [53]. This potential has been
successfully used in our previous works [12,33,47] and has
shown accurate reproduction of nonequilibrium system ener-
getics [53]. The stochastic nature of the thermal effects were
taken into account by running 50 independent simulations
with different random seeds. In all cases, the initial velocities
were sampled from the Maxwellian distribution with T =
300 K. No periodic boundaries were applied for the MD cell,
while in FEM and PIC calculations, the periodic boundaries
were applied in lateral dimensions. A constant time step of
4.05 fs was used for MD, 0.51 fs for PIC, and 40 fs for the
heat equation. An electron SP weight of wsp = 0.01 in PIC
gave a sufficiently dense sampling of the phase space in order
to ensure a smooth space-charge distribution.

We applied a long-range electric field E0 = 0.6 GV/m for
the thin tip. The lower field enhancement factor of the wide
tip as compared to the thin one is compensated by adjusting
the applied field to E0 = 0.608 GV/m to ensure the same field
emission current from both tips.

C. Course of the simulation

We simulated the runaway process in a nanotip similarly to
the one in Ref. [12]. Despite the usage of a more simplistic
1D space-charge model in Ref. [12], the overall picture of
the runaway process was confirmed in current simulations. In
addition, here we provide the statistical analysis of the nanotip
behavior and estimate the time duration of the entire process
until the tip stops emitting neutrals.

In Fig. 7 we show the evolution of the height of the thin
and wide nanotips that is averaged over the parallel runs.
The error bars in this graph indicate the standard error of
the mean height and reflect the differences in evolution of
individual tips. On the graph one can observe a tendency in
height variations over time in the form of a wave. Due to the
high temperatures and strong forces the droplets of molten Cu
once in a while leave the apex of the tip. Normally this leads
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FIG. 7. Time evolution of the averaged nanotip heights (left) and some characteristic excerpts from the simulation (right). Labels (a)–(h)
on the left correspond to the frames on the right side. Error bars show the variation of the data between parallel runs in a form of standard error
of the mean.

to an abrupt change in the tip height, but due to averaging
this change is smoothed producing the shape of a wave. A
rise of the tip height after its fall is seen in the majority of
the simulations, indicating that the runaway is able to revive.
This tendency is stronger for thinner tips, since the efficient
heat conduction in the wider tips cools the shortened tip faster.
To illustrate the process of height change in the tips evolving
under the applied electric field, some characteristic simulation
snapshots designated by the corresponding letters on the left
of Fig. 7 are provided on the right of Fig. 7.

In Fig. 8 we analyze the correlation between the averaged
total emitted current and the apex temperature. In this graph,
we see that due to the build-up of space charge, the field
emission current drops suddenly within the first few fs of the
simulation. In the following approximately 20–25 ps, there is
another slight but consistent drop in the current. This feature

appears due to the shape modification of the apex region after
melting, which leads to a reduction of the emitting area.

As long as the temperature in the tips does not exceed
the melting point, the height of the tips does not change
[Fig. 7(a)]. After the melting point was reached, the tips
start growing, causing a step-by-step increase in the local
field, current, and temperature [Fig. 7(b)]. The increase lasts
until the thermal energy of the apex atoms exceeds their
binding energy, which causes a gradual disintegration of the
tip, either atom by atom, or in a form of clusters. The latter
is often preceded by the formation of a neck below the apex
[Fig. 7(d)]. In some cases, a smaller cluster of the size up
to a few atoms might also be detached [Fig. 7(c)]. Within
a necking region, the high current density causes intensive
Joule heating leading to a self-amplifying increase in local
temperature until the top of the tip is detached. After the
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FIG. 9. Time evolution of the relative height of molten region.

break-up, the tips cool down [Fig. 7(e)], but within a few
tens of ps, the temperature increases again and the whole
process reappears. The cycle lasts until the enhanced local
field is not sufficiently high to generate the field emission
current capable to heat the tip above the melting point. In
this case, the tips stabilize and the runaway process ceases
[Fig. 7(h)].

Although initially the growth rate is similar in thin and
wide tips, the temperature rise in the wide tip soon starts
lagging behind the one in the thin tip. The lag occurs despite
the same amount of heat generated initially in both systems.
The more efficient cooling in the wider tip prevents the fast
expansion of the region of molten Cu at the top of the tip,
hence reducing also the growth rate. This is seen in Fig. 9,
which shows the relative height of the molten region in a
tip. In this figure we see that in the thin tips, the intensive
evaporation starts when about 30% in the height of the tip
is molten, remaining higher than this value for the whole
evaporation period. In the wide tip, on the other hand, that
ratio barely reaches 15%. The molten region between solid
Cu and the apex effectively acts as a thermo-electric insu-
lator, since beyond the melting point, the thermo-electrical
resistivity of Cu increases abruptly more than 60% [38].
The higher percentage of the molten region in the thin tip
reduces efficiently its heat conduction, inducing a stronger
accumulation of the heat at the apex of the tip.

We note that Figs. 7–9 show the averaged data of multiple
runs. Due to averaging, we do not observe in these plots
any abrupt transitions. In these graphs, we observe a smooth
modulation of the data. We will refer to the well-pronounced
peaks in Fig. 7 as tip growth phases. During each such growth
phase the tip first sharpens, and after an evaporation event or
a sequence of them, it blunts down until the emission currents
reheat the tip, restarting the growth phase.

However, by plotting the height evolution of individual
tips, we see that the height does not change smoothly, but
rather abruptly due to large evaporation events, as demon-
strated in Fig. 10. Here we see that the first growth phase
does not have a single well-defined peak. Instead, while the
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FIG. 10. Four separate height profiles of thin nanotips that illus-
trate the variation in shape and timings of the curves. Dashed lines
demonstrate the method for determining tevap and tcool. Labels (a)–(h)
correspond to snapshots in Fig. 7.

tip is still in the growing phase, smaller peaks indicating
detachment of small clusters of atoms appear, although these
do not affect dramatically the dynamics of the tip evolution.
These events are stochastic, and the time interval between
them may vary from a few up to hundreds of ps. Since
evaporation starts already from the beginning of the growth
phase (approximately when the first small peak occurs) and
continues until the large piece of molten copper detaches from
the surface, the time interval tevap until the major evaporation
event is not well defined. To describe quantitatively the
dynamics of the field-emitting tip and enable the comparison
between different cases, we measured the time intervals until
the start and the end of the nanotip growth phase, ts and te, and
defined tevap = 1

2 (ts + te). The time intervals ts and te are found
at boundaries of half maximum of the height curve around
the first intensive evaporation period (see Fig. 10). During the
second tip growth phase the tip was growing until a large
droplet of the molten copper was detached. Since this was
always a single event, we quantified the time interval until the
second major evaporation event by determining the time when
the tip reached its second maximum in its height. We also
analyzed the cooling time by determining the interval between
the time instances when the tips reached their maximum
and minimum heights and calculated tcool = tmin − tevap. The
results of these measurements are summarized in Table I.

As already mentioned, the two tip growth phases observed
in thin tips resulted in evaporation processes with different
characteristic features. The first growth phase was accom-
panied by several evaporation events before the detachment
of the large droplet, while during the second growth phase
only one large disintegration occurred. During the first growth
phase, the heat is rapidly accumulating at the apex of the tip,
increasing the kinetic energy of the atoms. The pulling effect
of the strong local electric field increases the probability of
the energetic surface atoms to fly off the surface as single
atoms or as small clusters of atoms. After a few hundreds
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TABLE I. Results of the measurements.

Wide Thin 1 Thin 2 ArcPIC [11]

tevap [ps] 229 ± 7 194 ± 4 613 ± 10 –
tcool [ps] 176 ± 18 175 ± 20 − –
rCu [ps−1] 22 ± 2 110 ± 5 238 ± 12 404
re [fs−1] 6.7 ± 0.2 8.2 ± 0.6 3.7 ± 0.2 27.1
RCu [nm−2 ns−1] 220 ± 20 1100 ± 50 2380 ± 120 40.4
Re [nm−2 ps−1] 67 ± 2 82 ± 6 37 ± 2 2.7
rCu/e [×10−3] 3.2 ± 0.3 13.5 ± 1.6 64 ± 6 15

of ps, the temperature within the tip reaches an equilibrium,
with a large fraction of the tip beneath the very top being
molten. Such a molten tip is flexible and responds gradually
as a whole to the tensile stress exerted by the field. This leads
to stretching of the tip into the vacuum and a consequent
necking. The initial necking leads to the increase of the current
density in the narrower regions, increasing the Joule heating
and thus the local temperature in this region. Eventually, a
droplet forming above the neck flies off the surface leading
to a large evaporation event, which completes the first growth
phase.

During the second growth phase the apex temperature does
not reach the same value as during the first one; see Fig. 8.
For that reason, during the second growth phase the tip grows
gradually, and no small modulations of the height similar
to the first growth phase are observed. However, a larger
fraction of the tip is already molten since the beginning of
the second phase, rendering it flexible and responsive to the
tensile stress exerted by the field. This results in a necking
under the top of the tip, forming a droplet since the beginning
of the growth phase. Hence, we observe only a single large
evaporation event, which abruptly reduces the height of the
tip.

It has been previously shown [11] that a certain evaporation
rate of neutral atoms is required in order to build up the
vapor density necessary to trigger an ionization avalanche,
which eventually leads to plasma formation. In Ref. [11] the
neutral evaporation rate rCu was considered proportional to
the electron emission rate re, with a minimum ratio of rCu/e ≡
rCu/re of 0.015 required to lead to plasma formation. In our
previous work [12], this ratio was found to have an average
value of 0.025 ± 0.003 over the whole evaporation process.
Here we shall examine the evolution of the evaporation rate in
greater detail.

For this purpose, we plotted in Fig. 11 the average cu-
mulative number of evaporated atoms and emitted electrons.
We observe that the runaway process consists of two alter-
nating regimes, characterized by intensive evaporation and
a metastable stage with no or very few evaporation events.
In both the thin and wide tips, the violent evaporation at
constant rate remains to the intensive evaporation regime.
During this regime we observe large variations in height,
current, field, and temperature. In the metastable regime, on
the other hand, the evaporation is practically not observed,
while field emission continues. In order to quantify the
mean evaporation rate within the limits of each evaporation
regime, we fit a straight line to each curve (bold dashed
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FIG. 11. Cumulative number of emitted atoms (right lines on the
graph) and electrons (left lines). The slope of the linear fit (bold
dashed lines) gives evaporation and injection rates.

lines in Fig. 11), the slope of which gives the evaporation-
emission rate. The calculated parameters are summarized in
Table I.

The data show that thin tips start evaporating several tens of
ps earlier than wide ones, but there is no significant difference
in their cooling periods. During the first growth phase, the thin
tip is able to provide neutral atoms at a rate four to five times
higher than the wide one, while the total currents differ only
by 10%–30%. From these results, we deduce that thin field
emitters have higher probability to trigger plasma build-up
than the wide tips.

D. Discussion

The implemented PIC module within the hybrid MD-FEM
model allowed us to achieve a more accurate description of the
emission currents, as compared to that given by the previously
used simplified 1D space-charge model. The model resulted
in an increased emission for the same geometry and applied
field, enabling us to observe the thermal runaway process
at lower applied electric field E0 ≈ 0.6 GV/m, compared
to 0.8 GV/m according to earlier estimations. This result
brings the theoretical estimations closer to the experimental
values, where vacuum breakdowns are commonly observed at
external electric fields E0 � 0.2 GV/m [54].

The observed reduction in the field and the growth in
the current values are natural. The simplified model is based
on the equivalent planar diode approximation [14,43], which
assumes a uniform current density in space. While simulat-
ing field emitters, however, the emission current in space is
highly nonuniform due to the nonplanar geometry, which is
reducing the suppression of the local field due to the space
charge.

As stated earlier, we selected the applied field in our
simulations, so that the total emission current at the begin-
ning of the simulation in both thin and wide tips is the
same. We took special care for this to ensure that both tips
develop initially under similar conditions. However, we see
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that the evaporation rates from the thin and wide tips can
differ by an order of magnitude. Also, in the thin tips, we
observed two growth phases, which resulted in two runaway
events. As it can be seen in Table I, the ratio rCu/e for
the second runaway event is significantly higher than the
threshold value of 0.015 that was determined in Ref. [11].
During the first runaway process the ratio rCu/e is quite
close to this value. If we consider the average rates since
the first evaporation event until the end of the simulation,
we obtain a value 〈rCu/e〉 = 0.026 ± 0.008, which clearly
exceeds the lower limit for triggering an avalanche ionization
process.

On the other hand, for the wide tip, the ratio rCu/e is sig-
nificantly lower than the one assumed in Ref. [11]. However,
it is premature to conclude that thick field emitters are not
able to produce enough neutral atoms to ignite plasma. First,
in the simulations performed by using the ArcPIC model
in Ref. [11], a linear relationship between atom evaporation
and electron emission rates was assumed. Such a simplified
assumption of the behavior of surface atoms in the prebreak-
down condition may affect the estimated threshold values
severely. It is evident from our results that the linear relation-
ship between atom evaporation and electron injection rate is
valid only as a rough qualitative approximation and the actual
dependency is much more complex, with intermittent high
evaporation events and metastable periods, for which electron
emission continues.

Furthermore, in Ref. [11], a much wider electron emission
and neutral injection area (104 nm2) was assumed. In the
present simulations, we can safely consider that all emission
and evaporation originate from an area smaller than 100
nm2 (a hemisphere of 4 nm radius). Given such a signif-
icant mismatch of the space scales, it is more reasonable
to compare the surface evaporation and emission fluxes RCu

and Re, i.e., the rates divided by the emission areas. This is
because it is the vapor and electron densities that determine
whether the avalanche ionization reaction, needed to ignite
plasma, can take place. These densities are not dependent
on either the absolute overall evaporation or emission rates
or their ratio. They are rather connected more to the fluxes
RCu and Re, the increase of which promotes plasma ignition.
From Table I we see that the values for RCu and Re ob-
tained from the present results significantly exceed the ones
assumed in Ref. [11], meaning that even wide tips might
provide an electron and neutral density sufficient to ignite
plasma.

Although the runaway process and its connection to larger-
scale plasma onset simulations via the approximation of the
rCu/e coefficient or the evaporation flux RCu offers a plausible
explanation of the vacuum arc initiation, the exact mecha-
nisms that lead to plasma formation are not yet clear. Our
current PIC model includes only electron SPs and omits the
interaction of the evaporated material with the electrons and
the appearance of positive ions that reduce the space charge
in the vicinity of cathode, increase field emission current, and
trigger surface sputtering and heating. However, the present
developments form the basis for future expansion of the
methodology to include more particle species in the PIC
domain and properly handle the plasma-metal interactions.
This aspires to shed light to the detailed processes that lead to

vacuum arc ignition, without the need for the rough qualitative
approximations applied in Ref. [11].

IV. CONCLUSIONS

We have investigated the dynamic evolution of Cu field
emitters of different widths during the intensive field emission
in the prebreakdown condition. For the study we developed a
concurrent multiscale-multiphysics model that combines clas-
sical molecular dynamics, finite element method, and particle-
in-cell techniques. The high efficiency and robustness of the
model allowed us to perform extensive statistical analysis of
a highly stochastic thermal runaway process. The simulations
show that the thermal runaway can start in a h = 93 nm Cu
nanotip under macroscopic electric fields of E0 = 0.6 GV/m.
This value exceeds only three times the value repeatedly
reported in experiments with flat copper electrodes. In a
thin field emitter, the thermal runaway is a cyclic process
of alternating regimes of intensive atom evaporation and a
subsequent cooling process of a tip. The amount of evaporated
atoms that are emitted from thin emitters is sufficient to ignite
self-sustainable plasma. Increasing the width of the emitter
lowers the atom evaporation rate and decreases the probability
for the occurrence of more than one runaway cycles. Wide
emitters show also a lower neutral evaporation rate, which
leads to the conclusion that very sharp field emitters may be
necessary to enable plasma formation.
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APPENDIX A: SIMULATION FLOWCHART

This Appendix provides in Fig. 12 a full schematic of the
model described in Sec. II.

APPENDIX B: DISCRETIZATION OF POISSON’S
EQUATION

Multiplying Eq. (1) with a weight function w and integrat-
ing over the whole domain gives

∫
�

w �∇ · (ε �∇�) d� +
∫

�

wρ d� = 0. (B1)

Using the properties of differentials, the previous expres-
sion could be rewritten as∫

�

�∇ · (wε �∇�) d� −
∫

�

ε �∇w · �∇� d� +
∫

�

wρ d� = 0.

(B2)
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FIG. 12. Simulation flowchart for the model described in Sec. II.

The usage of Green’s theorem on the first term removes
double differentiation of �:∮

�

wε �∇� · �n d� −
∫

�

ε �∇w · �∇� d� +
∫

�

wρ d� = 0.

(B3)
By plugging BCs (2) into leftmost term, we obtain the

weak form of Eq. (1):
∫

�1

wεE0 d� −
∫

�1

ε �∇w · �∇� d� +
∫

�1

wρ d� = 0. (B4)

To transfer that formula into FEM format, we use the
Galerkin approach and equalize the weight function with
shape functions and discretize the potential as a linear com-
bination of them:

w = Ni, i = 1, 2, . . . , n,
(B5)

�(x, y, z; t ) =
n∑

j=1

Nj (x, y, z) · � j (t ),

where n is the number of degrees of freedom of the finite
element. By also combining ε and ρ together, (B4) becomes

∫
�1

n∑
j=1

( �∇Ni · �∇Nj� j ) d�,

=
∫

�1

Ni
ρ

ε
d� +

∫
�1

NiE0 d�. (B6)

To solve that system of equations numerically, it is handy
to express it in matrix form

M · � = f, (B7)

where

Mi j =
∫

�1

�∇Ni · �∇Nj d�,

fi =
∫

�1

Ni
ρ

ε
d�+

∫
�1

NiE0 d�.

APPENDIX C: DISCRETIZATION OF CONTINUITY
EQUATION

Notice the similarity between Eq. (20) and (1). Therefore,
by replacing dielectric constant ε with conductivity σ and by
taking ρ = 0, we obtain the representative form of Eq. (B3)
for (20):

−
∫

�

σ �∇w · �∇� d� +
∮

�

wσ �∇� · �n d� = 0. (C1)

The application of BCs (21) into the second term gives the
weak form of Eq. (20):

−
∫

�2

σ �∇w · �∇� d� +
∫

�3

w �Je · �n d� = 0. (C2)

To transfer that formula into algebraic form, we use the
same strategy as in Appendix B and equalize weight function
with shape functions and expand the potential as a linear
combination of them. In that way the Eq. (C2) becomes

∫
�2

σ

n∑
j=1

( �∇Ni · �∇Nj� j ) d� =
∫

�3

Ni �Je · �n d�, (C3)

which looks in matrix form as

M · � = f, (C4)

where

Mi j =
∫

�2

σ �∇Ni · �∇Nj d�,

fi =
∫

�3

Ni �Je · �n d�.

APPENDIX D: DISCRETIZATION OF HEAT EQUATION

To discretize the heat equation (22), we use similar strategy
as in Appendix B and multiply (22) with a weight function w

and integrate over the whole domain:∫
�

w �∇ · (κ �∇T ) d� +
∫

�

w

(
PJ − Cv

∂T

∂t

)
d� = 0. (D1)

The properties of differentials allow expressing (D1) as∫
�

�∇ · (wκ �∇T ) d� −
∫

�

�∇w · κ �∇T d�

+
∫

�

w

(
PJ − Cv

∂T

∂t

)
d� = 0. (D2)
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By means of Green’s theorem, we remove the double
differentiation of T from the first term of (D2),∮

�

wκ �∇T · �n d� −
∫

�

�∇w · κ �∇T d�

+
∫

�

w

(
PJ − Cv

∂T

∂t

)
d� = 0. (D3)

After plugging BCs (23) into the previous formula and
rearranging terms, we obtain the weak form of Eq. (22):∫

�2

wCv

∂T

∂t
d� +

∫
�2

κ �∇w · �∇T d�

=
∫

�2

wPJ d� +
∫

�3

wPN d�. (D4)

To express the weak form as a matrix equation, we follow
the procedure from Appendix B and equalize the weight
function with shape functions and expand the temperature as
a linear combination of them. In that way we separate spatial
and temporal parts in T , and Eq. (D4) becomes

∫
�2

CvNi

n∑
j=1

(
Nj

∂Tj

∂t

)
d� +

∫
�2

κ

n∑
j=1

( �∇Ni · �∇NjTj ) d�

=
∫

�2

NiPJ d� +
∫

�3

NiPN d�, (D5)

which looks in matrix form as

C · ∂T
∂t

+ K · T = f, (D6)

where

Ci j =
∫

�2

CvNiNj d�,

Ki j =
∫

�2

κ �∇Ni · �∇Nj d�,

fi =
∫

�2

NiPJd� +
∫

�3

NiPN d�.

To solve semidiscrete Eq. (D6), the time also must be
discretized. It can be done by first approximating

∂Tn

∂t
≈ Tn+1 − Tn

�t
(D7)

and then introducing parameter � ∈ [0, 1], so that

Tn+� = �Tn+1 + (1 − �)Tn. (D8)

After combining (D7) and (D8) together, we get a � scheme
for solving Eq. (D6):(

Cn

�t
+ �Kn+1

)
Tn+1 =

[
Cn

�t
− (1 − �)Kn

]
Tn

+�fn+1 + (1 − �)fn. (D9)

To handle the nonlinearity, we assume in this formula that
thermal and electric conductivities are weakly temperature
dependent, i.e., κ (tn+1) ≈ κ (tn) and σ (tn+1) ≈ σ (tn). In the
case of � = 0, � = 0.5, and � = 1, we get explicit the Eu-
ler, Crank-Nicolson, and implicit Euler scheme, respectively.
In our simulations we use the implicit Euler scheme while

1 2

3

(a) (b)
A F

D E

O

B

C

FIG. 13. Generation of a superparticle into a quadrangle, which
in turn is located inside a triangle.

solving Eq. (22). This choice helps to quickly diffuse high-
frequency noise in the temperature distribution that is intro-
duced while mapping temperatures during the mesh rebuild.
Although the implicit Euler scheme shows a lower order of
convergence than the Crank-Nicolson method, i.e., smaller
�t needs to be used [55], in our simulations the small time
step is determined by MD, and therefore this shortcoming
can be safely ignored in favor of more preferential diffusive
properties.

APPENDIX E: DISTRIBUTING INJECTED
SUPERPARTICLES

The injected superparticles must be distributed randomly
and uniformly on the quadrangle. This can be done in a
straightforward way by noting that the mesh quadrangles are
built by connecting the centroids of the mesh edges and the
centroids of triangles [see Fig. 13(a)]. The coordinates of
random point inside a parallelogram ADEF are given by

�r = �A + R1 �AD + R2 �AF , (E1)

where R1, R2 ∈ [0, 1] are uniform random numbers. The point
�r, however, might not lie inside the quadrangle ADOF , as its
area is smaller than the area of the parallelogram, SADOF =
1
3 SABC < SADEF = 1

2 SABC . Therefore its location in the quad-
rangle must be checked, and if �r turns to be out of ADEF ,
a new point should be generated and the check procedure
repeated.

The location of the point can be determined with barycen-
tric coordinates [56]. Denoting λ1, λ2, and λ3 as the barycen-
tric coordinates of point �r with respect to the first, second, and
third node of a triangle [Fig. 13(b)], �r is located in the left
region of the triangle (vertical hatching) if λ1 � λ2 and in the
bottom diagonal region (diagonal hatching), if λ1 � λ3.

APPENDIX F: COLLISIONS BETWEEN
SUPERPARTICLES OF THE SAME TYPE

The Monte Carlo binary collision model can be described
in the following steps:

(1) Divide SPs into groups in such a way that all particles
within the group are located in the same cell.

(2) Pair the SPs in the group in a random way.
(3) Collide each pair elastically by assuming a normal

distribution of the scattering angles.
The pairing of the SPs is implemented here as described in

Ref. [29]. To collide elastically SP pairs, we use the statistical
model as follows. By assuming energy and momentum con-
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servation, the velocities of paired particles of identical mass
m and charge q before and after the collision, �u1,2 and �v1,2, are
written as

�v1,2 = �u1,2 ± 0.5��v. (F1)

The velocity change ��v is calculated from the scattering
of the relative velocity,

��v = M(θ, φ) · (�u2 − �u1), (F2)

where the rotation matrix M is expressed as

M(θ, φ) =
⎛
⎝[l] cos θ − 1 a bx

−a cos θ − 1 by

−bx −by cos θ − 1

⎞
⎠, (F3)

where a = sin θ sin φ v
v⊥

, bx,y = sin θ cos φ
vx,y

v⊥
, and v⊥ =√

v2
x + v2

y . The Monte Carlo technique comes into play while

calculating the azimuth and scattering angle φ and θ . To
calculate the first, we generate a uniform random number in

the range of [0, 2π ). Scattering angles θ , however, need to be
distributed normally, and their contribution to matrix (F3) are
found from

sin θ = 2δ

1 + δ2
,

(F4)

1 − cos θ = 2δ2

1 + δ2
,

where δ ≡ tan θ is a random number generated according to
the Gauss distribution. The mean of that distribution 〈δ〉 = 0
and the variance for a system of SPs with identical charge and
mass

〈δ2〉 = q4n��t

2πε2
0 m2v3Vcell

, (F5)

where n is the number of particles in the cell, Vcell the cell
volume, ε0 the vacuum permittivity, and � = 13.0 the Landau
logarithm [57]. In the case that there is odd number of SPs in
the cell, the first three pairs in that cell should be collided with
a variance of 〈δ2〉′ = 0.5〈δ2〉 [29].
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