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Coordinate transformation methodology for simulating quasistatic elastoplastic solids
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Molecular dynamics simulations frequently employ periodic boundary conditions where the positions of
the periodic images are manipulated in order to apply deformation to the material sample. For example,
Lees-Edwards conditions use moving periodic images to apply simple shear. Here, we examine the problem
of precisely comparing this type of simulation to continuum solid mechanics. We employ a hypoelastoplastic
mechanical model, and develop a projection method to enforce quasistatic equilibrium. We introduce a
simulation framework that uses a fixed Cartesian computational grid on a reference domain, and which imposes
deformation via a time-dependent coordinate transformation to the physical domain. As a test case for our
method, we consider the evolution of shear bands in a bulk metallic glass using the shear transformation zone
theory of amorphous plasticity. We examine the growth of shear bands in simple shear and pure shear conditions
as a function of the initial preparation of the bulk metallic glass.
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I. INTRODUCTION

Molecular dynamics (MD) simulations, whereby atoms or
molecules are individually simulated according to Newton’s
laws [1], are widely used across the physical sciences [2–5].
Open source software packages such as LAMMPS [6,7] and
GROMACS [8] have enabled simulations to be performed with
millions of particles on modern parallel computer hardware.
MD simulations provide a detailed view of the material
physics and are able to capture discrete particle-level effects
[9,10]. Despite these advantages, MD simulations are compu-
tationally expensive, and it is usually only possible to sim-
ulate microscopic material samples. Furthermore, since the
simulations must resolve rapid interaction timescales between
particles, the applied deformation rates in MD are often orders
of magnitude larger than deformation rates in laboratory tests
[11–13].

Because MD simulations simulate microscopic domains,
it is difficult to apply deformation via moving walls, as
simulation data may be affected by finite-size effects [14,15].
Instead, the standard approach is to apply periodic boundary
conditions, but manipulate the periodic images of the primary
simulation domain to achieve different applied deformations.
For example, in three-dimensional Lees-Edwards boundary
conditions, the periodic images have a horizontal velocity
proportional to their z position in order to impose simple
shear [16] [Fig. 1(a)]. The Kraynik-Reinelt boundary condi-
tions [17–20], plus a recent generalization by Dobson [21],
use a combination of moving periodic images and domain
remapping in order to simulate different extensional flows.

A complementary approach to MD is to use continuum
modeling, which has the ability to simulate large system
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sizes and long, physically realistic timescales. However,
continuum-scale theories involve a substantial theoretical hur-
dle, in that the transition from a particle-level theory to a
continuum theory involves a coarse-graining procedure. The
coarse-graining procedure defines a representative volume
element (RVE) [22,23] throughout which local deviations of
material field values from their average within the RVE are
neglected. The fundamental assumption of every continuum
theory is that such an RVE is well defined, and that neglecting
the discrepancy between the relevant system variables and
their mean within an RVE is well justified [24,25].

In effect, coarse-graining reduces the complex many-body
system of interacting particulate constituents to a much lower
degree-of-freedom system well described by a set of nonlinear
partial differential equations (PDEs). This reduction in com-
plexity is primarily responsible for the well-behaved scaling
with system size in continuum simulations, in that all the
classical techniques of numerical analysis become available
for evolving the system over time. However, the process of
coarse graining to the continuum is difficult in general, and
has primarily been successful when tailored to specific phe-
nomena. The coarse-graining procedure introduces internal
state variables that summarize the many particulate degrees
of freedom, and accurate initial conditions for such inter-
nal variables can be difficult to construct. Some equilibrium
systems are amenable to rigorous approaches by explicitly
averaging over unwanted degrees of freedom in the system
partition function [26,27], but these approaches are intractable
for many out-of-equilibrium systems.

To quantitatively explore the effect of coarse-graining MD
to the continuum, it is therefore useful to perform the two
types of simulation using the same geometry and conditions.
However, precisely recreating the boundary conditions from
MD for use in continuum simulations poses some numerical
challenges. Consider the Lees-Edwards boundary conditions
and suppose that the primary simulation domain is discretized
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FIG. 1. (a) Lees-Edwards boundary conditions in three dimensions where the z coordinate points upward. The system of interest is shown
in yellow and outlined in black dashed lines; other periodic copies are shown in brown. Periodic copies of the system above and below are set
to move with a specific velocity, imposing a specific strain rate γ̇ on the system. (b) A graphical depiction of a domain transformation T(t )
that maps a fixed reference domain X to a sheared physical domain x.

on a Cartesian grid. Because the periodic images are moving,
their grids will generally not align with the primary domain.
This could be handled numerically via interpolation, but grid
points near the boundary will incur different discretization
errors. If the continuum model involves an elliptic problem,
then the shifted grids will result in a complex connectivity
structure in the associated linear system, which is less well
suited to some numerical linear algebra techniques.

In this work, we address this problem by developing a con-
tinuum solid mechanics simulation that permits MD boundary
conditions to be recreated precisely. We use the hypoelasto-
plasticity model [28] in which the deformation rate tensor D is
decomposed additively into a sum of elastic and plastic parts
[29]. There are a number of different frameworks for simu-
lating elastoplastic materials [30], but the hypoelastoplastic
model is well suited for problems that involve large plastic
deformation. This regime is appropriate for matching to typi-
cal MD simulations, where large total strain may be applied.

Combining the additive decomposition of D with Newton’s
second law results in a closed hyperbolic system of PDEs
for the velocity v and stress σ, plus coupling to evolution
equations for any internal state variables. Due to the small
size of MD simulations, it is usually a good approximation
to say that elastic waves are fast compared to the simulation
timescale, allowing for Newton’s second law to be replaced
by the constraint that the stresses remain in quasistatic equi-
librium, ∇ · σ = 0.

The resulting constrained PDE system has a mathematical
correspondence to the incompressible Navier-Stokes equa-
tions, where the fluid velocity must satisfy the constraint that
∇ · v = 0. For incompressible fluids, a standard numerical
technique is the projection method of Chorin [31,32]. By
exploiting the mathematical correspondence, a new projection
method for quasistatic hypoelastoplasticity was recently intro-
duced [33] and extended to three dimensions [34] (Sec. II).

To match the MD boundary conditions, we introduce
a coordinate transformation framework for the quasistatic
hypoelastoplastic system. It is based on an abstract linear
mapping T(t ) from a reference domain to the physical domain
[Fig. 1(b)]. Lees-Edwards conditions can be implemented in
the continuum setting with this methodology by imposing
shear through a transformation, and additionally enforcing
periodic boundary conditions in all directions. Effectively,

our method decouples the application of material deformation
from the application of a specific boundary condition.

In addition to Lees-Edwards boundary conditions, the
transformation framework is flexible, and enables simple im-
plementation of otherwise potentially difficult deformation,
such as pure shear. Any applied deformation that can be
written as a linear transformation of a reference domain can
be implemented just by implementing the matrix and its
time derivatives. We show that the projection method for
hypoelastoplasticity can be generalized to simulate this case
by working with transformed velocities and stresses in the
reference domain. The projection step in the method requires
solving an elliptic problem for the velocity, and the resulting
linear system has a simple mathematical structure that is well
suited for solution via numerical linear algebra techniques
such as the geometric multigrid method [35,36].

The new method is capable of simulating a wide range
of elastoplastic materials, but here we consider the example
of a bulk metallic glass (BMG), a new type of alloy where
the atoms have a random and amorphous arrangement, in
contrast to most metals [37]. BMGs have attracted consid-
erable research interest during the past two decades. They
have many favorable properties, such as high strength and
wear resistance, that make them attractive for a variety of
applications [38]. However, the amorphous arrangement of
atoms makes the study of dynamic mechanical phenomena in
these materials, such as deformation and failure, exceptionally
challenging [39].

To date, a general theory of the microscopic origins of
plastic deformation in amorphous solids has remained elu-
sive. However, several prominent theories capable of making
accurate qualitative and quantitative predictions have been de-
veloped, such as free-volume based theories [40–43] and the
shear transformation zone (STZ) theory [44–48]. Ultimately,
free-volume theories and the STZ theory are flow-defect
theories that attempt to connect microscopic rearrangements
of groups of atoms with macroscopic plastic deformation, in
rough analogy to the dislocation-mediated theory of plasticity
in crystalline materials [49].

We employ an elastoplastic model of a BMG based on
the STZ theory. A key feature of the model is the effective
temperature (Sec. II C), which characterizes the amorphous
particle structure via a continuum field [50–53]. The effective
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temperature can be measured indirectly [54], but there is
currently no complete method to connect it to the microscopic
particle configuration. This was recently explored by Hinkle
et al. [55], who directly compared continuum and MD sim-
ulations, and examined how measurable features of MD such
as the coarse-grained atomic potential energy are connected to
the effective temperature. A key limitation of this study is that
the MD simulations use Lees-Edwards conditions, whereas
the deformation was imposed in the continuum simulation
using moving parallel plates, meaning that the two could
not be exactly compared. The numerical techniques that we
develop here remove this limitation.

The STZ theory has proven useful for examining the failure
properties of BMGs. The elastoplastic model that we employ
has been used to explain the large experimental variations in
notched fracture toughness of BMGs [56]. This was subse-
quently extended to make predictions about BMG fracture
toughness for a range of parameters [57]. Recent experimental
work suggests that these predictions are broadly correct [58].
BMGs also exhibit shear bands, a strain-softening instability
characterized by the localization of shear strain along a thin
band [59], which can be the precursor to failure [60–62].
In our simulations, we examine how shear bands nucleate
as a function of the initial inhomogeneities in the effective
temperature field.

The paper is organized as follows. In Sec. II, we de-
scribe the equations of quasistatic hypoelastoplasticity and
provide an introduction to the physics of the STZ theory of
amorphous plasticity. In Sec. III, we introduce the coordinate
transformation methodology and develop the transformed pro-
jection method. In Sec. IV, we provide numerical experiments
demonstrating convergence of the solution of the transformed
method to the original quasistatic method in physically equiv-
alent situations as the grid spacing is decreased. In Sec. V, we
study shear banding in a bulk metallic glass subject to simple
shear, Lees-Edwards, and pure shear boundary conditions. We
highlight differences in results between Lees-Edwards and
simple shear boundary conditions and examine how the shear
band formation depends on the initial effective temperature.

II. MATHEMATICAL PRELIMINARIES

A. Quasistatic hypoelastoplasticity

We consider an elastoplastic material with Cauchy stress
tensor σ(x, t ) and velocity field v(x, t ). We denote by L = ∇v
the velocity gradient tensor and D = 1

2 (L + LT ) the rate of
deformation tensor. We adopt the framework of hypoelasto-
plasticity, which assumes the rate of deformation tensor can be
additively decomposed into a sum of elastic and plastic parts,
D = Del + Dpl. Writing linear elasticity in rate form yields

Dσ(x, t )

Dt
= C : (D − Dpl ), (1)

where C is the stiffness tensor. For simplicity, the material
is taken to be isotropic and homogeneous, so that Ci jkl =
λδi jδkl + μ(δikδ jl + δilδ jk ) where λ is Lamé’s first parameter
and μ is the shear modulus. The time derivative in Eq. (1) is

the Truesdell derivative1

Dσ

Dt
= dσ

dt
− LTσ − σL + tr(L)σ, (2)

with d
dt = ∂

∂t + v · ∇ denoting the advective derivative. The
velocity field satisfies a continuum version of Newton’s sec-
ond law

ρ
dv
dt

= ∇ · σ, (3)

with ρ the material density. Taken together, Eqs. (1) and (3)
form a closed hyperbolic system that could form the basis of
a numerical method. However, an explicit numerical method
used to solve this system will resolve elastic waves. Stable
resolution of elastic waves places a limit on the simulation
time step according to the well-known Courant-Friedrichs-
Lewy (CFL) condition [63]. The CFL condition requires �t �
h
ce

where ce is a typical elastic wave speed and h is the grid
spacing.

In metals and other materials of interest, the elastic wave
speed ce can be large, and the grid spacing h needed to
resolve fine-scale features such as shear bands can be small.
The CFL condition thus poses a prohibitive limit on the time
step for probing realistic timescales and system sizes, and the
development of alternative simulation approaches that avoid
resolving elastic waves is necessary. It is often appropriate to
take the long-timescale and small-velocity limit, in which the
material acceleration is negligible and Eq. (3) can be replaced
by the constraint

∇ · σ = 0, (4)

which states that the stresses remain in quasistatic equilibrium
and conveniently avoids the description of elastic waves. In
this quasistatic limit, Eq. (1) depends on the material velocity
field through D, but the evolution equation for the velocity
field has been exchanged for the constraint in Eq. (4). It is thus
unclear how to solve Eq. (1) subject to the global constraint in
Eq. (4).

B. Projection method

As noted by Rycroft et al. [33], Eqs. (1) and (3) have a
close mathematical correspondence with the Navier-Stokes
equations for incompressible fluid flow. The incompressible
Navier-Stokes equations consist of an explicit partial differ-
ential equation for the fluid velocity along with a constraint
that the velocity must be divergence free. Much like Eqs. (1)
and (4), the constraint on the velocity field is obtained from
a limiting procedure applied to an explicit partial differential

1This expression is typically presented with L transposed with
respect to the definition here. We adopt the convention that (∇f )i j =
∂i f j for a vector field, i.e., partial derivatives go row-wise in gradients
of vector fields. Typically, the symbol L = ∇v is used to denote
the Jacobian or Fréchet derivative of v, which formally is the trans-
pose of the gradient [71]. The transformation formalism developed
in this work involves both Jacobians and vector field gradients,
and for physically consistent answers it is necessary to make this
distinction.
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equation for the pressure, and the equation for the velocity still
depends on the pressure after this limit has been taken.

In this setting, a well-established numerical technique is
the projection method of Chorin [31,32]. In Chorin’s pro-
jection method, the update for the velocity field is split into
two steps. In the first step, an intermediate velocity field is
computed which does not obey the divergence-free constraint.
In the second step, a linear system is solved for the pressure
field which simultaneously projects the intermediate velocity
field onto the manifold of divergence-free solutions.

By using the correspondence between quasistatic hypoe-
lastoplasticity and incompressible fluid flow, Rycroft et al.
[33] developed a new projection method for quasistatic elasto-
plasticity. Consider taking a time step of size �t , and use
superscripts of n and n + 1 to denote the simulation fields be-
fore and after the step, respectively. To begin, an intermediate
stress σ∗ is computed by dropping the C : D term in Eq. (1) to
obtain

σ∗ − σn

�t
= (Ln)Tσn + σnLn − tr(Ln)σn

− (vn · ∇)σn − C : (Dpl)n. (5)

If the velocity vn+1 were known, and hence if the total
deformation rate Dn+1 could be calculated, then the final stress
would be given by

σn+1 − σ∗

�t
= C : Dn+1. (6)

Taking the divergence of this equation and enforcing that ∇ ·
σn+1 = 0 yields

�t ∇ · (C : Dn+1) = −∇ · σ∗. (7)

After finite-difference expansion of the definition of Dn+1,
Eq. (7) forms a linear system for the velocity field vn+1 with
source term given by the known vector −∇ · σ∗, and it can
be solved via standard techniques of numerical linear algebra.
After solution of Eq. (7), σn+1 can be computed according
to Eq. (6), which can be shown to orthogonally project σ∗
onto the manifold of quasistatic solutions. In this manner, the
two-step projection method enables solving Eq. (1) subject to
the global constraint (4) despite the dependence of Eq. (1) on
v. We refer the reader to papers by Rycroft et al. [33], and
Boffi and Rycroft [34] for complete details on this method.

C. Plasticity model

As our plasticity model for a bulk metallic glass, we use an
athermal form of the shear transformation zone (STZ) theory
of amorphous plasticity suitable for studying glassy materials
below the glass transition temperature [45,47]. The STZ the-
ory postulates that ephemeral and localized fluctuations of the
configurational bath, STZs, occur sporadically throughout an
otherwise elastic material. The STZs may be conceptualized
as clusters of atoms susceptible to shear-induced configura-
tional rearrangements when local stresses surpass the material
yield stress sY . Each such rearrangement leads to a small
increment of plastic strain, and many such rearrangements
conspire to bring about macroscopic plastic deformation.

In the athermal theory used here, thermal fluctuations of
the atomic configurations are neglected, and molecular rear-

rangements are assumed to be driven entirely by external me-
chanical forces. Thermal theories introduce an additional cou-
pling between the configurational subsystem governing the
rearrangements that occur at STZs, and a kinetic/vibrational
subsystem governing the thermal vibrations of atoms in their
cage of nearest neighbors [64]. Such thermal theories, with
an additional field tracking the thermodynamic temperature
which evolves according to a diffusion equation, could in
principle be incorporated into our framework.

Each rearrangement corresponds to a transition in the
configurational energy landscape; these transitions are usually
toward a lower-energy configuration, but there is a small
probability for a reverse transition. Before the application of
external shear, the material sample sits at a local minimum.
External shear alters the shape of the energy landscape, and
can make transitions to other states considerably more likely.

The density of STZs in space follows a Boltzmann dis-
tribution in an effective disorder temperature denoted by χ

[50–53]. χ governs the out-of-equilibrium configurational
degrees of freedom of the material and has many properties
of the usual temperature: it is measured in Kelvin, and it can
be obtained as the derivative of a configurational energy with
respect to a configurational entropy [39]. χ is distinct from the
thermodynamic temperature T , though it plays the same role
for the configurational subsystem as T does for the kinetic and
vibrational subsystem.

We define the deviatoric stress tensor σ0 = σ − 1
3 tr(σ)I.

The total rate of plastic deformation tensor is proportional
to the deviatoric stress Dpl = Dpl σ0

s̄ , where s̄2 = 1
2σ0,i jσ0,i j

is a local scalar measure of the total deviatoric stress. The
STZ theory provides the magnitude of the plastic rate of
deformation as

τ0Dpl = e−ez/kBχe−�/kBT cosh

(

ε0s̄

kBT

)(
1 − sY

s̄

)
, (8)

when s̄ > sY and zero otherwise. τ0 is a molecular vibration
timescale, ez is a typical STZ formation energy, kB is the
Boltzmann constant, T is the thermodynamic temperature, �

is a typical energetic barrier for a transition, 
 is a typical
STZ volume, and ε0 is a typical local strain. The effective
temperature satisfies a heat equation [45,53,65–67]

c0
dχ

dt
= (Dpl : σ0)

sY
(χ∞ − χ ) + l2∇ · (Dpl∇χ ). (9)

The interdependence of Eqs. (8) and (9) enables the develop-
ment of shear bands through a positive feedback mechanism,
as increasing one of χ or Dpl also leads to an increase in the
other [65,67].

III. COORDINATE TRANSFORMATION FRAMEWORK

Let T(t ) denote a time-varying mapping from a reference
domain X to the physical domain of interest x such that

x = TX, (10)

as shown in Fig. 1(b). Here, X ∈ [aX , bX ] × [aY , bY ] ×
[aZ , bZ ]. Since BMGs typically undergo small volumetric
deformations, we restrict to cases where det T(t ) = 1, al-
though the framework can be extended to incorporate dilation
in the transformation. We will use capital letters to denote
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quantities in the reference frame, and lower case letters to
denote quantities in the physical frame. ∇X and ∇x will denote
spatial differentiation in the reference and physical frame,
respectively. We emphasize that X exists in a fixed frame on
which the quasistatic hypoelastoplastic equations denote be
solved, and not in the Lagrangian frame of coordinates. To
clarify this point, let R = (X ,Y,Z ) denote a set of fixed
Lagrangian coordinates. For an Eulerian frame (x, y, z), we
define the Eulerian displacements

ui = xi − Ri. (11)

We then define the Eulerian velocities vi = ∂ui
∂t |R. The same

procedure can be performed in the reference frame, as we now
show. We first define the physical displacements

u = TX − R. (12)

Taking a time derivative of both sides of Eq. (12) at fixed
Lagrangian coordinates R, we arrive at an expression for the
physical velocity

v = ∂T
∂t

X + TV. (13)

Above, we have identified the transformed velocity V =
∂X
∂t |R. Equation (13) can be used to compute the physical

velocity v from the transformed velocity V, if V is known. By
inversion, it can also be used as a definition of the transformed
velocity

V = T−1

(
v − ∂T

∂t
X

)
. (14)

Using the chain rule, spatial derivatives are transformed as

∇x = T−T∇X. (15)

Taking an advective time derivative of Eq. (14), using Eq. (3)
for v̇, and transforming physical spatial derivatives to trans-
formed spatial derivatives, the transformed velocity evolves
according to the transformed generalization of Newton’s sec-
ond law:

∂V
∂t

= −(V · ∇X)V + ∂T−1

∂t
TV

+ T−1

(
1

ρ
T−T∇X · (T�TT ) − ∂2T

∂t2
X − ∂T

∂t
V

)
.

(16)

In Eq. (16), we have rewritten the advective derivative in
the reference frame, ∂

∂t + v · ∇x = ∂
∂t + V · ∇X. The proof of

this identity for an arbitrary transformation T(t ) is shown in
Appendix A. In Eq. (16), we have also defined the transformed
stress tensor via the contravariant pullback

� = T−1σT−T. (17)

To derive an evolution equation for �, we now use the linear
elastic relation in Eq. (1). Taking an advective time derivative
of the relation σ = T�TT and inverting, the transformed
stress then obeys the transformed generalization of the linear
elastic constitutive law. After expansion of the Truesdell rate,

∂�

∂t
= −(V · ∇X)� − tr(L)� + �∇XV

+ (∇XV)T� + T−1[C : (D − Dpl)]T−T. (18)

In Eq. (18), D = 1
2 (L + LT ) refers to the physical quantity. L

can be computed in terms of the transformed variables as

L = T−T ∂TT

∂t
+ T−T∇XVTT. (19)

Dpl = Dpl σ0
s̄ appears in Eq. (18), and its form depends on

the plasticity model through the constant Dpl. As reviewed
in Sec. II A, the STZ theory provides an expression given by
Eq. (8). Dpl is defined and must be computed in terms of the
physical deviatoric stress σ0. In line with the definition of �,
we can apply the contravariant pullback to σ0 and write

T−1σ0T−T = � − 1
3 [T−1 tr(T�TT )T−T]I. (20)

Using the natural definition �0 = � − 1
3 tr (�)I and solving

for σ0, we can rewrite Eq. (20) as

σ0 = T�0TT + 1
3 [T tr (�)TT − tr(T�TT )]I. (21)

Equation (21) enables the computation of σ0 entirely in terms
of transformed quantities. We compute s̄ by first computing
the entire tensor σ0 using Eq. (21) and then compute its
Frobenius norm.

The equation for the effective temperature must also be
transformed, though we do not define a transformed effective
temperature. This can be accomplished by transforming the
derivatives

c0
∂χ

∂t
= −c0(V · ∇X)χ + (Dpl : σ0)

sY
(χ∞ − χ )

+ l2T−T∇X · (DplT−T∇Xχ ). (22)

For brevity, Dpl, σ0, and Dpl refer to the physical quantities in
Eq. (22) and must be computed in terms of the transformed
variables in an implementation. Transformation of the diffu-
sive term ensures that diffusion occurs in the physical frame
despite being implemented in the reference frame.

Equation (18) demonstrates that our transformation
methodology, leaves the Truesdell rate invariant and only
affects the deformation rate term C : (D − Dpl ). This high-
lights a benefit of using the Truesdell rate, as opposed to
using alternative rates (e.g., Green-Naghdi or Jaumann) that
employ physical approximations to achieve a simpler form.
For example, the Jaumann stress rate is based upon the ap-
proximation that the effect of material stretch is much smaller
than the effect of rotation, so that the Jaumann formula only
involves the material spin rather than the full velocity gradient
tensor. If the Jaumann rate is used in the physical frame,
it will not perfectly transform into the Jaumann rate in the
reference frame, as neglecting stretch in the physical frame is
not equivalent to neglecting stretch in the reference frame.

The transformed system of equations has connections to
the principle of material frame indifference [68,69] which
states that “the constitutive laws governing internal interac-
tions between the parts of the system should not depend on
whatever external frame of reference is used to describe them”
[70]. Mathematically, this is done by considering a transfor-
mation of the form x = R(t )[X − X0(t )] where X0(t ) is a
time-dependent vector and R(t ) is a time-dependent rotation
[71]. If we restrict our transformation in Eq. (10) to the case
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when T(t ) is a rotation, then Eq. (18) is identical to Eq. (2),
but in terms of transformed variables. The first four terms of
Eq. (18) are always identical, and the final term involving
C : (D − Dpl) is also identical in this case since the rotation
matrices cancel because C is isotropic. Hence, our coordinate
transformation is consistent with material frame indifference.

It is worth considering how the transformed system of
equations differs from the original system. A particular case
of interest is simple shear, given the immediate application to
implementation of Lees-Edwards boundary conditions. This
physical situation is described by the transformation

T =
⎛
⎝1 0 Ubt

0 1 0
0 0 1

⎞
⎠, (23)

with Ub a boundary shear velocity. Restriction to a two-
dimensional plane-strain formulation reveals that the compo-
nents of Eqs. (16) and (18) retain their original form with
untransformed quantities replaced by transformed quantities,
in addition to several new terms proportional to powers of Ubt .

A. Transformed projection method

We now formulate the projection method of Sec. II B in
the reference frame. This method enables solving for V and �

subject to the constraint in Eq. (4). In the first step [analogous
to Eq. (5)], the C : D term in Eq. (18) is neglected to compute
the intermediate transformed stress �∗,

�∗ − �n

�t
= −(Vn · ∇X)�n − tr(Ln)�n + �n(∇XV)n

+ ((∇XV)T )n�n − (T−1)nC : (Dpl)n(T−T )n.

(24)

If the transformed velocity at the next time step Vn+1 were
known, we could compute Ln+1 via Eq. (19), compute Dn+1,
and complete the transformed Euler step via

�n+1 − �∗

�t
= (T−1)n(C : Dn+1)(T−T )n, (25)

which is analogous to Eq. (6). To compute this correction,
we need to use the physical constraint (4). Enforcing that
∇x · σn+1 = 0 leads to the linear system Eq. (7) for v in the
physical domain.

Because T−1σ∗T−T = �∗ and ∇x = T−T∇X, the right-
hand side of Eq. (7) transforms according to

−∇x · σ∗ = −Tn∇X · �∗. (26)

Similarly, the left-hand side of Eq. (7) becomes

�t (T−T )n∇X · C : ((T−T )n(∇XV)n+1(TT )n), (27)

where we have omitted X-independent terms as they will be
annihilated by ∇X. Equations (26) and (27) form a compli-
cated linear system for the transformed velocity Vn+1. The
appearance of the transformation T in front of the gradient
operator ∇X ensures that all mixed spatial derivatives of all
components of the velocity appear in each row of Eq. (27).
Equation (27) is more complex than the linear system in the
original quasistatic projection method, and it is dependent on
the specific form of T. The components of Eq. (27) in the

specific cases of simple shear and pure shear are shown in
Appendices B and C, respectively. The update for the effective
temperature is handled through an explicit forward Euler step

c0
χn+1 − χn

�t
=−c0(Vn · ∇X)χn +

[
(Dpl)n : σn

0

]
sY

(χ∞ − χn)

+ l2(T−T )n∇X · [(Dpl)n(T−T )n∇Xχn]. (28)

B. Numerical discretization, parallelization,
and multigrid solver

The explicit update for the transformed stress (24) depends
on transformed spatial derivatives of the transformed velocity
through L. Similarly, the source term in the linear system for
the transformed velocity (26) depends on transformed spatial
derivatives of the transformed stress. We exploit this structure
through a staggered grid arrangement in the reference frame
with uniform spacing �x = �y = �z = h. The stress tensor
� and effective temperature χ are stored at cell centers and
indexed by half-integers, while the velocity V is stored at
cell corners and indexed by integers. Further discussion of the
staggered grid arrangement can be found in Ref. [34].

Let (∂ f /∂X )i, j,k denote the partial derivative of a field
f with respect to X evaluated at grid point (i, j, k). The
staggered centered difference is(

∂ f

∂X

)
i+ 1

2 , j+ 1
2 ,k+ 1

2

= 1

4h
( fi+1, j,k − fi, j,k + fi+1, j+1,k − fi, j+1,k

+ fi+1, j,k+1 − fi, j,k+1 + fi+1, j+1,k+1 − fi, j+1,k+1). (29)

Equation (29) averages four edge-centered centered differ-
ences to obtain a derivative at the cell center and has a dis-
cretization error of size O(h2). The derivative at a cell corner
is obtained by the replacement (i, j, k) → (i − 1

2 , j − 1
2 , k −

1
2 ). The diffusive term appearing in the effective temperature
update in Eq. (28) is computed by expanding the divergence
term

T−T∇X · (DplT−T∇Xχ )

= (∇XDpl) · [(T−1T−T )∇Xχ ]

+ Dpl[(T−1T−T ) : (∇X∇Xχ )]. (30)

Equation (30) is computed numerically by assembling the
gradient vectors ∇Xχ and ∇XDpl at cell centers using the
standard centered difference formula(

∂ f

∂X

)
i, j,k

= 1

2h
( fi+1, j,k − fi−1, j,k ), (31)

with analogous expressions for the other directions. We also
must assemble the Hessian matrix ∇X∇Xχ using the second
derivative stencils(

∂2 f

∂X 2

)
i, j,k

= 1

h2
( fi+1, j,k − 2 fi, j,k + fi−1, j,k ), (32)(

∂2 f

∂X∂Y

)
i, j,k

= 1

h2
( fi+1, j+1,k − fi+1, j−1,k

− fi−1, j+1,k + fi−1, j−1,k ). (33)
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Analogous expressions for other second derivatives are ob-
tained through Eqs. (32) and (33) by suitable replacements.
The matrix T−1T−T is computed from its definition.

The advective derivative in Eq. (24) must be upwinded
for stability; we use the second-order essentially nonoscilla-

tory (ENO) scheme [72]. With [ fXX ]i, j,k denoting the second
derivative with respect to X of the field f at grid point (i, j, k)
computed using Eq. (32), the ENO derivative is defined in the
X direction as

(
∂ f

∂X

)
i, j,k

= 1

2h

⎧⎨
⎩

− fi+2, j,k + 4 fi+1, j,k − 3 fi, j,k if Ui, j,k < 0 and |[ fXX ]i, j,k| > |[ fXX ]i+1, j,k|,
3 fi, j,k − 4 fi−1, j,k + fi−2, j,k if Ui, j,k > 0 and |[ fXX ]i, j,k| > |[ fXX ]i−1, j,k|,
fi+1, j,k − fi−1, j,k otherwise.

(34)

Above, Ui, j,k is the X component of the transformed velocity
at grid point (i, j, k). Equation (34) uses the curvature of f
to switch between an upwinded three-point derivative and
a centered difference. Versions of Eq. (34) in the Y and Z
coordinates are obtained analogously.

Despite its complexity, after spatial discretization of
Eq. (27), the linear system is of the form Ay = b, and can
be solved via standard techniques of numerical linear algebra.
b is given in block form by the source term in Eq. (26), bi =
−T∇X · �∗(Xi ), where the index i runs over all grid points.
y is also given in block form, so that y contains the stacked
values of V across all grid points. The matrix A is sparse, and
its degree of sparsity depends on the specific discretization
scheme used. In the staggered centered difference scheme
described here, grid point (i, j, k) is only coupled to the 27
grid points in the surrounding 3 × 3 × 3 cube.

A is thus most effectively reconstructed using submatri-
ces A(i, j,k)

(l,m,q), which give the coefficients of velocity values
V(l,m,q) appearing in the linear equation for V(i, j,k). Each
matrix A(i, j,k)

(l,m,q) is symmetric. With this construction, we solve
Eq. (27) using a custom MPI-based parallel geometric multi-
grid solver; for further details of the solver, and how it
interfaces with the explicit updates, the reader is referred to
the nontransformed algorithm description [34]. The explicit
steps for χ and � in Eqs. (24) and (28) are also parallelized
using MPI and domain decomposition, with further details in
the nontransformed work [34].

A highlight of the transformation methodology is its flexi-
bility and simplicity. Implementation of new boundary condi-
tions, as long as they can be specified in terms of a transfor-
mation T(t ), is only as difficult as writing the transformation
down. The matrices A(i, j,k)

(l,m,q) do, however, depend on the form
of T(t ), and thus they need to be derived on a transformation-
by-transformation basis. Furthermore, through their depen-
dence on T(t ), these submatrices are time dependent and thus
need to be recomputed at each time step.

For an arbitrary 3 × 3 transformation with nine matrix ele-
ments, the analytical computation and hand implementation
of the A(i, j,k)

(l,m,q) matrices is error prone. To remedy this, we
developed a metaprogramming scheme to autogenerate the
relevant code. We used Mathematica to analytically calculate
the components of Eq. (27) in terms of arbitrary matrix ele-
ments Ti j (t ), and subsequently to replace derivatives by their
finite-difference equivalents. Collecting coefficients accord-
ingly in the resulting equation gives 191 nonzero coefficients
comprising the 27 submatrices A(i, j,k)

(l,m,q). We used Python to
write a skeleton file that contained function primitives for 191
C++ functions to compute each of these coefficients individ-

ually. We then used the Mathematica function splice to fill in
each of these primitives with valid C++ code that implements
the analytically computed expressions. Finally, we again used
Python to write C++ code that calls the autogenerate C++
functions to populate the submatrices. This metaprogramming
scheme only needs to be run once to generate the needed
code, and it does not take any meaningful amount of time
to run. Through the use of these auto-generated functions,
the multigrid system is calculated at each time step, and
new simulation conditions can be immediately constructed by
providing the matrix T(t ) as a 3 × 3 matrix class implemented
in C++.

IV. NUMERICAL CONVERGENCE TESTS

In this section, we demonstrate convergence of the trans-
formed projection method to the nontransformed method in
physically equivalent situations. In all simulations, a periodic
domain in X and Y is considered, −L � X < L, −L � Y < L
with L = 1 cm. We consider both periodic and nonperiodic
boundary conditions in Z , corresponding to domains −γ L �
Z < γ L and −γ L � Z � γ L, respectively. γ = 1

2 in all simu-
lations. We measure time in terms of the natural unit ts = L/cs

with cs = √
μ/ρ the material shear wave speed. Boundary

conditions in the nonperiodic case are given by

V(X,Y,±γ L, t ) = (0, 0, 0). (35)

TABLE I. Material parameters used in this study, for both linear
elasticity and the STZ model of amorphous plasticity. The Boltz-
mann constant kB is used to convert energetic values to temperatures.

Parameter Value

Young’s modulus E 101 GPa
Poisson ratio ν 0.35
Bulk modulus K 122 GPa
Shear modulus μ 37.4 GPa
Density ρ0 6125 kg m−3

Shear wave speed cs 2.47 km s−1

Yield stress sY 0.85 GPa
Molecular vibration timescale τ0 10−13 s
Typical local strain ε0 0.3
Effective heat capacity c0 0.4
Typical activation barrier �/kB 8000 K
Typical activation volume 
 300 Å3

Thermodynamic bath temperature T 400 K
Steady state effective temperature χ∞ 900 K
STZ formation energy ez/kB 21 000 K
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FIG. 2. The initial configuration for the transformed to nontrans-
formed comparison. Here, a = 0.3, η = 1.2, and χbg = 550 K in the
opacity function.

Elasticity and plasticity parameters are provided in Table I,
and for these parameters, ts = 4.05 μs. All simulations in

this section are run with 32 processes on an Ubuntu Linux
computer with dual 14-core 1.70-GHz Intel Xeon E5-2650L
v4 processors.

The global three-dimensional grid has spacing h in each
direction. The cell-cornered grid points are indexed accord-
ing to i = 0, . . . , Q − 1, j = 0, . . . , M − 1 in the X and Y
directions. In the Z direction, the grid points are indexed
according to k = 0, . . . , N and k = 0, . . . , N − 1 for nonpe-
riodic and periodic boundary conditions, respectively. The
cell-centered grid points run according to i = 1

2 , 3
2 , . . . Q − 1

2 ,
j = 1

2 , 3
2 , . . . M − 1

2 , and k = 1
2 , 3

2 , . . . M − 1
2 . As described

in Sec. III B, � and χ are stored at cell centers while V is
stored at cell corners. The additional grid points (i, j, k = N )
in the Z direction in the nonperiodic case are ghost points used
for enforcing the Dirichlet boundary conditions V = 0.

The cell-centered grid points on the top boundary
(i, j, N + 1

2 ) contain linearly extrapolated � and χ values to
ensure that � and χ remain free on the top boundary. In the

FIG. 3. Snapshots of the effective temperature field χ (x, t ) for the (a), (c), (e) nontransformed and (b), (d), (f) transformed simulation.
Simple shear deformation is imposed via a domain transformation. The initial condition in χ corresponds to a helix of elevated χ as described
in Eq. (39) and depicted in Fig. 2. χbg = 550 K in the opacity function in all panels. (a), (b) t = 2.88 × 105ts, a = 0.7, η = 1.25. (c), (d) t =
4.02 × 105ts, a = 0.8, η = 1.35. (e), (f) t = 6 × 105ts, a = 0.9, η = 1.5.
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FIG. 4. L2 norm of the χ , v, and σ simulation field differences between the transformed and nontransformed methods computed using
Eq. (40) in a simple shear simulation. (Top left) A comparison of the three different field norms on a grid of size 256 × 256 × 128. (Top right,
bottom left, bottom right) The velocity, effective temperature, and stress norm differences, respectively, for varying levels of discretization
N = Nx = Ny = 2Nz.

periodic case, the grid points (i, j, k = N ) hold the velocity
values V(i, j,0), and the corresponding cell-centered grid points
are used to hold the wrapped values of �(i, j, 1

2 ) and χ(i, j, 1
2 ). At

the simulation boundaries in the X and Y directions, ghost
points leaving the simulation domain are filled with values
that wrap around, so that the ghost point corresponding to grid
point (Q, j, k) is filled with the real values from grid point
(0, j, k). Similarly, values at points (i, M, k) are filled using
values from (i, 0, k).

A. Qualitative comparison between the transformed
and nontransformed methods

We now demonstrate the qualitative similarity of solutions
computed with the transformed and the standard quasistatic
methods. In the following subsection, this comparison is
made quantitatively rigorous. To visualize the results three

dimensionally, we use a custom opacity function

O(x) =
{(χ (x)−χbg

χ∞−χbg

)
if χ (x)−χbg

χ∞−χbg
> 3

4 ,

exp
[−a

( χ∞−χbg

χ (x)−χbg

)η]
otherwise,

(36)

where χbg is a background χ value. By choice of a and
η, the most physically relevant features in three-dimensional
visualizations of the χ field can be revealed.

To compare the transformed and nontransformed meth-
ods, a physically equivalent situation is now constructed. We
employ nonperiodic Dirichlet boundary conditions in the Z
direction and enforce V(X,Y,±γ L) = (0, 0, 0). To impose
deformation, we use a shear transformation T(t ) correspond-
ing to

T =
⎛
⎝1 0 Ub

γ L t
0 1 0
0 0 1

⎞
⎠. (37)

TABLE II. Timing details for the two simulation approaches with helical initial conditions in χ . “T” specifies the transformed simulation
and “NT” the nontransformed simulation. The transformed method takes longer than the nontransformed method in general due to an increased
number of multigrid V-cycles required to achieve convergence. The average time spent per V-cycle is roughly the same in the two approaches.
Each simulation uses 32 processes.

N = 64 N = 96 N = 128 N = 160 N = 192 N = 256

T NT T NT T NT T NT T NT T NT

Total time (hours) 0.0633 0.0343 0.5623 0.2863 2.4283 1.1981 3.3058 1.7890 8.5285 4.5787 33.3239 20.0178
V-cycle time (hours) 0.0452 0.0280 0.4130 0.2434 1.7845 1.0365 2.1976 1.3251 5.7242 3.4398 21.2268 15.2432
No. of V-cycles 5544 3603 12481 8106 22181 14402 34658 22502 49913 32404 73164 57600
Time/V-cycle (seconds) 0.0294 0.0280 0.1191 0.1081 0.2896 0.2591 0.2282 0.2120 0.4129 0.3810 1.0444 0.9527
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FIG. 5. The initial conditions for the cylindrical inclusion numer-
ical experiments. χbg = 600 K, a = 0.3, and η = 1.2 in the opacity
function.

Boundary conditions in the nontransformed simulation corre-
spond to shearing between two parallel plates v(x, y,±γ L) =
(Ub, 0, 0). An initial linear velocity gradient is imposed in the
nontransformed frame, so that

v(x, t = 0) =
(

UBz

γ L
, 0, 0

)
. (38)

Equation (38) ensures equivalent initial conditions in both
methodologies, and also prevents the introduction of large
gradients in the deformation rate near the boundary. To create
interesting dynamics, an initial condition in χ corresponding
to a helix oriented perpendicular to the direction of shear is

FIG. 6. Snapshots of the effective temperature distribution χ (X, t ). Simple shear deformation is imposed via a domain transformation. The
initial condition in χ corresponds to a cylindrical inclusion as described in Sec. V A 1 and shown in Fig. 5. On the left, clamped boundary
conditions in Z are used, while on the right, Lees-Edwards boundary conditions are used. χbg = 600 K in the opacity function in all subfigures.
(a), (b) t = 5 × 105ts. a = 0.3, and η = 1.2. (c), (d) t = 1.25 × 106ts. a = 0.45 and η = 1.55. (e), (f) t = 2 × 106ts. a = 0.55 and η = 1.6.
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TABLE III. Timing details for the randomly initialized simulations with nonperiodic boundary conditions and simple shear deformation.
The number of required multigrid V-cycles decreases as the background χ field increases, likely due to more homogeneous dynamics. Each
simulation uses 32 processes.

μχ = 450 K μχ = 500 K μχ = 525 K μχ = 550 K μχ = 575 K μχ = 600 K

Total time (hours) 95.2948 89.7239 76.9704 82.7853 71.7865 69.1593
V-cycle time (hours) 65.7853 60.5694 48.6470 53.4612 41.7683 40.4283
No. of V-cycles 34846 30663 26628 24991 22649 20735
Time/V-cycle (seconds) 6.7964 7.1111 6.5749 7.7012 6.6390 7.0195

Dual 10-core Dual 10-core Dual 10-core Dual 14-core Dual 8-core Dual 10-core
2.20 GHz 2.20 GHz 2.20 GHz 1.70 GHz 2.40 GHz 2.20 GHz

Processor details
Intel Xeon Intel Xeon Intel Xeon Intel Xeon Intel Xeon Intel Xeon
E5-2630 v4 E5-2630 v4 Silver 4114 E5-2650L v4 E5-2630 v3 E5-2630 v4

considered. This is represented as

δx = x

L
−

(
cos

[
6π

( y
L + 1

)]
8

− 1

16

)
,

δz = z

L
−

(
cos

[
6π

( y
L + 1

)]
8

− 1

16

)
,

χ (x, t = 0) = 600 K + (200 K)e−750(δ2
x +δ2

z ). (39)

Equation (39) is written for the nontransformed simulation,
but the same initial conditions are used in the transformed
simulation with the substitution x → X. The configuration is
visualized in the physical frame in Fig. 2.

The simulations are conducted on two grids of size 256 ×
256 × 128 with a quasistatic time step �t = 31.25ts and with
a value of Ub = 10−7 L

ts
. Snapshots at three representative

time points are shown in Fig. 3. In Figs. 3(a) and 3(b) at
t = 2.88 × 105ts, shear band nucleation has not begun, and
there is an increase in the χ field across the entire domain.
At t = 4.02 × 105ts in Figs. 3(c) and 3(d), shear bands have
begun to nucleate along the top and bottom planes of the
helices. At t = 6 × 105ts in Figs. 3(e) and 3(f), the bands have
grown sharper, stronger, and span the system. In all cases, the
qualitative agreement is very good.

B. Quantitative comparison between the transformed
and nontransformed methods

Having demonstrated the qualitative similarity between the
solutions computed by the transformed and nontransformed
methods, we now present a rigorous quantitative compar-
ison. We utilize the same simulation geometry, boundary
conditions, shear transformation, and initial conditions as in
Sec. IV A. We introduce a norm over simulation fields,

‖f‖(t ) =
√

1

8γ L3

∫ γ L

−γ L
dZ

∫ L

−L
dY

∫ L

−L
dX |f (X, t )|2, (40)

where the integral in Eq. (40) runs over the entire simulation
domain and is numerically computed using the trapezoid
rule. The appearance of | · | in Eq. (40) is interpreted as
the two-norm for vectors, absolute value for scalars, and the
Frobenius norm for matrices. With subscript NT denoting
“nontransformed” and subscript T denoting “transformed,”
Eq. (40) is applied to the quantities v(X, t )NT − v(X, t )T,
σ(X, t )NT − σ(X, t )T, and χ (X, t )NT − χ (X, t )T. The phys-
ical field values are compared across the reference grid, a
procedure that involves two subtleties.

In the transformed simulation, this comparison requires
computing σ from � and v from V using Eqs. (17)
and (14), respectively, at all reference grid points. In the

TABLE IV. Timing details for the randomly initialized simulations with Lees-Edwards boundary conditions. The number of required
multigrid V-cycles decreases as the background χ field increases, likely due to more homogeneous dynamics. Each simulation uses 32
processes.

μχ = 450 K μχ = 500 K μχ = 525 K μχ = 550 K μχ = 575 K μχ = 600 K

Total time (hours) 91.4188 93.9238 81.7296 94.3549 72.8395 68.4994
V-cycle time (hours) 63.5750 64.8320 51.2489 62.8451 44.4758 39.9291
No. of V-cycles 34915 30467 26658 24697 22256 20495
Time/V-cycle (seconds) 6.5551 7.6606 6.9209 9.1607 7.1941 7.0137

Dual 10-core Dual 14-core Dual 8-core Dual 10-core Dual 14-core Dual 10-core
2.20 GHz 1.70 GHz 2.40 GHz 2.20 GHz 1.70 GHz 2.20 GHz

Processor details
Intel Xeon Intel Xeon Intel Xeon Intel Xeon Intel Xeon Intel Xeon

Silver 4114 v4 E5-2650L v4 E5-2630 v3 E5-2630 v4 E5-2650L v4 E5-2630 v4
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FIG. 7. Snapshots of the effective temperature field at t = 0ts. All simulations use nonperiodic boundary conditions in Z and apply
simple shear deformation. For all plots, values of a = 0.25 and η = 1.3 are used. χbg is set to μχ − 25 K in each pane. (a)–(f) have
μχ = 450, 500, 525, 550, 575, and 600 K, respectively.

nontransformed simulation, it is necessary to compute the
nontransformed field values at reference grid points. Because
the reference grid maps to a sheared physical grid, these val-
ues may not be defined in the nontransformed simulation. We
handle this via the following procedure. The nontransformed
simulation grid point x(X) corresponding to the reference
grid point X is first computed. If x(X) does not lie on the
nontransformed grid, adjacent grid points are linearly interpo-
lated to compute an approximate field value at x. This incurs
an O(h2) error, which is the same order of accuracy as the
centered differences used for spatial discretization in the two
methods. As the sizes of the simulation grids are increased,
the discrepancy in solutions will decrease.

To ensure that issues with temporal discretization do not
affect the comparison, it is also necessary to scale the qua-
sistatic time step as the grid size is decreased. Because the
spatial order of accuracy is O(h2), we keep the ratio �t/h2

fixed across all simulations. We perform comparisons across
grids of size N × N × N

2 with N = 64, 96, 128, 160, 192, and

256. Respectively, these correspond to grid spacings L/32,
L/48, L/64, L/80, L/96, and L/128. The quasistatic time
step is taken to be �t = 500ts for the coarsest simulation,
leading to quasistatic time steps �t = 222.14, 125, 80, 55.55,
and 31.25, respectively, for the finer simulations. The dif-
fusion length scale in the effective temperature equation is
taken to be zero in all simulations for the purpose of the
comparison.

The results for the quantitative comparisons are shown
in Fig. 4. In Fig. 4 (top left), the three L2 norm curves are
plotted together for a value of N = 256, where each curve
is normalized by a representative value in order to plot on
a comparable dimensionless scale. The effective temperature
norm increases rapidly early on in the simulation, but then
saturates around 10−4. The σ norm stays around machine
precision until the onset of plasticity, when it rapidly increases
and then saturates around 10−3. Similarly, the v norm stays
below 10−13 until the onset of plasticity, when it rapidly
increases and then saturates around 10−4. The agreement up to
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FIG. 8. Snapshots of the effective temperature field at t = 4 × 105ts. All simulations use nonperiodic boundary conditions in Z and apply
simple shear deformation. For all plots, values of a = 0.45 and η = 1.75 are used. χbg is set to μχ − 25 K in each pane. (a)–(f) have μχ =
450, 500, 525, 550, 575, and 600 K, respectively.

machine precision prior to the onset of plasticity is expected,
and validates the accuracy of the derivation of the equations
in the reference frame.

In Fig. 4 (top right), the effective temperature norm curves
are shown for all values of N . Here, there is a steady increase
in the discrepancy before the onset of plasticity due to advec-
tion across the grid. After plasticity is activated around t =
1.2 × 105ts, there is a period of saturation in all curves, fol-
lowed by a period of increase beginning around t ≈ 3 × 105ts,
where some simulation curves cross and end at roughly equal
values. As expected, the discrepancies generally decrease as
the grid spacing is decreased.

In Fig. 4 (bottom left), the velocity norm curves are shown
as a function of time for all discretization levels. In all cases,
the difference between the simulation methods is on the order
of machine precision until the onset of plasticity, when there
is a sharp and immediate jump. The size of the jump decreases
with the discretization level as expected.

In Fig. 4 (bottom right), the stress norm curves are shown.
These curves display a combination of the trends in the
velocity and effective temperature plots. Before the onset of
plasticity, the error in all simulations is on the order of ma-
chine precision. After the onset of plasticity, there is a sharp
jump in all simulations, and the size of the jump decreases
with higher resolution. Past around t ≈ 2 × 105ts, the curves
begin to cross, all ending at roughly equivalent values.

To compare the computational efficiency of the two meth-
ods, we have reported timing statistics for all simulations
in Table II. Displayed are the total time, the total number
of multigrid V-cycles, the total time spent in multigrid V-
cycles, and the average time per V-cycle for the transformed
(T) and nontransformed (NT) methods. As is clear from
the table, the transformed method incurs a mild increase in
computational expense. The average time spent per V-cycle is
roughly the same, but the total number of multigrid V-cycles
is higher for the transformed method. This is likely due to the
increased complexity of the linear system required for the
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FIG. 9. Snapshots of the effective temperature field at t = 6 × 105ts. All simulations use nonperiodic boundary conditions in Z and apply
simple shear deformation. For all plots, values of a = 0.45 and η = 1.75 are used. χbg is set to μχ − 25 K in each pane. (a)–(f) have μχ =
450, 500, 525, 550, 575, and 600 K, respectively.

stress projection in the transformed method when compared
to the nontransformed method.

V. NUMERICAL EXAMPLES

A. Simple shear and the effect of Lees-Edwards
boundary conditions

As a first example application of the transformation
method, we consider connecting a continuum-scale model to
typical discrete molecular dynamics simulations. A signifi-
cant difference between continuum simulation and molecu-
lar dynamics is in the boundary conditions. Molecular dy-
namics simulations commonly employ Lees-Edwards bound-
ary conditions, where periodic copies of the system are
placed above and below with a prescribed horizontal velocity.

Continuum-scale boundary conditions usually set a shear
velocity on the top and bottom boundaries to achieve the same
effect.

Lees-Edwards boundary conditions can be implemented
in the continuum through the use of the coordinate transfor-
mation methodology presented here, by combining a shear
transformation T(t ) as in Eq. (23) with periodicity in the Z
direction. In the following sections, we present several numer-
ical examples using Lees-Edwards and nonperiodic boundary
conditions. Particular attention is paid to differences in shear
banding dynamics produced by these two choices of boundary
conditions.

1. Cylindrical inclusion

We first consider an initial condition corresponding to a
cylindrical defect in the material. Accordingly, the effective
temperature field is initially elevated throughout a cylinder of
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FIG. 10. Snapshots of the effective temperature field at t = 106ts. All simulations use nonperiodic boundary conditions in Z and apply
simple shear deformation. For all plots, values of a = 0.75 and η = 2 are used. χbg is set to μχ − 25 K in each pane. (a)–(f) have μχ =
450, 500, 525, 550, 575, and 600 K, respectively.

finite length oriented along the direction of shear:

χ (X, t = 0)

=
{

550 K + (200 K)e−500
(

Z2

L2 + Y 2

L2

)
if X

L ∈ [− 1
2 , 1

2

]
,

0 otherwise.
(41)

The initial condition is shown in Fig. 5. The diffusion length
scale is set to l = 3

2 h and the quasistatic time step is set
to �t = 200ts. The grid is of size 256 × 256 × 128. The
simulation is performed to a final value of t = 2 × 106ts.
To induce shear banding, a shear transformation of the
form (23) is used with a value of Ub = 10−7L/ts, and both
clamped and Lees-Edwards boundary conditions are consid-
ered. The clamped simulation takes 13.851 total hours when
run with 32 processes on an Ubuntu Linux computer with
dual 10-core 2.20-GHz Intel Xeon E5-2630 v4 processors.
10.452 hours are spent in multigrid V-cycles and 28 293

total V-cycles are required. The Lees-Edwards simulation
takes 10.082 total hours when run with 32 processes on an
Ubuntu Linux computer with dual 10-core 2.20-GHz Intel
Xeon Silver 4114 processors. The total time spent in multi-
grid V-cycles is 7.393 hours and 28 293 total V-cycles are
required.

Results for Lees-Edwards and nonperiodic boundary con-
ditions are shown in Fig. 6, on the right and left, respectively.
The shear banding dynamics in this case is simple, and
corresponds to outward nucleation of a single band from the
localized cylinder. At t = 5 × 105ts in Figs. 6(a) and 6(b),
nucleation of the shear band has begun, and there is some
spreading in the χ field visible at the caps of the cylinder.
By t = 1.25 × 106ts, a prominent system-spanning shear band
has formed, as displayed in Figs. 6(c) and 6(d). In Figs. 6(e)
and 6(f) at t = 2 × 106ts, the shear band continues to grow
stronger and thicker. In this case, the dynamics is virtually
identical for the Lees-Edwards and nonperiodic boundary
conditions.
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FIG. 11. Snapshots of the effective temperature field at t = 0ts. All simulations use Lees-Edwards boundary conditions. For all plots, values
of a = 0.25 and η = 1.3 are used. χbg is set to μχ − 25 K in each pane. (a)–(f) have μχ = 450, 500, 525, 550, 575, and 600 K, respectively.

2. A randomly fluctuating effective temperature field

We now consider a randomly distributed initial condition in
the effective temperature field χ (X, t = 0). We first populate
the grid and a shell of ghost points with random variables
χζ (X) using the Box-Muller algorithm. With μχ and σχ , re-
spectively, denoting the desired mean and standard deviation,
we perform the convolution

χ (X) = σχ

N

∑
R∈V ′

e
− ‖X−R‖2

l2c χζ (R) + μχ, N =
√∑

R∈V

e
−2 ‖R‖2

l2c ,

(42)

where V denotes the set of grid points and V ′ denotes the
extended set of grid points and ghost points. Equation (42)
ensures that the effective temperature value at each point is
normally distributed with mean μχ and standard deviation
σχ . In practice, the sums in Eq. (42) are performed with
a cutoff length scale specified as a multiplicative factor of
the convolution length scale lc, and the number of ghost
points in V ′ is set by the choice of cutoff length scale. For

computational feasibility, we choose a cutoff length of 5lc,
so that the Gaussian kernel is considered to be zero past this
point. In the following studies, a value of lc = 5h is used,
leading to an additional 25 ghost points padding the grid for
the purpose of the convolution.

Simulations are performed for mean values μχ =
450, 500, 525, 550, 575, and 600 K with a fixed value of
σχ = 15 K for both nonperiodic and Lees-Edwards boundary
conditions. The diffusion length scale is set to l = 3

2 h, and the
quasistatic time step is set to �t = 200ts. The simulations are
all conducted on a 512 × 512 × 256 cell grid to a final value
of t = 106ts. To induce shear banding, a shear transformation
of the form (23) with a value of Ub = 10−7L/ts is imposed on
the domain. Timing details for the nonperiodic simulations are
shown in Table III, while timing details for the Lees-Edwards
simulations are shown in Table IV.

The results for this sequence of simulations in the case of
nonperiodic boundary conditions are shown in Figs. 7–10.
Each figure corresponds to a single snapshot in time, and
the mean increases with the alphabetical labeling. The initial
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FIG. 12. Snapshots of the effective temperature field at t = 4 × 105ts. All simulations use Lees-Edwards boundary conditions. For all
plots, values of a = 0.45 and η = 1.75 are used. χbg is set to μχ − 25 K in each pane. (a)–(f) have μχ = 450, 500, 525, 550, 575, and
600 K, respectively.

conditions for the effective temperature field are shown in
Fig. 7. At t = 0, all simulations look essentially the same. The
realization of the noise in each configuration is identical, and
each pane is obtained from the previous by a constant shift
in χ .

By t = 4 × 105ts in Fig. 8, the simulations with the two
lowest values of μχ exhibit clear shear bands with curvature in
both the X and Y directions. The simulation with μχ = 450 K
in Fig. 8(a) displays two shear bands that cross each other
diagonally near X

L = 0.5. The simulation with μχ = 500 K in
Fig. 8(b) displays only one of these bands, though the second
has begun to nucleate. This single band is also apparent in
Fig. 8(c), but it is significantly weaker. A third nascent band
near Z

L = 0 may also be observed.
More details are clear at t = 6 × 105ts in Fig. 9. Fig-

ure 9(a) is similar to Fig. 8(a), whereas Fig. 9(b) shows further
development of the shear bands in Fig. 8(b). Figures 9(c) and

9(d) show the development of several flat and thin shear bands
centered around Z

L = 0.
Figure 10 (t = 106ts) displays clear shear banding across

all values of μχ , and makes clear the dependence of shear
banding structure on μχ . There is one primary band in
Fig. 10(a), with a split near around X

L ≈ −0.5 not present in
Fig. 10(b). Figure 10(b) also displays an additional thin band
near Z

L ≈ 0.0 that has not formed in Fig. 10(a). Figure 10(c)
displays several additional bands near Z

L = 0 that form a
complex branching pattern. Figure 10(d) resolves more fine-
scale structure in the band near Z

L ≈ 0.25 when compared to
Figs. 10(a)–10(c), and has more bands near lower values of
Z
L . Figures 10(e) and 10(f) show several additional thin bands
when compared to the previous panels, but they are earlier in
their formation and less prominently displayed.

Taken together, Figs. 7–10 provide qualitative insight
into how macroscopic shear banding dynamics and structure
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FIG. 13. Snapshots of the effective temperature field at t = 6 × 105ts. All simulations use Lees-Edwards boundary conditions. For all
plots, values of a = 0.45 and η = 1.75 are used. χbg is set to μχ − 25 K in each pane. (a)–(f) have μχ = 450, 500, 525, 550, 575, and
600 K, respectively.

reflect the underlying effective temperature distribution. In a
simulation with small mean, there are few regions susceptible
shear band nucleation, most clearly displayed in the formation
of only a single band in the lowest mean simulation. These
nucleation points must connect to form a band, as indicated
by the mild curvature seen in the bands in Figs. 10(a) and
10(b). As μχ is increased, additional regions of sufficiently
high χ exist for band nucleation, curvature decreases, and the
number of bands increases. This first presents itself, as seen
in Figs. 7(d)–10(d), as an existing band splitting into multiple.
The gap in the split grows with μχ , as seen in Figs. 7(d)–10(d)
and 7(e)–10(e), until it eventually breaks off into its own
band. With high μχ as in Figs. 7(e)–10(e) and 7(f)–10(f),
shear bands can nucleate in many different locations without
curvature. The timescale for shear band development is also
more rapid in simulations with low background χ field.

The results for an identical sequence of simulations in the
case of Lees-Edwards boundary conditions are displayed in
Figs. 11–14. The initial conditions are displayed in Fig. 11,
which differ from those in Fig. 7, as the convolution used

to generate the initial distribution wraps around over the
boundary in Z to enforce periodicity.

By t = 4 × 105ts in Fig. 12(a), a single vertical shear band
has formed, along with an additional, weaker vertical band
and a similar horizontal band. These bands are also visible
in Fig. 12(b) earlier in their development. Vertical shear
bands do not typically form in continuum simulations with
nonperiodic boundary conditions in Z , but are frequently seen
in MD simulations [73,74], indicating that the orientation of
shear bands could be strongly related to the specific boundary
conditions used.

Further progression is clear at t = 6 × 105ts in Fig. 13.
Figure 13(a) is similar to Fig. 12(a). Figure 13(b) displays sig-
nificant strengthening of the early-stage bands in Fig. 12(b).
Figures 13(c) and 13(d) show the initiation of several shear
bands.

Figure 14 shows the results for t = 106ts. Figure 14(a)
displays a horizontal band perpendicular to the vertical band
that exhibits significant curvature. Figure 14(b) shows a sim-
ilar result, with a thinner vertical band and a thicker, flatter
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FIG. 14. Snapshots of the effective temperature field at t = 106ts. All simulations use Lees-Edwards boundary conditions. For all plots,
values of a = 0.75 and η = 2 are used. χbg is set to μχ − 25 K in each pane. (a)–(f) have μχ = 450, 500, 525, 550, 575, and 600 K,
respectively.

horizontal band. Figure 14(c) shows similar features, but
also displays the development of several additional horizontal
bands extending to the bottom of the simulation domain.
Furthermore, the thick horizontal band in Fig. 14(b) can be
seen to split and fracture. In Fig. 14(d), the vertical band has
been almost entirely washed out, and a complex branching
pattern of horizontal bands is seen. Figures 14(e) and 14(f) are
similar to Fig. 14(d), but they are earlier in their development
and some of the fine-scale features are washed out due to the
high background χ field. The agreement with the nonperiodic
simulations increases strongly as μχ is increased.

Figure 14 clearly demonstrates the effect of increasing μχ

with periodic boundary conditions. In the simulations with
lower μχ , nucleation of vertical shear bands is more likely,
and curved horizontal bands develop later in the simulation
than vertical bands. As μχ is increased, the vertical bands
begin to disappear. As in the nonperiodic case, the curvature
in the horizontal bands decreases with μχ . As μχ is increased

further, the vertical bands disappear altogether. In this regime,
increasing μχ increases the number of horizontal bands, and
the qualitative agreement with the nonperiodic results is good.
These results suggest that, for higher μχ , the effect of period-
icity in the Z direction is less significant.

B. Pure shear

As a second example transformation, we now consider
pure shear deformation. In metallic glasses, experimental
evidence indicates that pure shear is the primary failure
mode under compressive stress, and several recent experi-
ments have been conducted probing BMGs under pure shear
conditions [75–78]. Pure shear is particularly interesting due
to the simplicity of its implementation in the transformation
methodology. To simulate pure shear on a physical grid, it
would be necessary to impose traction boundary conditions
on the top, bottom, and sides, which poses computational
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FIG. 15. Snapshots of the effective temperature distribution χ (X, t ) for a quasistatic simulation. Pure shear deformation is imposed via
a domain transformation with an initial condition corresponding to a sequence of blips of elevated χ lying roughly along the superdiagonal
of the simulation domain. This simulation uses periodic boundary conditions in all three directions. χbg = 550 K in the opacity function for
all panels. (a) t = 0ts, a = 0.75, η = 1.2. (b) t = 5 × 104ts, a = 0.75, η = 1.2. (c) t = 8 × 104ts, a = 0.75, η = 1.25. (d) t = 105ts, a = 0.75,
η = 1.25. (e) t = 2 × 105ts, a = 0.4, η = 1.6. (e) t = 4 × 105ts, a = 1.1, η = 2.45.

difficulties. Within the transformation framework, pure shear
can be implemented using the transformation

T(t ) =

⎛
⎜⎝

A(t ) 0 0

0 1 0

0 0 1
A(t )

⎞
⎟⎠. (43)

A(t ) can be chosen as any monotonically increasing function
of time. In the following studies, we choose A(t ) = eξ t , where
ξ is a simulation parameter that sets the rate of extension and
compression of the x and z axes, respectively. For numerical
stability, it is important to choose ξ small, so that large stresses
do not cause divergences in the simulation fields. In our
simulations, we choose ξ as a fraction of t f , which effectively
sets the strain at the end of the simulation.

1. Gaussian defects

To gain some physical intuition about shear banding dy-
namics with pure shear boundary conditions, we first consider
an example initial condition in χ corresponding to localized
defects in the material. It is expected that diagonal shear bands
will nucleate outward from the imperfections. We first define
the quantities

X1 = L × (−0.3,−0.3, 0.2),

X2 = L × (0.3, 0.3,−0.2),

X3 = L × (−0.1,−0.1, 0.1),

X4 = L × (0.1, 0.1,−0.1),

X5 = L × (0, 0, 0),

δ1 = δ2 = δ5 = 200,

δ3 = δ4 = 150,
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FIG. 16. Snapshots of the effective temperature distribution χ (X, t ) for a quasistatic simulation. Pure shear deformation is imposed via
a domain transformation with an initial condition corresponding to a sequence of blips of elevated χ lying roughly along the superdiagonal
of the simulation domain. This simulation uses nonperiodic boundary conditions in Z and is periodic in the X and Y directions. χbg = 550 K
in the opacity function in all panels. (a) t = 0ts, a = 0.75, η = 1.2. (b) t = 5 × 103ts, a = 0.75, η = 1.2. (c) t = 104ts, a = 0.75, η = 1.45.
(d) t = 1.5 × 104ts, a = 0.75, η = 1.45. (e) t = 4 × 105ts, a = 1.75, η = 1.75.

and then take the initial condition in χ to be

χ (X, t = 0) = 550 K + (200 K)
5∑

i=1

e−δi‖ X
L − Xi

L ‖2
. (44)

Simulations are performed with periodic and nonperiodic
boundary conditions in Z on grids of size 256 × 256 × 128.
The X and Y dimensions use periodic boundary conditions
in both cases. The diffusion length scale is set to l = 3h and
the quasistatic time step is �t = 200ts. ξ in Eq. (43) is set
to be 1

4t f
with t f = 4 × 105ts the total simulation duration,

so that A(t f ) = e1/4 ≈ 1.284. The periodic simulation is run
with 32 processes on an Ubuntu Linux computer with dual
14-core 1.70-GHz Intel Xeon E5-2650L processors. The total
time is 4.721 hours, the total time spent in multigrid V-cycles

is 3.283 hours, and the total number of V-cycles is 11 596.
The nonperiodic simulation is run with 32 processes on an
Ubuntu Linux computer with dual 10-core 2.20-GHz Intel
Xeon E5-2630 processors. The total time is 8.832 hours, the
total time spent in multigrid V-cycles is 6.506 hours, and the
total number of V-cycles is 11 075.

Results for periodic and nonperiodic boundary conditions
are shown in Figs. 15 and 16, respectively. The initial condi-
tions are shown in Figs. 15(a) and 16(a). In both Figs. 15(b)
and 16(b) at t = 5 × 104ts, some spreading in the χ field is
seen near the defects. Shortly thereafter, the dynamics in the
nonperiodic and periodic cases begin to differ dramatically.

At t =8×104ts in Fig. 15(c), three diagonal bands are
seen connecting the defects. The bands become more pro-
nounced at t =105ts in Fig 15(d). This continues into
t = 2×105ts in Fig. 15(e), along with the addition of diagonal
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TABLE V. Timing details for the randomly initialized simulations with periodic boundary conditions and pure shear deformation. The
number of required multigrid V-cycles decreases as the background χ field increases, likely due to more homogeneous dynamics. Each
simulation uses 32 processes.

μχ = 450 K μχ = 500 K μχ = 525 K μχ = 550 K μχ = 575 K μχ = 600 K

Total time (hours) 232.7589 171.3655 159.3944 129.3347 164.1213 206.7765
V-cycle time (hours) 176.7667 125.4595 115.4887 81.0119 114.6882 143.3524
No. of V-cycles 66214 63871 62263 59750 57772 55149
Time/V-cycle (seconds) 9.6107 7.0734 6.6774 4.8811 7.1467 9.3577

Dual 10-core Dual 10-core Dual 10-core Dual 16-core Dual 14-core Dual 14-core
Processor

2.20 GHz 2.20 GHz 2.20 GHz 2.10 GHz 1.70 GHz 1.70 GHz
Intel Xeon Intel Xeon Intel Xeon Intel Xeon Intel Xeon Intel Xeon
E5-2630 v4 E5-2630 v4 Silver 4114 v4 E5-2683 v4 E5-2650L v4 E5-2650L v4

bands perpendicular to the original bands. Both sets of bands
continue to grow larger and stronger by t = 4 × 105ts in
Fig. 15(f).

The deformation dynamics with nonperiodic boundary
conditions is significantly different. By t = 8 × 104ts in
Fig. 16(c), diagonal bands have started to nucleate off of each

FIG. 17. Snapshots of the effective temperature field at t = 0ts with pure shear transformation imposed on the domain. All simulations use
periodic boundary conditions. For all plots, a value of a = 0.25 and η = 1.3 is used in the opacity function, and χbg is set to μχ − 25 K. (a)–(f)
have μχ = 450, 500, 525, 550, 575, and 600 K, respectively.
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FIG. 18. Snapshots of the effective temperature field at t = 3 × 105ts with a pure shear transformation imposed on the domain. All
simulations use periodic boundary conditions. For all plots, a value of a = 0.55 and η = 1.5 is used in the opacity function, and χbg is set
to μχ − 25 K. (a)–(f) have μχ = 450, 500, 525, 550, 575, and 600 K, respectively.

defect in a direction roughly perpendicular to the first bands
formed in the periodic simulation. By t = 105ts in Fig. 16(d),
this nucleation has grown more prominent, and an increase in
the background χ field is seen across the simulation. At times
t = 2 × 105ts and t = 2.5 × 105ts in Figs. 16(e) and 16(f),
respectively, the qualitative structure remains the same, but
the background χ field continues to increase. Unlike in the
periodic case, true system-spanning shear bands do not fully
form.

2. A randomly fluctuating effective temperature field

In this section, we consider the same sequence of ran-
dom initializations as in Sec. V A 2, but now subject to
pure shear deformation. The diffusion length scale is set to
3
2 h and the quasistatic time step is set to �t = 200ts. All
simulations are conducted on a 512 × 512 × 256 cell grid.
A pure shear transformation of the form (43) is used with
A(t ) = eξ t and a value of ξ = 1

4t f
with t f = 2 × 106ts so that

A(t f ) = e1/4 ≈ 1.284. Simulations are performed with fully
periodic boundary conditions in all directions; nonperiodic
simulations produce qualitatively similar differences as in the
case of simple shear. In all figure panels, χbg is set to be
μχ − 25 K. Timing data for the simulations are reported in
Table V.

The results are shown in Figs. 17–20, with the initial con-
dition shown in Fig. 17. All simulations undergo an increase
in χ until the formation of diagonal shear bands begins. Much
like the defect simulations seen in the previous section, shear
bands nucleate diagonally at roughly 45◦ angles to the X -Y
plane. As in the simple shear simulations, distributions in χ

with higher mean values have slower dynamics. The structural
effect of varying μχ is most easily seen in Fig. 20. As μχ

increases, the number of shear bands vastly increases, forming
a cross-hatched pattern throughout the domain. The cross
hatching becomes more regular and more finely spaced with
higher values of μχ .
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FIG. 19. Snapshots of the effective temperature field at t = 6 × 105ts with a pure shear transformation imposed on the domain. All
simulations use periodic boundary conditions. For all plots, a value of a = 0.75 and η = 1.6 is used in the opacity function, and χbg is set
to μχ − 25 K. (a)–(f) have μχ = 450, 500, 525, 550, 575, and 600 K, respectively.

VI. CONCLUSION

In this work, we derived the equations of hypoelastoplas-
ticity on a fixed reference domain which can be mapped
to a physically deforming material through a time-varying
linear transformation T(t ). The difference between this frame
and the Lagrangian frame was shown, and the utility of this
frame in implementing complex boundary conditions such
as the Lees-Edwards conditions used in molecular dynam-
ics and pure shear in a fully periodic setting was demon-
strated. The quasistatic projection algorithm was derived in
the reference frame and its convergence to the standard
method was shown as the level of discretization increases.
Several numerical examples were considered in the STZ
model of amorphous plasticity. In particular, for a randomly
distributed initial condition in the effective temperature field,
the dependence of shear banding dynamics on the mean of
the distribution was discussed under conditions of simple
shear and pure shear. Our work highlights, for example, that

the direction of shear bands (e.g., horizontal versus vertical
in simple shear) can be strongly influenced by boundary
conditions.

With the simple implementation of Lees-Edwards condi-
tions afforded by the transformation method, boundary con-
ditions can now be made equivalent in MD and continuum
modeling. The development of a method to compute a precise
matching between atomic configurations in molecular dy-
namics and effective temperature distributions in continuum
simulations is a promising direction of future research which
requires our derivation here. The ability to do so would place
internal state variables in plasticity models (such as the ef-
fective temperature in the STZ model) on a firmer theoretical
footing. In addition, hybrid computational approaches could
be developed, where an MD simulation could first be used
to compute an initial condition for a significantly larger scale
continuum simulation. This type of approach would combine
the physical accuracy of MD with the capability of continuum
simulations to simulate large system sizes and long times. As
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FIG. 20. Snapshots of the effective temperature field at t = 1.5 × 106ts with a pure shear transformation imposed on the domain. All
simulations use periodic boundary conditions. For all plots, a value of a = 1.35 and η = 1.5 is used in the opacity function, and χbg is set to
μχ − 25 K. (a)–(f) have μχ = 450, 500, 525, 550, 575, and 600 K, respectively.

an added benefit, our approach enables the study of the effect
of periodic boundary conditions in general, independent of the
relevance of these settings to MD.

So far, our implementations are restricted to cases where
the material fills the entire computational domain, and loading
is applied via planar boundary conditions, or via the coordi-
nate transformation framework. However, the methods pre-
sented here could be generalized to materials with free bound-
aries, using the level set method [79,80] to track the material
boundary. Methods to do this have already been implemented
in two dimensions [33,56,81], and the same methods could
be used, in principle, in three dimensions. However, it is

a challenging computational task since it requires extensive
modifications to the finite-difference stencils near the material
boundary. In particular, since some grid points will lie outside
the material, the geometric multigrid method is no longer well
suited for solving the projection step since it relies on a regular
arrangement of grid points. It may be necessary to use al-
gebraic multigrid approaches or Krylov-based linear solvers.
Nevertheless, this remains a high priority for future work since
it would open up many new directions, such as studying three-
dimensional cavitation [11,82], simulating mode III frac-
ture [83], and predicting the topography of fracture surfaces
[84–86].
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APPENDIX A: ADVECTIVE DERIVATIVE CALCULATION

Consider a scalar field φ(x, t ) = φ(TX, t ). We can compute the advective derivative of φ as follows using the chain rule:

d

dt
φ(TX, t ) =

(
∂

∂t
+ vT ∂

∂x

)
φ(TX, t ) =

(
∂

∂t
+ vTT−T ∂

∂X

)
φ(TX, t )

=
(

∂X
∂t

)T
∂

∂X
φ(TX, t ) + φt (TX, t ) + vTT−T ∂

∂X
φ(TX, t )

= φt (TX, t ) +
[

vTT−T +
(

∂X
∂t

)T
]

∂

∂X
φ(TX, t )

= φt (TX, t ) +
[

vTT−T +
(

∂T−1

∂t
TX

)T
]

∂

∂X
φ(TX, t ) = φt (TX, t ) + VT∇Xφ(TX, t ). (A1)

In the last line, we have used Eq. (14) and the identity ∂T−1

∂t = −T−1 ∂T
∂t T−1.

APPENDIX B: LINEAR SYSTEM FOR SIMPLE SHEAR

Let V = (U,V,W )T. For a simple shear transformation as given in Eq. (23), C : D takes the form

(C : D)11 = λ(∇X · V) + 2μ
∂U

∂X
+ 2μUbt

∂W

∂X
, (B1)

(C : D)12 = μ

(
∂U

∂Y
+ Ubt

∂W

∂Y
+ ∂V

∂X

)
, (B2)

(C : D)13 = μ

(
Ub + ∂U

∂Z
+ Ubt

∂W

∂Z
− Ubt

∂U

∂X
+ (

1 − U 2
b t2

)∂W

∂X

)
, (B3)

(C : D)22 = λ(∇X · V) + 2μ
∂V

∂Y
, (B4)

(C : D)23 = μ

(
∂V

∂Z
+ ∂W

∂Y
− Ubt

∂V

∂X

)
, (B5)

(C : D)33 = λ(∇X · V) + 2μ
∂W

∂Z
− 2Ubμt

∂W

∂X
. (B6)

The above set of equations leads to the linear system [Eqs. (26) and (27)] for the velocity field

(Tn∇X · �∗)1 = (
U 3

b t3μ + Ubtμ
)∂2W

∂X 2
+ (

λ + 2μ + U 2
b t2μ

)∂2U

∂X 2
+ (

λ + μ − 2U 2
b t2μ

) ∂2W

∂X∂Z

− 2Ubtμ
∂2U

∂X∂Z
+ Ubtμ

∂2W

∂Z2
+ Ubtμ

∂2W

∂Y 2
+ μ

∂2U

∂Z2
+ μ

∂2U

∂Y 2
+ (λ + μ)

∂2V

∂X∂Y
, (B7)

(Tn∇X · �∗)2 = U 2
b t2μ

∂2V

∂X 2
− 2Ubtμ

∂2V

∂X∂Z
+ λ

∂2U

∂X∂Y
+ μ

∂2U

∂X∂Y

+ λ
∂2V

∂Y 2
+ μ

∂2V

∂Z2
+ 2μ

∂2V

∂Y 2
+ μ

∂2V

∂X 2
+ λ

∂2W

∂Y ∂Z
+ μ

∂2W

∂Y ∂Z
, (B8)

(Tn∇X · �∗)3 = (λ + 2μ)
∂2W

∂Z2
+ (λ + μ)

∂2V

∂Y ∂Z
+ μ

∂2W

∂Y 2
+ (λ + μ)

∂2U

∂X∂Z

− Ubt (λ + 3μ)
∂2W

∂X∂Z
− Ubt (λ + μ)

∂2V

∂X∂Y
− Ubt (λ + μ)

∂2U

∂X 2
+ (

1 + U 2
b t2

)
μ

∂2W

∂X 2
. (B9)

Discretization of the second-derivative terms in Eqs. (B7)–(B9) using the finite differences in Sec. III B enables application of
the geometric multigrid method to solve for U , V , and W .
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APPENDIX C: LINEAR SYSTEM FOR PURE SHEAR

For a pure shear transformation of the form (43) with A(t ) = eξ t as in the main text, C : D takes the form

(C : D)11 = λ∇X · V + 2μ

(
ξ + ∂U

∂X

)
, (C1)

(C : D)12 = μ

(
eξ t ∂U

∂Y
+ e−ξ t ∂V

∂X

)
, (C2)

(C : D)13 = μ

(
e2ξ t ∂U

∂Z
+ e−2ξ t ∂W

∂X

)
, (C3)

(C : D)22 = λ∇X · V + 2μ
∂V

∂Y
, (C4)

(C : D)23 = μ

(
eξ t ∂V

∂Z
+ e−ξ t ∂W

∂Y

)
, (C5)

(C : D)33 = λ∇X · V + 2μ

(
∂U

∂X
− ξ

)
. (C6)

The above set of equations leads to the linear system [Eqs. (26) and (27)] for the velocity field

(Tn∇X · �∗)1 = μe3ξ t ∂
2U

∂Z2
+ eξ tμ

∂2U

∂Y 2
+ e−ξ t (λ + μ)

∂2W

∂X∂Z
+ e−ξ t (λ + μ)

∂2V

∂X∂Y
+ e−ξ t (λ + μ)

∂2U

∂X 2
, (C7)

(Tn∇X · �∗)2 = e2ξ tμ
∂2V

∂Z2
+ (λ + μ)

∂2W

∂Y ∂Z
+ (λ + 2μ)

∂2V

∂Y 2
+ (λ + μ)

∂2U

∂X∂Y
+ e−2ξ tμ

∂2V

∂X 2
, (C8)

(Tn∇X · �∗)3 = eξ t (λ + 2μ)
∂2W

∂Z2
+ eξ t (λ + μ)

∂2V

∂Y ∂Z
+ e−ξ tμ

∂2W

∂Y 2
+ eξ t (λ + μ)

∂2U

∂X∂Z
+ e−3ξ tμ

∂2W

∂X 2
. (C9)
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