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Computed tomography (CT) images of large core samples acquired by imaging equipment are insufficiently
clear and ineffectively describe the tiny pore structure; conversely, images of small core samples are insufficiently
globally representative. To alleviate these challenges, the idea of a super-resolution reconstruction algorithm is
combined with that of a three-dimensional core reconstruction algorithm, and a multiscale core CT image fusion
reconstruction algorithm is proposed. To obtain sufficient image quality with high resolution, a large-scale core
image is used to provide global feature information as well as information regarding the basic morphological
structure of a large-scale pore and particle. Then the texture pattern and the tiny pore distribution information of
a small-scale core image is used to refine the coarse large-scale core image. A blind image quality assessment
is utilized to estimate the degradation model of core images at different scales. A multilevel pattern mapping
dictionary containing local binary patterns is designed to speed up the pattern matching procedure, and an
adaptive weighted reconstruction algorithm is designed to reduce the blockiness. With our method, images
of the same core at different scales were successfully fused. The proposed algorithm is extensively tested on
microstructures of different rock samples; all cases of the reconstructed results and those of the actual sample
were found to be in good agreement with each other. The final reconstructed image contains both large-scale
and small-scale information that can provide a better understanding of the core samples and inform the accurate
calculation of parameters.
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I. INTRODUCTION

Currently, gas and oil are the main energy resources; for
this reason, a comprehensive three-dimensional (3D) reservoir
model is needed to provide a better understanding of reser-
voirs. In particular, the pore-size distribution is one of the key
characteristics of reservoirs [1–5].

Computed tomography (CT) is the primary imaging tech-
nique used to acquire 3D core images and the accuracy of a
characteristic analysis is affected by image quality; however,
its limitations lead to image quality being affected by the
size of the sample. In large samples, the obtained large-scale
images have better global representativeness and can better
reflect the sample information on a macro scale, compared to
smaller sample images, in which tiny pores are often missing.
Furthermore, according to Adam et al. [6], the quality of
a CT image is affected by scattered photons: the larger the
size of the scanning sample, the more scattered the photons
and the lower the quality of the acquired image. As shown
in Fig. 1(a), the image resolution of the large sized image
sample is insufficient and the image is particularly blurry;
this negatively affects the accuracy of the calculation of the
physical parameters, such as that of pore size distribution.
Figure 1(a) shows one slice of a large size sample with a size
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of � = 25 mm(14 μm/pixel), wherein the pore/grain edge is
blurred and the small pores are imperceptible.

Alternatively, when the sample image size is small, a high-
quality small-scale image can be obtained, and some smaller
pores that cannot be obtained with the large sample size can
be clearly presented. Nonetheless, the macro representation of
the high-quality small-scale images is insufficient. Figure 1(b)
shows one slice of a small size sample, drawn from the same
sample, with a size of � = 2 mm(0.875 μm/pixel), whereas
in Fig. 1(b) the details of the tiny pores are much clearer but
the overall structure is not exhibited.

In additional, limited by the storage capacity, core images
are compressed in some cases at the cost of quality. Lots of
methods have been proposed to enhance the quality of the
compressed images in recent years [7,8], and these works also
apply to compressed core images.

In this paper we are focused on fusing a core image with
various images of the same core sample at different scales.
Doing so can allow the generation of a core image that
provides information regarding both the overall structure and
the tiny pore details.

A numerical construction method for multiscale pore net-
works was proposed by Jiang et al. [9]. The pore networks
were constructed with the image sample at several different
lengths and then represented in a single 3D model. In 2015,
Gerke et al. [10] proposed a fusing method to integrate images
at different scales into one single image using a predefined
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FIG. 1. Multiscale images of the same sample: (a) large-scale
image at � = 25 mm(14 μm/pixel) and (b) small-scale image at
� = 2 mm, 0.875 μm/pixel.

resolution. In their method, the samples with similar sizes and
resolutions were created from rescaled correlation functions;
the minerals and pores were then extracted and fused into
one single binary image. In 2017, Tahmasebi [3] used 2D
images of shale samples at different scales; the hybrid pattern-
and pixel-based simulation method [11] was used to integrate
those images into single images.

In 2018, Karsanina and Gerke [12] proposed a hierarchical
annealing stochastic reconstruction method based on rescaled
correlation functions; this method was shown to improve both
the accuracy and computational efficiency of reconstructions
with binary microstructures of different samples.

The results reconstructed by Gerke’s method present a
binary image, and the accuracy of image segmentation has
a great influence on the reconstructed results; Jiang’s re-
constructed results are specified for the pore network. Tah-
masebi’s method is the first to reconstruct the image of shale
samples at different scales in grayscale. However, theoreti-
cally, as per their methodical framework, degradation predic-
tion of different scales images, which may cause distortion
during the reconstruction procedure, was not utilized.

To obtain high-quality core sample images that show both
the overall structure and tiny pore details, a method which
fuses different scale images of the same core sample is
proposed here. The large-scale core image is used to provide
global feature information and the basic morphological struc-
ture, whereas the texture pattern, tiny pore shape, and distri-
bution information of the small-scale core image are used to
refine the large-scale core image. Overall, the development of
the proposed method proceeds as follows: first, a degradation
model predicting procedure is used to find the most probable
degradation model; then, a pattern mapping dictionary with
local binary patterns and a two-step searching algorithm are
constructed; finally, a weighted reconstruction method is used
to generate the fused image.

II. METHODOLOGY

According to the super-resolution theory [13], the low-
resolution model Pl is considered a blurred and downsampled
version of the high-resolution structure Ph. The relation be-
tween them can be described as follows:

Pl = SBPh + n, (1)

where S is a down-sampled operator, B represents a blurring
filter, and n is the additive noise.

By this theoretical understanding, the large-scale core im-
age can also be seen as a degradation image of its small-scale
core image. If it was possible to predict the degradation model
between large-scale and small-scale images, this degradation
model could be used to refine the large-scale image.

Usually, to predict the degradation model between multi-
scale images, it is necessary to accurately register the images
at different scales [14–16]. However, it is difficult to register
the CT images of core samples, as shown in Fig. 1. Thus,
here the random reconstruction theory is combined with the
super-resolution theory.

First, the foundational idea of super-resolution technology,
shown in Eq. (1), is used as a guide to generate the degradation
model between large-scale and small-scale images.

Then, instead of accurately registering the images at dif-
ferent scales, the small-scale image is degraded with different
methods; afterwards the degraded image that is most similar to
the large-scale image is selected with the blind image quality
assessment (BIQA) method. The selected degraded image and
the small-scale image are then used to generate the pattern
mapping dictionary. The pattern mapping dictionary stores
pairs of degraded patterns and their corresponding original
patterns and the degradation model can be represented with
these paired patterns.

Subsequently, to refine the large-scale image, the resolu-
tion of the large-scale image is then adjusted according to the
resolution of the small-scale image; the patterns are extracted
from the adjusted large-scale image. Afterward, a simulation
method similar to the random reconstruction method is used
to refine the target image. The most similar degraded patterns
and their corresponding original patterns are located in the
pattern mapping dictionary; then these original patterns are
used to refine the up-sampled large-scale patterns.

According to the theory mentioned above, several key
issues must be addressed during the fusing process, including:
(1) The degradation model prediction procedure; (2) the pat-
tern mapping dictionary and the pattern searching algorithm;
(3) the pattern similarity measurement; and (4) the fusing
simulation method. In the following parts of this section, the
solutions for these four key issues are explained in detail.

A. Degradation model predicting procedure

The degradation model prediction procedure is one of
the key challenges of the fusing modeling method. The ba-
sis of the modeling method is to establish the degradation
model between multiscale images. As the large-scale image
is considered to be a blurred and down-sampled version of
the small-scale image, the parameters, such as frequency,
gradient, brightness, and contrast, of the small-scale image are
changed during the degradation procedure. These parameters
can be used to evaluate the similarity between the degraded
images and the large-scale image.

According to Mittal, natural scene statistics are excellent
indicators of the degree of quality degradation of distorted
images [17], such as the distribution of the locally normal-
ized luminance [18], the gradient components and gradi-
ent magnitudes [19], locally mean subtracted and contrast
normalized coefficients [17], the Log-Gabor filter responses
[20], and the statistics of colors [21]. Zhang [19] pointed
out that these distributions of natural images conform well
to a Gaussian probability law; thus, a standard multivariate
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FIG. 2. Core sample and degradation images with different degradation model and parameters: (a) subimage of the large-scale image;
(b) subimage of the small-scale image; (c) down-sampled image of (b); (d) degraded image no. 1: (c) with Gaussian filtering (σ = 1.6, kernel
size = 9 × 9); (e) degraded image no. 2: (c) with zero mean, Gaussian white noise with variance of 0.1 added followed by mean filtering (kernel
size = 9 × 9); (f) degraded image no. 3: (c) with zero mean, Gaussian white noise with variance of 0.1 added followed by Gaussian filtering
(σ = 1.6, kernel size = 9 × 9); (g) degraded image no. 4: (c) with zero mean, Gaussian white noise with variance of 0.1 added followed by
mean filtering (kernel size = 12 × 12); (h) degraded image no. 5: (c) with zero mean, Gaussian white noise with variance of 0.1 added followed
by Gaussian filtering (σ = 1.6, kernel size = 12 × 12); (i) degraded image no. 6: (c) with mean filtering (kernel size = 19 × 19); (j) degraded
image no. 7: (c) with zero mean, Gaussian white noise with a variance of 0.1 added followed by mean filtering (kernel size = 20 × 20).

Gaussian (MVG) model was trained from a corpus of pristine
naturalistic images, the quality of a test image was then
predicted based on the distance between its MVG model
and the standard MVG model. Zhang et al. [19] mentioned
that quantitatively evaluating an image’s perceptual quality
has been among the most challenging problems of modern
image processing and computational vision research. In 2015,
they proposed a BIQA method [19]. With this method, by
integrating the features of natural image statistics derived
from multiple cues, five types of NSS features can be ex-
tracted from a collection of pristine naturalistic images. A
multivariate Gaussian (MVG) mode, which is trained with
these features, then serves as a reference model against which
to predict the quality of the image patches. Using the trained
multivariate Gaussian model, a Bhattacharyya-like distance is
used to measure the quality of each test image patch. Then,

an overall quality score is obtained by average pooling, with
the score indicating the image quality between the training
image and the testing image. The lower the score, the greater
the similarity of the qualities of the training images and the
testing images.

To find the degradation model of core CT images at differ-
ent scales, the BIQA method proposed by Zhang is adopted
in our fusing framework. In our scenario, the BIQA score
is used to estimate the qualities of large-scale images, and
of degradation images of small-scale images, to ascertain the
most suitable degradation image for constructing the degrada-
tion model between the large-scale image and the small-scale
image. Thus, the degradation model can be used to constrain
the multiscale modeling procedure.

As shown in Fig. 2, the small-scale image in Fig. 1 was
down-sampled such that the actual size of each pixel is the
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TABLE I. Image qualities calculated by Zhang’s method.

Image Quality

Subimage of the large-scale image 246.7
Subimage of the small-scale image 23.92
Down-sampled image of the small-scale image 50.5
Degraded image 1 [Fig. 2(d)] 109.0
Degraded image 2 [Fig. 2(e)] 169.2
Degraded image 3 [Fig. 2(f)] 116.1
Degraded image 4 [Fig. 2(g)] 237.0
Degraded image 5 [Fig. 2(h)] 173.8
Degraded image 6 [Fig. 2(i)] 226.1
Degraded image 7 [Fig. 2(j)] 243.7

same as that of the large-scale image in Fig. 1. Two subim-
ages were then intercepted from each image. Subsequently, a
series of degradation models were used on the high-resolution
subimage to generate the degraded images. During the degra-
dation procedure, the Gaussian filter and mean filter were used
as the degenerate kernel filter, and the size of the filter was
progressively increased from 9 × 9 to 20 × 20. Furthermore,
different types of noise were added.

At the beginning of the degradation model predicting
procedure, 122 high-quality rock images were selected to
train the standard MVG model. The distance between this
and the MVG models of degraded images were calculated.
This distance value was used to evaluate the quality of the
degraded image.

The subimage of the large-scale image and the subimage
and down-sampled images of the small-scale image are shown
in Figs. 2(a)–2(c); several degraded images were randomly
selected and included in Figs. 2(d)–2(j).

Figure 2 provides an overview of the core sample and their
degradation images with different degradation models and
parameters. Table I shows that the image qualities calculated
with Zhang’s method [19].

From Table I we can see that the BIQA value (243.7) of
degraded image no. 7 [Fig. 2(j)] is closest to that (246.7) of
the subimage of the large-scale image [Fig. 2(a)]. Meanwhile,
visually, the quality of degraded image no. 7 [Fig. 2(j)] is
particularly similar to that of the subimage of the large-scale
image [Fig. 2(a)]. According to our theory, the degradation
model generated from degraded image no. 7 [Fig. 2(j)] and
the subimage of the small-scale image [Fig. 2(b)] can be used
to further constrain the fusing procedure. Furthermore, as
shown in Fig. 3, degraded image 7 [Fig. 2(j)] is selected and
up-sampled to the same resolution of the small-scale image
[Fig. 2(b)].

As demonstrated in Fig. 3, some of the clear, fine small
pores in the small-scale image are indistinguishable in the
up-sampled image of the selected degraded image. Those
indistinguishable pores can cause errors in calculating pore
size distribution. When the suitable degradation model is
used to constrain the fusing procedure to generate the fused
image, those indistinguishable pores in the large-scale im-
age could be refined. This theory is experimentally tested
in Sec. II B.

FIG. 3. Overview of up-sampled image and small-scale image:
(a) Up-sampled image of the selected degraded image and (b) small-
scale image.

B. Structure of the pattern mapping dictionary
and the pattern searching algorithm

As shown in Fig. 3, once the degraded image is selected,
the pattern mapping dictionary can be constructed with the de-
graded image and the small-scale image. The down-sampling
factor was assumed to be R, and the templates with a size
of N × N and M × M (M = R × N) were used to collect
the corresponding patterns from the degraded and small-scale
images to create a pattern mapping dictionary.

The final fusing result and the computing time are greatly
affected by the template size. The larger template size can
describe larger area features, and the greater constraint con-
ditions can be used during the fusing reconstruction, whereas
the smaller template size can greatly speed up the simulation
progress. Normally, in practice, the resolutions between the
large-scale image and the small-scale image are quite dif-
ferent. Considering the reconstruction result and the process
time, the template size was set to 17.

Research has shown that performance is enhanced when
the rotation of the patterns is considered [22–24], pattern aug-
mentation (rotation) was used to enrich the pattern mapping
dictionary, with the rotation angles of 0◦, 90◦, 180◦, and 270◦
considered, as shown in Fig. 4.

As the pattern matching process increases time costs, op-
timization of the pattern mapping dictionary and the search
method is significant. To speed up the search method, the
local binary pattern (LBP) was introduced. The LBP [25]
was proposed in 1996 to measure texture; deriving rotation
invariant versions of it is simple.

According to Ojala et al. [26], as shown in Fig. 5, T
is defined as a pattern in a local 3 × 3 neighborhood of
a monochrome texture image, where gi (i = 0, 1, 2, . . . , 8)
corresponds to the gray pixel values in the neighborhood.

FIG. 4. Pattern augmentation.
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FIG. 5. T pattern and its pixel neighborhood.

The LBP is defined as

LBP =
8∑

i=1

s(gi − g0)2i−1, (2)

where

s(x) =
{

1, x � 0,

0, x ≺ 0.
(3)

As demonstrated in Fig. 6, the LBP of a pattern can be
represented by eight binary digits. A simple shift operation
can be used to derive the rotations of the LBP.

The pattern mapping dictionary contains three parts: (1) the
small-scale patterns, (2) the degradation patterns, and (3) the
LBP of the degradation patterns. The structure of the pattern
mapping dictionary is illustrated in Fig. 7.

As the search method is also a key challenge, a two-step
search method is thus proposed based on the pattern mapping
dictionary. First, the LBP was used to perform a coarse search.
In this step, the LBP of the large-scale pattern was retrieved
from the large-scale image, several degradation patterns with
the same LBP were found, and the rotations of the LBP were
taken into consideration. To reduce the search time, only the
main structure and the rotation angle were involved in this
step.

Second, a similarity evaluation based on structural simi-
larity (SSIM) was used to find the degradation pattern most
similar to the large-scale pattern among the corresponding
degradation patterns of the LBP patterns selected in the first
step; the corresponding small-scale pattern of the most similar
degradation pattern was then selected as the fusing pattern.

C. Similarity measurement method of patterns

Evaluation of pattern similarity is important in choosing
the fusing pattern. According to Wang [27], the mean squared
error is the most widely used of the full-reference quality
metric methods; it is computed by averaging the squared
intensity differences of distorted and reference image pixels.
However, they are not very well matched in terms of visual

FIG. 6. Pattern and its LBP.

FIG. 7. Pattern mapping dictionary and its generation method.

quality, and a measure of SSIM is proposed. Figure 8 shows
the system diagram of SSIM.

With the SSIM system, the task of similarity measurement
is separated into three parts: luminance, contrast, and struc-
ture. The overall similarity measure of SSIM can be expressed
as

SSIM(x, y) = [l (x, y)c(x, y)s(x, y)], (4)

where l (x, y) is the luminance comparison function, c(x, y) is
the contrast comparison function, and s(x, y) is the structure
comparison function.

We define μx, μy as the mean value, σx, σy as the standard
deviation, and σxy as the covariance of x and y, respectively.
The SSIM can also be calculated with the following equation:

SSIM(x, y) = (2μxμy + C1)(2σxy + C2)(
μ2

x + μ2
y + C1

)(
σ 2

x + σ 2
y + C2

) . (5)

Normally we set C1 = (K1 × L)2 and C2 = (K2 × L)2,
where K1 = 0.01, K2 = 0.03, and L = 255. In our algorithm,
the SSIM is used to evaluate the similarity between the large-
scale pattern and the degradation pattern.

D. Fusing simulation method

The most similar pattern was selected according to the
evaluation values, which were calculated by the similarity
measurement method described in Sec. II C. The evalua-
tion values refer to the degree of similarity between the
large-scale pattern and the degradation pattern; the value
is used as a weight in the fusing process. If the value is
high, the small-scale pattern information can be used for

FIG. 8. Diagram of the SSIM system [27].
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FIG. 9. Fusing procedure framework: (a) Pattern mapping dictionary generation and (b) simulation.

fusing; if not, the large-scale pattern information is used for
fusing.

L is the large-scale pattern with size p × q, which is
extracted from the large-scale image and requires refinement.
L′ (size p × q) and H ′ (size u × v) are the most similar cor-

responding degradation and small-scale patterns, respectively.
Because the degradation pattern is the down-sampled version
of small-scale pattern, u = p × r, v = q × r, where r is the
down-sampled factor. During the fusing procedure, L (size
p × q) is up-sampled with an up-sampling factor r and L′′
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(size u × v) is the up-sampling pattern. The refined pattern
P (size u × v) is calculated as follows:

ω2 = SSIM(L, L′),
ω1 = 1 − ω2,

P = L′′ω1 + H ′ω2,

(6)

where SSIM(L, L′) is the evaluation value of the similarity
measurement between the patterns L and L′, the value of
SSIM(L, L′) is between 0 and 1, and ω1 and ω2 are the
adaptive weight coefficients. The value of each point of P is
computed with the values of corresponding locations of image
L′′ and H′ according to Eq. (6).

E. Fusing procedure

To obtain a better understanding of the procedure, the
entire workflow is divided into two parts: first, generation of
the pattern mapping dictionary, and second, simulation.

The pattern mapping dictionary generation process in-
cludes the following steps:

(1) The small-scale image is down-sampled to the same
resolution of the small-scale image with a down-sample
factor r.

(2) A series of degradation models are used to generate the
degraded image from the down-sampled small-scale image
and the BIQA values of each degraded image are calculated.

(3) The BIQA value of the large-scale image is calculated.
(4) The most probable degraded image is selected accord-

ing to the BIQA value.
(5) The degradation patterns are extracted from the most

probable degraded image.
(6) The LBP is extracted from the degradation patterns.
(7) The small-scale patterns are extracted from the small-

scale image.
(8) The degradation patterns, LBP, and small-scale pat-

terns are used to construct the pattern mapping dictionary.
The simulation procedure consists of the following steps:
(9) The patterns are extracted from the large-scale image.
(10) The LBP are generated from the patterns extracted in

step 8.
(11) The LBP and the patterns extracted in step 8 are

used to find the most similar degradation patterns in the
pattern mapping dictionary, and the corresponding small-scale
patterns are located.

(12) The large-scale image is up-sampled with an up-
sample factor r.

(13) The large-scale patterns are extracted from the up-
sampled large-scale image.

(14) The small-scale patterns and the large-scale patterns
are fused together according to Eq. (6) to generate the refined
image.

The framework of the fusing procedure is shown in Fig. 9.

III. RESULTS AND DISCUSSION

In this section the series of experiments performed to test
our fusing reconstruction method are discussed. The aim of
the first experiment was to test the effectiveness of the algo-
rithm. Two small-scale images of the same rock sample were

FIG. 10. Image of rock sample, down-sampled image, enlarged
image, and pore size distributions: (a) original image of rock sample;
(b) degraded image of (a) from a mean filter with a 5 × 5 kernel size
and a down-sample factor of 8; (c) enlarged image of the degraded
image (b); and (d) pore size distributions of (a) and (b).

selected; one of them was down-sampled and degraded, and
the resulting image was treated as the large-scale image, while
the other was used to train the pattern mapping dictionary.
Then, the pattern mapping dictionary was used to refine the
generated large-scale image and generate the fused image.
Finally, the fused image was compared to the original small-
scale image.

As shown in Fig. 10, an image of a rock sample (a) was
selected, and a mean filter with a 5 × 5 kernel size was used
on the down-sampled image of (a), with a down-sample factor
of eight; (c) is the enlarged image of (b), and (d) is the pore
size distributions of (a) and (b).

As shown in Fig. 10, the degraded image is blurred and
some tiny pores are indistinguishable, although they are very
clear in the original image. Additionally, the distributions of
the tiny pores (with areas smaller than 1000 μm2) in the
original image are much wider than those in the degraded
image; for pores whose areas are larger than 1000 μm2, the
distributions change as the pore sizes change because of the
degradation procedure, but the overall basic distribution is
similar to the original image.

The other image of the same rock sample was selected
as the small-scale image. As per the fusing procedure, the
degradation model was first predicted; during this step, the
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FIG. 11. (a) Small-scale image, (b) degraded image, and (c)
enlarged image of (b).

small-scale image was down-sampled by a factor of 8. As
the practically accurate degradation model was unknown and
could be complex, during the degradation procedure, we
attempted to use a simple degradation model to replace the
actual degradation model. In this test, we designed a different
degradation model to replace the real degradation model and
validate our theory. A series of different degradation methods
were used to generate degraded images. Then, the most prob-
able degraded image was selected from the degraded images
using the BIQA method introduced in Sec. II A.

As shown in Fig. 11, the most possible degraded image was
generated with a Gaussian filter (σ = 1.6, kernel size: 9 × 9,
BIQA value: 252.5), while the BIQA value of the large-scale
image was 234.5 [Fig. 10(b)].

Subsequently, Figs. 11(a) and 11(b) were used to construct
the pattern mapping dictionary, which was used to refine the

TABLE II. BIQA values of the original images, degraded image,
and fused image.

Original image Degraded image Fused image

BIQA value 25.8 234.5 38.0

large-scale image [Fig. 10(b)]. The fusing result and compar-
isons are shown in Fig. 12.

In Fig. 12, the fusing result (c) is generally much clearer
than the enlarged image (b); as shown in the black boxes
in (a), (c), and (d), the tiny pores in the original image are
indistinguishable in the enlarged degraded image (c), while
they can still be seen in (d). This indicates that our method can
preserve these tiny pores in the fused image. Figures 12(e)–
12(g) are the binary images of Figs. 12(a) (OSTU [28] method
is used to segment the image), 12(c), and 12(d), respectively;
visually, the binary image of the fusing result (g) is similar to
the binary image of the original image (e).

Table II demonstrates the BIQA values of the original,
degraded, and fused images shown in Fig. 12. The BIQA
values indicate that the fused image is similar to the original
image.

Figure 13 shows that the distributions of the tiny pores
(with areas smaller than 1000 μm2) in the original images are
similar to those in the fused image; however, the distributions
of the tiny pores in the original and fused images are much
higher than those in the degraded image. For the pores with
areas larger than 1000 μm2, the original, degraded, and fused
images have similar distributions.

FIG. 12. Fusing results and comparisons: (a) original image, (b) degraded image, (c) enlarged image of (b), (d) fusing result, and
(e)–(g) corresponding binary images.
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FIG. 13. Pore size distributions of the original images and the
fused image.

This experiment demonstrates that not only can our method
refine the large-scale image according to the small-scale im-
age, but also the indistinguishable tiny pores in the large-scale
image can be recovered. The previous test demonstrates the
feasibility of our algorithm. Furthermore, to verify the stabil-
ity and robustness of our method, the same core samples are
used to repeat the same test ten times. As Fig. 14 shows, the
pore size of the reconstruction results has similar distributions.
Accordingly, the stability of our algorithm is verified.

In the next experiment, a large-scale image and small-scale
image from the same rock sample were selected as the dataset.
First, the large-scale image was taken as a slice of a 3D image
of a large rock sample (� = 25 mm, the length of each pixel is
5 μm, resolution: 600 × 600) acquired using CT equipment.
Then, a small part of the rock sample (� = 5.7 mm, length
of each pixel: 2.6 μm, resolution: 300 × 300) was taken
from the same sample, and a small-scale 3D image of it
was obtained using the same CT equipment. Finally, a slice
of the small-scale 3D image was selected as the small-scale
image for testing. Figure 15 illustrates the large-scale and the
small-scale images.

FIG. 14. Pore size distributions of ten reconstruction results with
the same sample.

FIG. 15. Core samples for simulation: (a) large-scale image with
� = 25 mm, 5 μm/pixel and (b) small-scale image with � =
5.7 mm, 2.6 μm/pixel.

The large-scale image shows a large region of the sample,
but the image is blurred and the tiny pores are indiscernible.
Alternatively, the small-scale image [Fig. 15(b)] covers a
small region and presents the fine-scale feature and tiny pore
information.

In the next experiment, the large-scale image [Fig. 15(a)]
and the small-scale image [Fig. 15(b)] were used to recon-
struct a fine-scale image including the fine-scale information.

The reconstructed result with a resolution of 1200 × 1200
is shown in Fig. 16.

As shown in Fig. 16, the reconstructed result has a sig-
nificant improvement in clarity; it retains the main structure
of the large-scale image. Table III shows the BIQA values of
the large-scale image, small-scale image, and reconstructed
result. It is clear that the BIQA value of the reconstructed
result is much closer to the small-scale image than that of

FIG. 16. Multiresolution images of rock sample and recon-
structed results: (a) small-scale image, (b) large-scale image, and
(c) reconstructed result.
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TABLE III. BIQA values of the large-scale image, small-scale
image, and reconstructed result.

Large-scale
image

Small-scale
image

Reconstructed
result

BIQA value 215.3 66.9 82.6

the large-scale image. Figure 17 demonstrates the binary
images converted from the images in Fig. 16 with the same
binarization method.

As shown in Figs. 16 and 17, the large pores in the two
images have the similar locations and distributions, whereas
the binary image of the reconstructed result can show many
more tiny pore information than that of the large-scale image.
For further comparison, the pore-size distributions are shown
in Fig. 18.

As shown in Fig. 18, the distributions of the tiny pores
(with areas smaller than 2500 μm2) in the small-scale image
are similar to those in the reconstructed image and much
higher than those in the large-scale image. For the pores with
areas larger than 2500 μm2, the distributions in the large-scale
image and reconstructed image are similar to each other, and
slightly higher than those in the small-scale image. The com-
parisons in Figs. 16–18 indicate that our method can refine
the large-scale image, as the reconstructed image contains
both large-scale and small-scale information. To verify the
stability and robustness of our method, the same core samples
were used to repeat the test ten times. The results of this are
shown in Fig. 19, wherein it can be seen that the pore size
of the reconstruction results have a similar distribution, thus
verifying the stability of our algorithm.

To test the performance of the proposed pattern mapping
dictionary and the searching algorithm, ten pairs of rock
samples were used to test the pattern mapping dictionary
and the searching algorithm. Each sample contains 4 000 000
simulating patterns and a pattern mapping dictionary with
360 000 pairs of atoms. This experiment is designed to test:
(1) reconstruction time and (2) accuracy.

FIG. 17. Binary images of (a) the large-scale image and (b) the
reconstructed result.

FIG. 18. Comparison of pore size distributions.

In the first step, the pattern mapping dictionary without
LBP and the normal searching method are used, and the
simulation time and the searching results are then recorded.
These searching results are treated as the benchmark to test
the searching accuracy for the next step.

In the second step, the proposed pattern mapping dictio-
nary and the searching method are used. The reconstruction
time is then recorded and the searching results compared with
the benchmark generated in the first step. The simulation time
and accuracy are shown in Table IV.

As shown in Table IV, the average reconstruction time
is greatly reduced by using the proposed pattern mapping
dictionary and searching method, whereas the proportion of
the same searching results is very high.

The fusing method was also extended for 3D rock images,
with the experiment for such described below. Figure 20
illustrates the large-scale and small-scale 3D images of the
same rock sample in the previous experiment, as well as
the reconstructed result and the visual comparison of slices.
Therein, it can be seen that the reconstructed result not only
has a significant improvement in clarity, but also retains the
main structure of the large-scale image.

Table V shows the BIQA values of the large-scale image,
small-scale image, and reconstructed result. As the BIQA

FIG. 19. Pore size distributions of ten reconstruction results with
the same sample.
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TABLE IV. Simulation time and accuracy comparisons.

Simulation time Simulation time
of first of second

Sample No. step (s) step (s) Accuracy

1 54 385 30 756 95.99%
2 63 731 27 063 93.51%
3 63 085 28 517 98.07%
4 58 093 31 007 94.82%
5 56 363 34 072 93.85%
6 54 505 28 460 91.64%
7 55 181 31 686 92.39%
8 64 582 32 281 98.57%
9 54 912 30 662 91.35%
10 57 207 33 035 95.92%
Average 58 204 30 754 94.61%

method is for 2D images, the BIQA values of the 3D images
are the averages of those of the 3D image slices. It is clear
that the BIQA value of the reconstructed result is much closer
to that of the small-scale image than that of the large-scale
image.

As shown in Fig. 21, the distributions of the tiny pores
(with volumes lower than 5000 μm3) in the small-scale 3D
image are similar to those in the reconstructed 3D image and
much higher than those in the large-scale 3D image. For pores
with volumes higher than 2500 μm3, the distributions in the
three 3D images are similar.

The comparison in Fig. 21 indicates that not only can
our method refine the large-scale image, but also that the
reconstructed image contains both large-scale and small-scale
information.

In addition to the visual comparison, quantitative analyses
of our method, including the BIQA and pore-size distribution,
are described herein. All the parameters show that our method
can refine the large-scale image and restore the tiny pore
information lost in the large-scale image.

IV. CONCLUSION

As the images of large core samples are not sufficiently
clear and do not effectively describe the tiny pore structure,
and images of small core samples are not sufficiently globally
representative, a multiscale core image fusion method was
proposed. The proposed method can be used to improve the
image quality of large-scale core images and recover tiny pore
information based on small-scale images.

In the proposed method, a BIQA algorithm was used
to evaluate the image quality between the degraded image
and the low-resolution image, and to predict the degradation

TABLE V. BIQA values of the large-scale image, small-scale
image, and the reconstructed result.

Large-scale
image (average)

Small-scale
image (average)

Reconstructed
result (average)

BIQA value 238.2 62.8 92.7

FIG. 20. Overview of rock sample and reconstructed results:
(a) Large-scale 3D image; (b) small-scale 3D image enlarged twice;
and (c) reconstructed result. Visual comparison of slices of the
large-scale 3D image and reconstructed result: (d) tenth slice of the
large-scale 3D image; (e) tenth slice of the reconstructed 3D image;
(f) 50th slice of the large-scale 3D image; (g) 50th slice of the
reconstructed 3D image; (h) 100th slice of the large-scale 3D image;
(i) 100th slice of the reconstructed 3D image; (j) 150th slice of the
large-scale 3D image; (k) 150th slice of the reconstructed 3D image;
(l) 200th slice of the large-scale 3D image; and (m) 200th slice of the
reconstructed 3D image.
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FIG. 21. Comparison of pore size distributions.

model. A pattern mapping dictionary with LBP and a cor-
responding two-step searching algorithm were designed to
achieve improved pattern matching and augment reconstruc-
tion speeds, and an adaptive weighted reconstruction algo-
rithm was proposed. Several evaluation experiments show that
our method can fuse images of the same core at different
scales; the fused image can maintain long-range and overall
structural information of the large-scale image, as well as
recover tiny pore distribution information from a small-scale
image.

The fused images can provide a better understanding of
core structures, as well as help in the accurate calculation of

physical parameters, such as porosity, pore size distribution,
and permeability calculation.

The method proposed here can be further improved in fu-
ture research. In the degradation model predicting procedure,
as the degradation models are tested and selected manually,
an autodegradation model predicting method is necessary for
quick and improved predictions. Furthermore, although the
LBP and two-step searching algorithm were used to increase
the simulation speed, the fusing method still consumes a
considerable amount of time; thus, a fusing method based on
neural network should be considered in future studies.
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