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Particle dynamics at fluid interfaces studied by the color gradient lattice Boltzmann
method coupled with the smoothed profile method
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We suggest a numerical method to describe particle dynamics at the fluid interface. We adopt a coupling
strategy by combining the color gradient lattice Boltzmann method (CGLBM) and smoothed profile method
(SPM). The proposed scheme correctly resolves the momentum transfer among the solid particles and fluid
phases while effectively controlling the wetting condition. To validate the present algorithm (CGLBM-SPM),
we perform several simulation tests like wetting a single solid particle and capillary interactions in two solid
particles floating at the fluid interface. Simulation results show a good agreement with the analytical solutions
available and look qualitatively reasonable. From these analyses, we conclude that the key features of the particle
dynamics at the fluid interface are correctly resolved in our simulation method. In addition, we apply the
present method for spinodal decomposition of a ternary mixture, which contains two-immiscible fluids with
solid particles. By adding solid particles, fluid segregation is much suppressed than in the binary liquid mixture
case. Furthermore, it has different morphology, such as with the jamming structure of the particles at the fluid
interface, and captured images are similar to bicontinuous interfacially jammed emulsion gels in literature. From
these results, we confirm the feasibility of the present method to describe soft matters; in particular, emulsion
systems that contain solid particles at the interface.

DOI: 10.1103/PhysRevE.101.053302

I. INTRODUCTION

The last decade witnessed an increasing interest in col-
loidal particles at the fluid interface, which is due to a
wide application of fluid-particle mixture systems. The self-
assembly of colloidal particles at the fluid interface enabled
the preparation of high-quality two-dimensional crystals [1,2].
In particular, Langmuir trough techniques provide a means to
tune the interparticle distances and facilitate the transfer of
the crystal monolayers to solid substrates [3]. Solid particles
at the fluid interface play important roles in many processes
involving foams and emulsions [4–7]. It has been known for
many years that the solid particles at the interface can be
exploited to tune the stability of emulsions, and now they are
applied in pharmaceutical, food, oil, and cosmetic industries.
Even though there are signs of progress for understanding
these complex systems, little information is available on its
dynamics in particular. The description of the forces deter-
mining the physical behavior of the solid particles at the fluid
interface still remains a challenge in modern colloid science,
and more intensive study is required.

Recently, numerical simulations have been applied to in-
vestigate the dynamics of solid particles at the fluid interface.
The lattice Boltzmann method (LBM) has received consider-
able attention as a promising tool to probe such a complex sys-
tem. Onishi et al. [8] suggested a numerical algorithm based
on the Shan-Chen (SC) multiphase model where mesoscopic
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interactions are introduced among different fluid phases to
incorporate interfacial tension [9]. They modified the original
SC model to consider a solid phase and described the capillary
interactions on the particle. Joshi and Sun [10] applied a
slightly different variation of the SC model. They used the
single component multiphase model (SCMP) and coupled it
with the Ladd’s model [11,12], which describes the solid
particle in a solvent. They validated their algorithm through
several tests and applied this to the colloidal droplet drying
problem [13]. Jansen and Harting [14] followed a similar
strategy with Joshi and Sun, but they applied the multicom-
ponent multiphase model like Onishi et al. Solid particles
were still described by Ladd’s model, but the area around and
inside solid particles were more strictly treated to enhance
mass conservation and also to control the wettability of the
particles. They also demonstrated the applicability of their al-
gorithm for the phase transition of liquid-solid mixtures, such
as bicontinuous interfacially jammed emulsion gels (bijels)
and Pickering emulsions. This method was recently extended
for a more complex system involving ellipsoid particles in
multicomponent fluids [15].

As reviewed above, several studies were carried out using
LBM to describe particle dynamics in the multiphase fluid
system. Although the methods based on SC captured quali-
tatively and, in some points, quantitatively reasonable results
for target systems, unsolved numerical problems remain. For
example, Joshi and Sun [10] reported an artificial motion of
a solid particle around a droplet interface. They showed the
unphysical particle motion caused by high spurious velocities
that are driven by poor numerical stability of the SC model. In
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addition, other inherent limitations of the original SC model
have been found as well, such as poor numerical stability
for unequal fluid densities or viscosities and incorrect mass
conservation [16–19]. The numerical errors caused by these
inherent defects in the SC model may become severe when
they couple with other algorithms including solid particles,
and eventually unphysical results will be obtained as in Ref
[10]. Therefore, developing more robust numerical models for
the multiphase fluids and a strategy to couple fluid and solid
particles are highly required in the field.

In an effort to develop a multiphase model, various algo-
rithms have been introduced in the LBM framework such as
the free-energy based model suggested by Swift et al. [20]
and a mean field theory based approach introduced by He
et al. [21]. As an alternative approach, Gunstensen et al. [22]
proposed the color gradient lattice Boltzmann method (CG or
CGLBM), which is based on the lattice-gas model of Rothman
and Keller [23].

Recently, there has been significant progress in CGLBM.
Grunau et al. [24] introduced a modified form of distribu-
tion function to enable different density and viscosity ra-
tios in CGLBM. Latva-Kokko and Rothman [25] replaced
Gunstensen’s maximization-recoloring step with a formu-
laic segregation algorithm to solve two numerical issues
in the previous CGLBM; namely, the lattice-pinning effect
and spurious velocities at the interface. Reis and Phillips
[26] modified the perturbation operator to correctly recover
the Navier-Stokes equations. Leclaire et al. [27] combined
Latva-Kokko–Rothman’s recoloring operator [25] with Reis-
Phillips’ perturbation operator [26] to improve the numerical
stability and accuracy of the CGLBM. Also, they adopted an
isotropic gradient operator to enhance the numerical stability
and accuracy of the model [28]. Liu et al. [29] derived a
generalized perturbation operator using the phase-field and
formulated the CGLBM for a three-dimensional (3D) system.
Leclaire et al. [18] generalized the CGLBM to two and
three dimensions. Recently, Wen et al. [30] enhanced the
3D CGLBM and improved remaining issues in the model,
such as the lack of Galilean invariance and error terms in the
recovered macroscopic equations.

Thanks to the pioneers’ investigations, CGLBM has now
become one of the most robust numerical methods to describe
the multiphase system. However, this model is only adapt-
able for liquid systems with no solid particles yet. Inspired
by this limitation, we suggest a numerical method that can
effectively describe particle dynamics in the fluid interface in
the CGLBM framework. Our method is established on the
CGLBM with the smoothed profile method (SPM) [31,32]
to describe the particle dynamics in fluids. To validate our
method (CGLBM-SPM), we carried out several benchmark
tests in the study. The wettability of a single particle and cap-
illary interactions between two-solid particles were carefully
studied. In addition, spinodal decomposition of a ternary mix-
ture, which includes solid particles and immiscible fluids, was
tested as an example to show the potential of this algorithm.
In all the simulation results, the new algorithm showed great
performance and potential as a simulation tool. To the best
of our knowledge, there is no previous report that couples
solid particles with multiphase fluids described by CGLBM.
We believe that our numerical method is quite robust and

FIG. 1. The schematic diagram of the system.

useful in studying classical fluid dynamics and soft matter
physics.

This paper is organized as follows: The details of the
simulation method are presented in Sec. II. The simulation
setup and results that validate the algorithm are provided in
Sec. III. The wetting boundary effect of a single particle at
the fluid interface is described in Sec. III A and the capillary
interactions between two solid particles are carefully analyzed
in Sec. III B. The application to spinodal decomposition of
ternary mixtures is described in Sec. III C. Finally, conclu-
sions are drawn in Sec. IV.

II. NUMERICAL METHODS

In the present study, the LBM is applied as a solver to
describe the complex systems in which rigid particles are
immersed at the fluid interface. Multiphase fluids are de-
scribed by the CGLBM and it is combined with the SPM,
which describes the motion of solid particles. In the algorithm,
immiscible fluids A and B are considered, and also fluid C is
additionally introduced for the purpose of controlling the wet-
tability of the solid particle. The particle is always entrapped
in fluid C, which remains fully wetted condition as described
in Fig. 1. The solid particle transfers the momentum with all
the fluids around, and finally, hydrodynamic interactions are
correctly resolved. In this section, we describe the details of
each algorithm and the strategy utilized to couple them.

A. Color gradient lattice Boltzmann method (CGLBM)

Since the CGLBM was introduced by Gunstensen et al.
[22], it has been improved by pioneers to become one of
the most robust tools to investigate multiphase flows. Due
to its accuracy and flexibility, CGLBM has been applied
to various multiphase problems like flow in porous media
[18,33], droplet formation in microfluidic devices [34,35], and
droplet dynamics with insoluble surfactants [36,37].

In this study, we follow the CGLBM presented by Leclaire
et al. [38], which describes a three component system. Three
sets of distribution functions are required to track the evolu-
tion of fluid components, which occur via a streaming and
collision process. These processes are given by the equation
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below:

f k
i (x + ci�t, t + �t ) = f k

i (x, t ) + �k
i

(
f k
i (x, t )

) + Fi�t .
(1)

Here, the distribution function for fluid k (e.g., k = A, B, and
C) is denoted as f k and F is an external body force imposed
on the fluid.

In this study, the D2Q9 lattice model was employed as it
considers nine directional velocities in a 2D space. For D2Q9,
the lattice velocity vectors are given by

[c0, c1, · · · c8]=
⌊

0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1

⌋
.

(2)

Here, �k
i denotes the combination of three suboperators,

�k
i = (

�k
i

)(3)[(
�k

i

)(1) + (
�k

i

)(2)]
. (3)

In the aforementioned equation, (�k
i )(1) is the standard colli-

sional operator, (�k
i )(2) is the perturbation operator contribut-

ing to the interfacial tension, and (�k
i )(3) is the recoloring

operator promoting the segregation among the species while
minimizing the lattice pinning effect.

The first suboperator, (�k
i )(1) describes the standard

Bhatnagar-Gross-Krook collision process of the single-phase
LBM where the distribution functions are relaxed towards a
local equilibrium:

(
�k

i

)(1)(
f k
i

) = f k
i − (

f k
i − f k(eq)

i

)
/τk . (4)

Here, τk is the dimensionless relaxation time of fluid k, which
is connected to the kinematic viscosity of the fluid νk =
c2

s (τk − 1/2)�t . �x and �t are the lattice spacing and time
step, respectively, and cs = √

1/3�x/�t is the speed of sound
for the fluid. For simplicity, �x = 1 and �t = 1 are used
hereafter. The equilibrium distribution function f (eq)

i must be
chosen to satisfy the conservation of mass and momentum
principles. In the study, we followed the form suggested by
Leclaire et al. [27,28,38]:

f k(eq)
i (ρk, u, αk )=ρk

(
φk

i + Wi

[
ci · u

c2
s

+ (ci · u)2

2c4
s

−u · u
2c2

s

])
.

(5)
For the D2Q9 model, the lattice weight Wi and the parameter
φk

i are defined as follows:

Wi =
⎧⎨
⎩

4/9, i = 0
1/9, i = 1−4
1/36, i = 5−8

, (6)

φk
i =

⎧⎨
⎩

αk, i = 0
(1 − αk )/5, i = 1−4
(1 − αk )/20, i = 5−8

. (7)

The density of the fluid k is obtained from the first moment of
the distribution functions

ρk =
∑

i

f k
i =

∑
i

f k(eq)
i , (8)

where f k(eq)
i is a distribution function at the equilibrium state.

The total fluid density is given by ρ = ∑
k

ρk while the total

momentum is defined as the second moment of the distribu-
tion functions

ρu =
∑

i

∑
k

f k
i ci =

∑
i

∑
k

f k(eq)
i ci. (9)

Here, u denotes the density weighted average velocity of the
fluid.

As introduced in previous reports [27,28,38], the different
density ratio γkl between fluids k and l must obey the follow-
ing rule in the CGLBM to maintain a stable interface:

γkl = ρ0
k

ρ0
l

= 1 − αl

1 − αk
, (10)

where ρ0
k is the initial density of fluid k in the beginning of the

simulation. In the above expressions, α is the free parameter
(0 < αk � αl < 1 for ρ0

k � ρ0
l ).

Finally, the pressure of the fluid k is obtained by

pk = 3ρk (1 − αk )

5
. (11)

In the CGLBM, the interfacial tension is incorporated by the
perturbation operator. Here, we follow Leclaire et al. to model
a three component system with the main equation given by

(
�k

i

)(2)(
f k
i

) = f k
i +

∑
l

l �=k

AklCkl

2
|Fkl |

[
Wi

(Fkl · ci )2

|Fkl |2 − Bi

]
,

(12)

where

Bi =
⎧⎨
⎩

−4/27, i = 0
2/27, i = 1−4
5/108, i = 5−8

. (13)

Ckl is a concentration factor that limits the activation of the
surface tension at the fluid interface where both fluids k and l
are present:

Ckl = min

{
106 ρkρl

ρ0
k ρ0

l

, 1

}
. (14)

A color gradient Fkl that approximates the interface normal is
defined for each fluid interface. Even though there are several
forms of Fkl , it has been reported that only the form below
leads to physically reasonable results in a three component
system [38]:

Fkl = ρl

ρ
∇

(
ρk

ρ

)
− ρk

ρ
∇

(
ρl

ρ

)
. (15)

Here, we use an eighth-order isotropic discretization [38] to
calculate the gradient of the density fraction (ρk/ρ) of each
fluid.

Following a theoretical development by Reis and Phillips
[26] with their predecessors [39], it becomes possible to
predict the interfacial tension between fluids from the basic
model parameters. It has been noticed that its form is also
related to the gradient operator form [38]. With the gradient
operator given in Eq. (15), the interfacial tension between
fluids k and l is defined as

σkl = 1
9 (Akl + Alk )τ, (16)

where Akl = Alk .
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The recoloring operator is used to minimize the mixing be-
tween the fluids while keeping the laws of mass conservation
and momentum. The operator is a combination of the ideas
presented in Refs. [27,40] as described by

(
�k

i

)(3)(
f k
i

) = ρk

ρ
fi +

∑
l

l �=k

βkl
ρkρl

ρ2
cos

(
ϕkl

i

)
f eq
i (ρ, 0, ᾱkl ).

(17)
Here, βkl is a segregation parameter that controls the thickness
of the fluids k and l interface. The variable ϕkl

i corresponds
to the angle between the color gradient Fkl and the lattice
velocity vectors ci. The equilibrium distribution of the fluid
f eq
i (ρ, 0, ᾱkl ) can be evaluated by Eq. (5) with a zero velocity,

the total density, and the density weighted average ᾱ. For
fluids k and l , ᾱkl is given by

ᾱkl = ρk

ρk + ρl
αk + ρl

ρk + ρl
αl . (18)

Even though βkl is a free parameter, it has to be carefully
handled for the three component systems. At the three-phase
junction, three interfacial tensions yield a Neumann’s triangle,
so the equilibrium contact angle θkl of fluids k and l is related
to the interfacial tension by

cos (θkl ) = σ 2
mk + σ 2

ml − σ 2
kl

2σmkσml
. (19)

Spencer et al. [41] theoretically demonstrated that at the
three-phase junction, a relation should be satisfied between
θkl and the (relative) interface thickness controlled by the
segregation parameter βkl . Different forms of βkl have been
provided in the literature, and we follow the most improved
form suggested by Leclaire et al. [38]. For fluids k and l , βkl

is defined as below, where β0 is a constant between 0 and 1:

βkl =
{
β0, k with θmax

β0(1 + Ctriple(sin(π − θmax − θkl ) − 1)), otherwise ,

(20)

where

Ctriple = min

{
35

ρAρBρC

ρ3
, 1

}
. (21)

B. Smoothed profile method (SPM)

The SPM is a promising scheme to describe particle dy-
namics with multibody hydrodynamic interactions [31,32].
Recently, this method has been combined with LBM and
has been applied for various applications, such as rheology
of concentrated suspensions [42,43], particle dynamics in
viscoelastic fluids [44], and the deposition process of sticky
particles in the channel flow [45].

In SPM, the boundary between solid particle and the host
solvent is described by a continuous interface, which is in the
form of a truncated hyperbolic function. With this numerical
scheme, the discontinuity problem that arises near the bound-
ary of the solid object can be dramatically reduced. In this

work, a profile function φP is defined as below:

φP(x) = 1

2

[
1 + tanh

(
a − |x − X|

ξ

)]
. (22)

Here, a denotes the radius of the solid particle, X is the center
of mass of the solid particle, and x is the position of the
lattice node. In the solvent region, φP = 0 while φP = 1 in
the solid particle region and it continuously changes near the
interfacial region. The interface thickness is determined by
the parameter ξ , which we set as ξ = �x following previous
reports [31,32,42–45].

The solvent-solid interaction force on the node x, which
is covered by a solid particle, is obtained by Eq. (23) with
the assumption that the force is distributed during the time
interval �t .

fP(x,t ) = φP(x, t )[u∗(x, t ) − uP(x, t )]/�t, (23)

where u∗ denotes the intermediate velocity of the solvent node
calculated from the updated distribution functions obtained
from the whole collision operations shown in Eq. (3). By
adopting the intermediate velocity, we can include the cap-
illary contribution into the solvent velocity at the intermediate
time. This strategy is basically the same as Lecrivain et al.,
which couples SPM with a free-energy based fluid model
[46,47]. In our system, an exact form of the intermediate
velocity is given by

u∗ = 1

ρ∗
∑

i

∑
k

f k,∗
i ci, (24)

where f k,∗
i = f k

i + �k
i ( f k

i ) and ρ∗ = ∑
i

∑
k

f k,∗
i .

uP is the velocity at the solid node x defined in terms of the
translation velocity U and the angular velocity � of the solid
particle as below:

uP(x, t ) = U + � × (x − X). (25)

The hydrodynamic force at the lattice node x is given as

fH (x, t ) = −fP(x,t ). (26)

The hydrodynamic force fH is added as a body force into
the LBM to consider the interactions between solid-solvent
phases, which is implemented in Eq. (1) in the form of Fi =
Wi/c2

s (fH · ci ).
Because the contribution by capillary interaction is ac-

counted for in the calculation of intermediate velocity given
in Eq. (24), the summation of hydrodynamic force and torque
with capillary force is given by

FH + FC =
∑
x∈Vp

ρ(x)fP(x,t ), (27)

TH + TC =
∑
x∈Vp

(x − X) × ρ(x)fP(x,t ). (28)

The translational velocity and angular velocity of the solid
particles at a new time step are calculated by

U(t + �t ) = U(t ) + (FH + FC )

MP
�t, (29)

�(t + �t ) = �(t ) + (TH + TC )

IP
�t . (30)
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Here, the mass of a solid particle and the moment of inertia
are defined as MP = ρPπa2 and IP = 0.5MPa2, respectively,
where ρP is the density of the solid particle.

Finally, the particle position is updated by

X(t + �t )= X(t ) + U(t + �t )�t . (31)

C. Additional coupling scheme

This section covers additional coupling algorithms not
described in previous sections. The equations described in the
previous sections take into account the momentum transfer be-
tween solid particles and fluids. Apart from this, an additional
numerical scheme is required to keep solid particles entrapped
in the fluid C phase shown in the schematic diagram (Fig. 1).
In our numerical algorithm, it is implemented by the fluid C
phase being fully wetted with the solid particle. To describe
the wetting between the solid particle and fluid C, we follow
the strategy proposed by Latva-Kokko and Rothman [25,48],
which is one of the conventional methods to consider the wet-
ting boundary condition in the CGLBM framework. In detail,
it is implemented by replacing the density of the fluid to the
ghost density in the calculation of the color gradient function
when the wall or solid boundary nodes exist around the fluid
node. In our algorithm, which considers the solid particles, the
product of the smoothed profile φP and the density of the solid
particle ρP is substituted to the ghost density in the original
algorithm of Latva-Kokko and Rothman. Then, the color
gradient function presented in Eq. (15) is modified as follows:

Fpl = ρl

ρ
∇

(
ρpφP

ρ

)
− ρpφP

ρ
∇

(
ρl

ρ

)
. (32)

In the process, the total density also has to be recalculated
from ρ = ρA + ρB + ρPφP at the lattice nodes covered by
solid particles.

Simple tests were conducted to qualitatively determine
how the presence or absence of particles affects. The sim-
ulation was carried out under the following conditions (all
the parameters are given by the lattice unit). The simulation
domain size was L × L (L = 150) and the no-slip boundary
condition was applied at the upper and lower walls with the
periodic boundary condition to the lateral direction. The fluid
density (fluids A, B, and C) was set as unity (αA = αB =
αC = 4/9) and the kinematic viscosity was ν = 1/6(τ = 1).
The same interfacial tension σAB = σBC = σAC = 0.011 was
imposed and the thickness parameter β0 = 0.7 was used. The
radius of the particle was a = 20 and its density was the same
with fluids. A detailed description of the selected parameters
is provided later in Sec. III.

The density fields of fluids are plotted in Fig. 2. In the
absence of particles, fluid C lies in the fluids A−B interface
with the elliptical lens form at the equilibrium state [Fig. 2(a)].
On the other hand, fluid C forms the shape of a circle at
the interface when the solid particle is included [Fig. 2(b)].
From this result, we confirm that our algorithm effectively
transforms the shape of phase C to the solid particle while
maintaining stable interfaces.

III. RESULTS AND DISCUSSION

A. Wetting test with a single particle

We carried out more systematic tests to validate our al-
gorithm. At first, we explore the wetting of a single solid

FIG. 2. Density field of fluids A, B, and C at the equilibrium state
(a) without a solid particle and (b) with a solid particle (the present
algorithm). The solid line (inside of fluid C) corresponds to ρC = 0.5.

particle at the fluid interface. In the test, we focus on how the
change of interfacial tension among the components affects
the wetting behavior of a solid particle and also whether
simulation results correctly resolve the theoretical prediction.
Wetting parameters can be defined from the relative intensities
of interfacial tensions among fluids and a solid particle as
shown in Eq. (33). By assuming that the effect of particle
weight is negligible, the contact angle θ of a particle can be
calculated according to the Young-Dupré law. Furthermore,
by a simple geometrical consideration like a flat fluid inter-
face, the equilibrium position of the solid particle heq is given
by

χ = σBS − σAS

σAB
= cos θ = heq

a
, (33)

where subscripts A and B denote fluids and S (C) is the solid
particle.

The size of the simulation domain was L × L (L = 200)
and no-slip boundary condition was imposed at the upper
and lower walls with a periodic boundary condition to the
lateral direction. As in the previous section, the density of the
fluid was unity and the same kinematic viscosity ν = 1/6 was
used. The particle radius was a = 20 and the same density
was used for the solid particle. In this section, we tested the
wettability of solid particles at the fluid interface implemented
by the control of interfacial tensions among fluids and a solid
particle. For the sake of simplicity, only σBC and σAC were
controlled in the ranges σAB to 1.8σAB(with an interval 0.1σAB)
at fixed σAB = 0.011. In addition, the thickness parameter was
fixed at β0 = 0.7. These simulation parameters correspond
to a real system where a 1-μm diameter particle is floated
at the fluid interface in 5 μm × 5 μm size of the domain.
The density of both fluid and particle is 1000 kg/m3 and the
kinematic viscosity of the fluid is 10−6 m2/s. The interfacial
tension between fluids A and B corresponds to 0.032 N/m.

The density fields of fluids and a solid particle are shown in
Fig. 3(a). For the wetting parameter χ = 0, the solid particle
maintains a neutral position at the fluid interface. With an
increase in the wetting parameter, for σAC < σBC , the solid
particle is more immersed into the fluid A phase due to the
strong affinity for each other. These results show that our
method can deal with the wettability of the solid particle
effectively. For a more quantitative analysis, we measured
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FIG. 3. The equilibrium particle position for various wetting
parameters. (a) Density field of fluids with a solid particle at equilib-
rium. (b) (Normalized) equilibrium height of the solid particle versus
the wetting parameter.

the equilibrium position of the solid particle and compared
them to the analytic solution predicted by Eq. (33). As seen
in Fig. 3(b), the linear correlation between the equilibrium
position and wetting parameter is observed and the simulation
results are almost identical to the theoretical predictions.
Therefore, we confirm that the wetting of a solid particle could
be well simulated with our numerical algorithm.

We also need to note the physical robustness of the wet-
ting parameter and interfacial tension in the present method.
Onishi et al. [8] carried out similar tests to see the effect of
wetting on the solid particle. From their numerical approach, a
correlation between the wetting parameter and the equilibrium
height of solid particles was obtained. However, they used the
mesoscopic interaction parameter “G” instead of interfacial
tension in defining the wetting parameter. Thus, as mentioned
by themselves, the relationship between the interaction pa-
rameter and interfacial tension is not quite obvious in their
method. This implies a lack of physical robustness for that
particular method and also in similar approaches [10,14]
based on the SC model. In Jansen and Harting’s method [14],
the wettability of the solid particle is controlled by “particle
color” (a virtual fluid inside of the solid particle) in addition
to interaction parameter G. Although the linear relationship
between particle color and wettability is captured for some
limited conditions [Fig. 4(b) of Ref. [14]), basically, wettabil-
ity is a combination of two variables (interaction parameter
G and particle color). Because of these inherent features in
the method, it is difficult to clearly figure out a physical
correlation between interfacial tension and the two variables.
Additionally, it limits setting a wetting condition without an
antecedent parameter study. Lecrivain et al. [46] combined
SPM with a free-energy based model (the Ginzburg-Landau
type) to describe a similar system. In their method, the
interfacial energy of each phase is controlled by “Cahn num-

FIG. 4. L2 norm error for the lattice grid resolution.

ber” defined by relative interfacial length scales. It was shown
that the wettability of the solid particles varies with Cahn
numbers, but it could not achieve correct analytical predic-
tions even by increasing the resolution of the computational
grid in their test ranges.

While there exists physical ambiguity in previous studies,
the wettability on the solid particle is directly controlled by the
interfacial tension in our method. Furthermore, this method
shows more accurate results in the wettability prediction of
the solid particle than the previous SPM-based method.

Next, we carried out an error analysis to see the con-
vergence with the lattice grid resolution. In the test, the
simulation domain size was L = 10a and particle radii of
a = 5, 10, 20, and 30 were considered. As the particle radius
increases from a = 5 to 30, the total number of lattice grids in
the simulation domain increases from 50 × 50 to 300 × 300,
which means that an increase of particle size corresponds to a
higher grid resolution in the test system. The same parameters
were used as in the previous test, except for domain size and
particle radius. For the quantification of results, we introduce
L2 norm error for each grid resolution, which is calculated
from the equation below:

error(A) =

√√√√ 1

N

N∑
i=1

|Ai,LBM − Ai,Analytical|
2

. (34)

Here, ALBM and AAnalytical denote heq/a obtained by LBM sim-
ulation and the analytical solution by Eq. (33), respectively.
Error analysis was performed for 9 data points (N = 9) in the
range −0.8 � χ � 0.8 (with 0.2 intervals).

The result is plotted in Fig. 4. The lowest grid resolution,
a = 5 shows an error of about 5.93% and the accuracy of
the solution is improved by increasing grid resolution. When
a = 20, the error is about 1.72%, which is not much different
from the error value 1.69% at a higher resolution a = 30. We
obtained convergence for a large than 20 and maintained this
grid resolution for most of the tests covered in the following
parts.

In the CGLBM, the solution accuracy is known to change
according to the parameter β0, which determines the thickness
of the fluid interface. For the two-phase system (without solid
particle), β0 = 0.7 has been suggested as an optimum value
to obtain the most accurate and stable solutions [18,28,29,38].
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FIG. 5. L2 norm error as a function of parameter β0.

We assume that the error dependence for the parameter β0

may also exist in the present model where solid particles and
fluids are coupled. Therefore, we carried out further tests to
confirm this where the simulation condition was the same as
the first one in this section (L = 200 and a = 20), but only the
parameter β0 was changed for ranges β0 = 0.6−0.9 (with 0.1
intervals).

The result is shown in Fig. 5. The smallest error is obtained
at β0 = 0.7 as in previous reports regarding two compo-
nent systems [18,28,29,38]. Based on the present results, we
confirm that β0 = 0.7 is still optimal even in our method,
so we decided to use this parameter value for all the tests
that follow. Although the physical meaning and correlation
between observed errors and parameter β0 have not been fully
discussed in this test, it should be addressed in future studies.

B. Capillary interactions between two particles

As a next step, we carried out the simulation test to see
whether the capillary interactions between the particles is
correctly resolved in our algorithm. In previous tests, the
particles’ weight was ignored and the fluid interface remained
flat at equilibrium. When the weight of the particle cannot be
neglected, for example, due to unequal density between the
particles and fluids, it could induce deformation of the fluid
interface. The interface deformation would give rise to the
capillary interactions among the particles residing at the same
interface [8,49,50]. In this section, we investigate capillary
interactions between two solid particles floating at the fluid
interface. We consider the system as illustrated in Fig. 6 and
carefully analyze the change of contact angle and particle
motion induced by the capillary interactions for different
interparticle distances.

First, we consider the case with interparticle distance d =
L. When the initial interparticle separation is half of the
simulation domain such that d = L (see Fig. 6), all the lateral
motion (for x direction in our system) of the solid particle is
prohibited by the symmetry of the capillary interactions due
to the periodicity of the simulation domain [8]. In this case,
the contact angle has the same value ψeq(=ψ

eq
1 = ψ

eq
2 ) on

both sides of the particle due to the symmetry of capillary
interaction. The only vertical motion in particles is allowed
and their position is determined by the balance between the

FIG. 6. Schematic diagram of the simulation system: two heavy
particles floating at the fluid interface with interparticle distance d .
ψ1 and ψ2 denote contact angles around the solid particle.

buoyancy force and the interfacial tension. The correlation
between equilibrium contact angle ψeq and gravitational ac-
celeration g is given by

2σAB sin ψeq = πa2g(ρp − ρ f ), (35)

where ρp and ρ f are the densities of solid particle and fluid,
respectively.

The relative intensity of gravitational acceleration and in-
terfacial tension can be described by the Bond number (Bo).

Bo = (ρp − ρ f )ga2

σ AB
. (36)

Finally, from Eqs. (35) and (36), the equilibrium contact angle
can be described as a function of Bond number as below:

ψeq = sin−1

(
π

2
Bo

)
. (37)

The simulation conditions are as follows. The simulation
domain size was 2L × L (L = 200) with the same boundary
condition as before. The kinematic viscosity was ν = 1/6
and the interfacial tension was σAB = σBC = σAC = 0.011
(the neutral wetting condition for the solid particles). In the
test, we considered two heavy solid particles to observe the
effect of gravity on the particles floating at the fluid interface
(Fig. 6). The density of the solid particle was set to two
times larger than fluids A and B (ρP = 2). The density of
fluid C must be matched to the particle density such that
ρP = ρC . To satisfy the rule in Eq. (10), free parameters were
set as αA = αB = 1/3 and αC = 2/3. The particle radius was
a = 20 and the interface thickness parameter β0 = 0.7 was
used as in previous tests.

At the beginning of the simulation, two solid particles float
at the fluid interface (in the midst of the simulation domain)
without any acceleration until it reaches the equilibrium state.
Then, the gravitational acceleration was applied to two solid
particles in the range of Bo = 0.01−0.4. The density fields
are shown in Fig. 7(a) for the representative cases (Bo = 0.1
and 0.4). At Bo = 0.4, a significant change in the particles’
equilibrium position and the curvature of the fluid interface is
observed while a tiny change at Bo = 0.1. With the increased
Bond number, a larger contact angle is observed, but the
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FIG. 7. (a) Simulation results for Bo = 0.1 and 0.4. (b) The
equilibrium contact angle of the particle (ψ eq) versus the Bond
number (Bo). The triangle is the simulation result and the grey
dashed line is an analytic solution predicted by Eq. (37).

values on both sides of the solid particles are still the same.
These results demonstrate that the symmetry of the capillary
interactions correctly work in the periodic domain and also
imply that the gravitational acceleration qualitatively works
in our numerical method. For the quantitative analysis, we
investigated the correlation between contact angle and Bond
number. The contact angle was obtained from the tangential
slope of the fluid interface. As shown in Fig. 7(b), the contact
angle exponentially increases with Bond numbers in the test
ranges. Our simulation results correspond well to the analytic
solution predicted by Eq. (37).

Next, we explored the capillary interactions in terms of the
interparticle distance. By changing the interparticle distance,
the symmetry of the capillary force is no longer maintained
and the particles have two different equilibrium contact angles
ψ

eq
1 and ψ

eq
2 . In this case, Eq. (37) can be rewritten as

sin
(
ψ

eq
1

) + sin
(
ψ

eq
2

) = πBo. (38)

To obtain the contact angle, both hydrostatic equilibrium con-
ditions for the fluid interface and the geometrical restriction
for the particles must be considered. From the rule of the
hydrostatic conditions, the interface curvature at positions
P1 and P2 should be equal and the interface curvature is
R1 = R2 = Rint. Rint can be obtained by substituting Eqs. (39)
and (40) into Eq. (38), then each of the contact angles can

FIG. 8. (a) Simulation results for interparticle distances d/a =
8 and d/a = 4 (Bo = 0.2). (b) Capillary interactions for the lateral
directions versus interparticle distance (both dimensionless forms).
The square symbol is the simulation result and the grey dashed line
is the analytic solution obtained by Eqs. (38)−(41).

be obtained at the specific Bond number and interparticle
distance:

sin
(
ψ

eq
1

) = d

2Rint
, (39)

sin
(
ψ

eq
2

) = 2L − d

2Rint
. (40)

Finally, the capillary force (lateral force) acting on the par-
ticles can be evaluated as a function of contact angle and
interfacial tension between fluids A and B as below [8]:

FC
x = σAB

[
cos

(
ψ

eq
1

) − cos
(
ψ

eq
2

)]
. (41)

We carried out the test to quantitatively validate the capillary
interactions within our simulation algorithm. The interparticle
distance in the range of d = 3a − 9a was considered and other
conditions were set as in the previous test. By changing the
interparticle distance, the symmetry of the capillary force is
broken, which leads to difficulties in measuring the capillary
force at the specific interparticle distance. To solve this issue,
the lateral motion of the particle was constrained in the test.
Therefore, the particles are allowed to move only in the
vertical direction following the strategy of Onishi et al. [8].
After the system reaches the equilibrium state, (gravitational)
acceleration corresponding to Bo = 0.2 was applied to two
solid particles.

As seen in Fig. 8(a), changes in the curvature of fluid
interface and contact angle are observed. In particular, at the
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FIG. 9. The lateral particle motion induced by capillary interac-
tion. (a) Initial particle configuration. (b) The particles are vertically
accelerated in the same direction. (c) The particles are accelerated
vertically in the opposite direction. The right side of the figure
describes temporal particle separation in the lateral direction.

small interparticle gap d/a = 4, a strong distortion in the
fluid interface is captured with quite a difference in contact
angles for both sides of solid particles. We evaluated the
equilibrium contact angle in the same way with the previous
test and plotted it as a form of the capillary force provided in
Eq. (41). As shown in Fig. 8(b), the capillary force increases
with a decrease in interparticle distance, and the simula-
tion result shows a good agreement with the predictions in
Eqs. (38)−(41).

As far as we are concerned, any quantitative analysis for
capillary interactions between two particles has never been
performed in several LBM [10,14] or SPM based methods
[46,47]. This implies that there has been ambiguity in the
prediction of the capillary interactions among solid particles
in previous studies. On the other hand, our method is vali-
dated well in that respect, which supports the theoretical and
numerical robustness of the present method.

We additionally tested the capillary lateral motion of two
solid particles at the fluid interface. The simulation domain,
boundary condition, and the material properties are the same
as in the previous test, but the particle motion for the lateral
direction was not constrained anymore. To prevent overlap
between particles, we applied the Weeks-Chandler-Andersen
(WCA) type of potential [51] with a lubrication correction
term [52,53]. In this test, we consider two sets of the situation:
one where both particles are accelerated vertically in the same
direction (toward the bottom wall) and the other where the
particles are accelerated vertically in the opposite direction.
Simulation results are provided in Fig. 9. For the former case,
two particles attract each other [Fig. 9(b)], while in the latter
they push against [Fig. 9(c)]. These phenomena follow the
prediction of the capillary charge theory between two particles
and also qualitatively match with experimental observations
[8,49,50,54]. We also analyzed the temporal motion of the
particles in the lateral direction (right side of Fig. 9). At
the early stage (t � 104), the particles hardly move at the
interface and then start to move in opposite directions (t ∼
2 × 104). In the next stage, sudden acceleration (exponential)
is observed in both systems (3 × 104 < t � 2 × 105), and
finally, they reach the steady state. As seen in the results, even
for the two particles system, the dynamics caused by capillary
interactions is quite complicated.

FIG. 10. Spinodal decomposition of fluid mixtures. (a) Binary
(φ = 0), (b) ternary (φ = 0.1), and (c) ternary (φ = 0.3) mixtures.
Results correspond to t = 0, t = 50000, and t = 600000 from left to
right.

C. Application: Spinodal decomposition of the ternary mixture

In previous sections, we performed several simulation tests
including the wetting of a single solid particle and the cap-
illary interactions in two solid particles floating at the fluid
interface. From these analyses, we confirmed that the key
features of the particle dynamics at the fluid interface are
correctly resolved in our simulation method.

We now apply the presented method to a further compli-
cated situation: spinodal decomposition of a ternary mixture.
Spinodal decomposition can be viewed as a physical process
of phase separation of emulsions. Also, this is one of the good
benchmark problems that can test the stability and robustness
of the multiphase models [55–57]. We set the system for the
spinodal decomposition of a ternary mixture, in particular,
which contains two-immiscible fluids with solid particles.
Through this test, we try to look into the parts that were
not covered in previous tests and to see the potential of the
algorithm toward soft matter systems from a qualitative point
of view.

The simulation condition are given as follows. The domain
size was L × L (L = 300) and periodic boundary conditions
were applied for both the x and y directions. The kinematic
viscosity was ν = 1/6 and the interfacial tension was set to
σAB = 0.0011. The density of the fluid was unity and free
parameters were set as αA = αB = αC = 4/9 and β0 = 0.7.
The particle radius was a = 10 and the neutral wetting con-
dition was applied (σBC = σAC). To prevent overlap between
the particles, the WCA type of potential was applied with a
lubrication correction term as in previous tests. The particle
volume (area) fraction was φ ∼ 0.1 and 0.3. We also con-
sidered a binary liquid mixture (pure fluid mixture without
solid particles) and its condition was equal to the ternary fluid
mixture, except for the existence of solid particles.

The simulation results are provided in Fig. 10. In the
beginning of the simulation, both fluids (the ratio of A and

053302-9



YOUNG KI LEE AND KYUNG HYUN AHN PHYSICAL REVIEW E 101, 053302 (2020)

B is 1:1) and solid particles are randomly distributed in the
simulation domain, and the segregation starts. In a binary fluid
mixture (without solid particles), relatively fast segregation is
observed and a bicontinuous structure evolves during phase
transition [Fig. 10(a)]. These characteristics represent the typ-
ical features of spinodal decomposition of binary fluid mix-
tures [23,55,56]. On the other hand, quite different behavior is
captured in ternary fluid mixtures. The segregation of fluids is
suppressed and more discrete structures are formed by adding
solid particles in immiscible fluids [Figs. 10(b) and 10(c)].
Most solid particles are relocated to the fluid interface due to
their neutral affinity with fluids and they sometimes form the
“jamming” structure with trapping other fluids inside. These
characteristics become clear when particle volume fractions
increase.

Recently, there have been many reports on the effect of
solid particles in the emulsion systems [58–62]. Solid parti-
cles stabilize the fluid interface and also affect the structure
of the fluids. Depending on the proportion and affinity of the
components, various morphologies such as bijels and Pick-
ering emulsions are formed, and finally it induces dramatic
changes in rheology (not presented here). These features are
reflected well even in our simulation results. In particular,
the captured morphology through our simulation looks quite
similar to bijels (bicontinuous interfacially jammed emulsion
gels) [14,58,59,61]. One of the relevant simulation results
may be provided in Jansen and Harting’s report [14], where
they studied phase transition of fluid-solid mixtures based on
the SC based LBM. They captured bijel structure at almost
the same conditions of this work (the fluid ratio 1:1 and
neutral wetted particles). In their results, most particles were
located at the fluid interface (for neutral wetting condition)
and fluids were entrapped by a jammed structure formed by
solid particles (Figs. 7 and 8 of Ref. [14]). The segregation of
fluids was suppressed and much smaller average domain sizes
(for fluids) were captured with increasing particle volume
fractions (Fig. 10 in Ref. [14]). All the mentioned features are
quite similar to the results from our simulation (Fig. 10) and
also correspond to other simulation and experimental results
[58,59,61,63] in a qualitative sense. Although our test was
carried out for limited conditions, the results captured most
physics governing the phase separation of the ternary mix-
tures; for example, the stabilizing effect by solid particles and
significant changes in morphology. From these observations,
we confirm the feasibility of our numerical method to describe
soft matter systems, in particular, emulsions including solid
particles. Further studies will be necessary for unsolved is-
sues, which is beyond the scope of this work.

IV. CONCLUSION

We suggest a numerical method that describes the dynam-
ics of solid particles at fluid interfaces. The presented method
was established on the CGLBM and combined with the SPM.
In the proposed method, immiscible fluids were described
by CGLBM and the momentum transfer among the solid
particle and fluid was achieved by SPM. Although CGLBM
is one of the promising methods in dealing with multiphase
systems, it has never been adaptable for liquid systems involv-
ing solid particles. To combine these two existing methods,

we designed a different coupling algorithm. We considered
two immiscible fluids A and B along with fluid C, which is
additionally considered to control the wettability of the solid
particle at the interface. In the method, the solid particle is
always entrapped in the fluid C phase, which was achieved
by applying the fully wetted condition of fluid C to the solid
particle.

To validate the present method (CGLBM-SPM), we per-
formed several simulation tests. At first, the equilibrium
contact angle of a single solid particle at the fluid interface
was studied. The wettability of the particle was controlled
by the change in interfacial tension among the components
and then the change in equilibrium position of the solid
particle was investigated. We defined affinity parameter (χ )
from the relative interfacial tension of the components and the
dependency for this parameter was carefully investigated. By
controlling the affinity parameter, the equilibrium height of
the solid particle was found to change, which corresponded
well with the analytical solution. We also analyzed the system
by using the L2 norm error for the lattice grid resolution and
interface thickness parameter. From the tests, we suggested
optimized values for the lattice grid resolution (a = 20) and
the interface thickness parameter (β0 = 0.7). Then, we tested
a more complicated system where two high-density particles
are floated at the fluid interface. In that system, the contact
angle of the particle and the interface curvature are determined
by the balance between the buoyancy force and the interfacial
tension of the fluids in addition to the interdistance between
solid particles. Our simulation results reflected the previ-
ously mentioned characteristics well and also showed good
agreement with the analytic solutions. The lateral motion of
two solid particles induced by the capillary interactions was
demonstrated as well. Depending on the accelerated direction
of solid particles, both attractive and repulsive motions were
captured that qualitatively followed the prediction by the cap-
illary charge theory and experimental observation. From the
simulation results, we confirmed that the capillary interactions
(in the lateral direction) is correctly resolved in our numerical
method. As a final example, we applied the present method to
spinodal decomposition of a ternary mixture, which contains
two-immiscible fluids with solid particles. By adding solid
particles, the fluid segregation was much suppressed com-
pared to the binary liquid mixture and completely different
morphology was obtained like with the jamming structure of
the particles at the fluid interface. Captured behaviors looked
quite reasonable and similar to literature, such as “bijels”
in particular. Although the test was implemented for limited
cases only, the results captured most physics governing the
phase separation of the ternary mixtures. Therefore, we con-
firmed the feasibility of the present method to describe soft
matters; in particular, emulsion systems that contain solid
particles at interfaces. Finally, we conclude that the dynamics
of solid particles at the fluid interface can be correctly resolved
by the proposed method.
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