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In this work, we studied the stopping power of deuterium-tritium (DT) plasmas mixed with impurities to
the injected charged particles. Based on the Brown-Preston-Singleton model, the analytical expression for the
change ratio of stopping power (denoted by η) induced by impurities in DT plasmas is developed, in which
both classical short-distance collision part and quantum correction contribution are purely linear response to the
impurity concentration ξX , while the classical long-range collision brings about higher-order nonlinear response
to ξX . Furthermore, the expression for change ratio of deposition depth (denoted by χ ) of charged particles
induced by impurities in DT plasmas is also derived. As applications, we systemically investigated the energy
loss of α particles deposited into a hot dense DT plasma mixed with impurity X (X = C, Si, Ge), where the
temperature and density of DT are smaller than 10 keV and 500 g/cm3 and the concentration of X ξX is less
than 5%. The numerical results suggest that (i) for the case of C mixed into DT, both change ratios of stopping
power and deposition depth of α particles (i.e., η and χ ) are linear response to the concentration of C ξC ; (ii) for
the case of Si mixed into DT, the second-order nonlinear response of η and χ to ξSi cannot be ignored when the
densities of DT are larger than 200 g/cm3; and (iii) for the case of Ge mixed into DT, the second- and third-order
nonlinear response of η and χ to ξGe are very remarkable because of the higher ionization degree and heavier
atomic mass of Ge. The formulas and findings in this work may be helpful to the research of internal confinement
fusion (ICF) related implosion physics and may provide useful theoretical guidance and data for the design of
ICF target.
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I. INTRODUCTION

High-energy projectiles, such as α particle, proton, and
deuteron, created by fusion reactions deposit energy into the
dense plasmas as they are stopped. How to accurately model
the stopping power of plasmas to the charged particles is
thus an interesting and important issue in modern internal
confinement fusion (ICF) [1–6], astrophysics [7], condensed
matter physics, and other research fields since the charged par-
ticle stopping power in low-temperature materials and high-
temperature plasmas will strongly affect energy transport and
heating in these fusion processes. Because of the importance
from the perspectives of both basis physics and potential
applications in the fields of high-energy-density physics, a
series of theoretical models and advanced simulation methods
for the stopping power have been developed. From the model-
developing side, two main methods have been proposed to
describe the interactions between injected charged particle
and plasmas, i.e., the dielectric response formulation [8–11]
and the collisional approach [12–17]. Based on the latter, for
example, a popular model using a rigorous expansion in a
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small parameter and dimensional continuation of collisional
transport coefficients have been described by Brown, Preston,
and Singleton (BPS) [13]. From the numerical simulation
side, both classical molecular dynamics simulations and first-
principle methods based on quantum mechanics have been
developed. For the charged particle stopping power in weak-
to moderately strong coupling plasmas, classical molecular
dynamics simulations may provide excellent results [18].
While for the strong-coupling plasmas, in which the strong
many-body coupling and quantum electron degeneracy effects
play essential roles, first-principles methods [19–24] based
on a quantum mechanical treatment of the electrons, such as
fully ab initio computational scheme based on linear response
time-dependent density-functional theory [20], and ab initio
time-dependent orbital-free density-functional (TD-OF-DFT)
theory [21,22], may predict more accurate charged particle
stopping power. The most recent investigations showed that
for α-particle stopping in warm and solid-density deuterium-
tritium (DT) plasmas, the simulation results of stopping power
obtained by ab initio TD-OF-DFT [21,22] might be lower
about ∼25% in comparison with stopping power models
often used in the high-energy-density physics community
[12,13,25]. Thus, the regimes of validity and application of
present stopping power models need to be further established
by the relevant experiments.
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With the advanced development of high-energy laser fa-
cilities in the world, such as the OMEGA laser facility and
the National Ignition Facility (NIF) in the USA and the
PHELIX laser facility in Germany, there has been significant
effort for measuring the energy deposition of charged particles
penetrating through the high-energy-density plasmas. Recent
experiments [26–28] revealed that the Li-Petrasso (LP) model
[12] and the BPS model [13], which are considered from
the aspect of binary collision, provide better descriptions
of the ion stopping around the Bragg peak in the weakly
coupled plasmas than other models. While the experiment on
the stopping power of protons in a warm dense beryllium
with solid density and electron temperature of tens of eV
showed that the dielectric response stopping power models
are excellent choices for moderately and strongly coupled
plasmas [29]. Furthermore, most recent neutron time-of flight
measurements of charged particle energy loss in ICF plasmas
indicated accurate distinguish between the LP model and ran-
dom phase approximation dielectric response stopping power
model [30].

More and more ICF related experiments were also carried
out to characterizing the high-energy-density plasma in ICF
via the passage of charged particle beams. In particular, α

particles generated from DT fusion (D+T→α+n) deposit
their energy in the hot spot of ICF DT-fusion, thus causing
the hot-spot temperature to rise sharply and the thermonuclear
burn wave to propagate in the surrounding DT fuel. The
stopping power of charged particles, therefore, is crucial for
predicting ignition in the central hot ICF capsule. However,
the DT hot-spot contamination from ablator materials, such
as beryllium (Be) [31], copper-doped Be, silicon- (Si) doped
plastic (CH) [32,33], germanium- (Ge) doped CH [34,35],
and high-density carbon (HDC) [36–39], and the inner side
of hohlraum materials [such as gold (Au) and U] [40] will
significantly influence the energy deposition of α particles in
the DT capsule and then result in DT neutron yield and ion
temperature both decrease abruptly. Especially, Ge x-ray spec-
troscopy was initially used to infer the mix of targets with a Ge
dopant CH layer in the ablator. Later, Ge was replaced by Si,
which demonstrated improved radiation absorption and higher
implosion velocity. Recently, a set of experiments demon-
strated that the HDC ablator in a near-vacuum hohlraum is a
viable candidate for achieving α-particle heating and ignition
on the -. In recent years, we have theoretically studied the
influence of Be and U on the stopping power of DT to
charged particles [41,42]. However, there is little quantitative
investigation about the effects of ablator materials, including
C, Si, and Ge, on the stopping power of dense DT plasmas
for α particle generated from DT fusion. Because of the basic
interest and the presence of C, Si, and Ge in the ICF capsule,
it is timely to provide a systematically theoretical analysis for
the stopping power of DT plasmas mixed with C-Si-Ge to the
α particle.

Here, by employing the BPS model [13], which has
been experimentally demonstrated as an excellent model
for weakly coupled plasmas, we study the influence of the
impurities in DT plasmas on the energy loss of charged
particle deposited therein. The analytical derivations of the
change ratio of stopping power induced by impurities in DT
plasmas reveal that (i) both classical short-distance collision

and quantum correction contributions linearly depend on the
impurity concentration ξX , (ii) while the classical long-range
collision contribution also leads to higher-order nonlinear
response to ξX . The explicit expressions for the linear and
nonlinear response coefficients are obtained. Furthermore, the
expression for change ratio of deposition depth (denoted by
χ ) of charged particles induced by impurities in DT plasmas is
also derived. Combined the analytical analysis and numerical
simulations, we systemically study the stopping power of hot
dense DT plasmas mixed with impurity X (X = C, Si, Ge) to
α particles within high velocity. We find that when C is mixed
into DT, both change ratios of stopping power and deposition
depth of α particles (i.e., η and χ ) are linear response to the
concentration of C ξC ; while if Si (Ge) is mixed into DT, the
second- (and even third-) order nonlinear responses of η and χ

to ξSi (ξGe) become significant. This is because of the higher
ionization degrees and heavier atomic masses of Si and Ge.
We hope our results should be helpful to the research of ICF
related implosion physics and can provide useful theoretical
guidance and data for the design of ICF target.

The paper is organized as follows. In Sec. II we introduce
the BPS model and provide detailed derivations of change
ratio of stopping power induced by impurities. In Sec. III,
detailed discussions for the linear and nonlinear responses of
η and χ to the concentration ξX of impurities X (= C, Si,
Ge) mixed into DT plasmas. The paper is summarized and
concluded in Sec. IV.

II. METHOD DESCRIPTIONS

In the following derivations, we assume that the plasma
is temperature equilibrium that βe = βD = βT = βX = β, and
the number densities of D and T satisfy the relationship that
nD/nT = mT /mD, which results in the mass densities of D
and T are equal to each other, i.e., ρD = ρT , and the number
density of X is

nX = ξX nT , (1)

where ξX is the mixing concentration of X (= C, Si, Ge). Due
to the electric neutrality, the number density of electron is

ne = ZDnD + ZT nT + ZX nX

= (1 + mT /mD + ZX ξX )nT , (2)

where ZD = ZT = 1.
The stopping power of nonrelativistic charged particles

moving through a fully ionized plasma for Coulomb interac-
tion is given by [13]

S(vp) = Ss(vp) + Sl (vp) + Sq(vp), (3)

where the first term in the right-hand side of Eq. (3) represents
classical short-distance contribution, which is written as

Ss(vp) =
∑

b

Sb,s(vp) =
∑

b

AbIb(vp). (4)

Here

Ab = Z2
pe2κ2

b

2β2mpmbvp
, (5)

where vp is the projectile velocity, Zpe denotes the charge of
projectile p, mp (mb) denote the mass of projectile p (plasma
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species b), and

κ2
b = βZ2

b e2nb (6)

is the Debye wave number of plasma species b (b = i, e denote
ion and electron respectively) with nb being the number
density of species b. I0(vp) in Eq. (4) is written as

Ib(vp) =
∫ 1

0
du

√
u
({− ln [Bu/(1 − u)] + 2(1 − γ )}

× [
βMpbv

2
p − 1/u

] + 2/u
)

f (
√

uvp), (7)

where B = βZpZbe2K
4π

mb
mpb

with K being an arbitrary wave

number, mpb = mpmb

mp+mb
and Mpb = mp+mb are the reduced

mass and the total mass of the projectile and plasma par-
ticles respectively, γ is the Euler’s constant, and f (v) =
( βmb

2π
)

3
2 e− βmbv2

2 is the Maxwell-Boltzmann distribution. In the
following discussions, projectile p is considered as α particle,
and plasma species b contain ions of D, T, X (= C, Si, Ge)
and electrons. From then on, Eq. (4) can be rewritten as

Ss(vp) =
∑
b�=X

AbIb(vp)+AX IX (vp)

= (Zpe2)2

2βmpvp

⎡
⎣∑

b�=X

Z2
b nb

mb
Ib(vp)+Z2

X ξX nT

mX
IX (vp)

⎤
⎦. (8)

We define the change ratio of the classical short-distance
contribution of stopping power of DT plasmas caused by X
mixing as

ηs = Ss(vp)−S0
s (vp)

S0
s (vp)

, (9)

where S0
s (vp) is the classical short-distance contribution of

stopping power of DT plasmas without mixing other mate-
rials. By using Eqs. (1), (2), and (8), one can easily get that

ηs = a1ξX , (10)

where

a1 = 1

U (vp)

[
ZX Ie(vp)

me
+Z2

X IX (vp)

mX

]
(11)

with U (vp) = mT

m2
D

ID(vp)+ 1
mT

IT (vp)+mD+mT
mDme

Ie(vp). It is clear
that ηs is independent of the densities of DT plasmas but
purely linear response to the mixing concentration ξX .

While the second term in the right-hand side of Eq. (3)
describes the long-distance contribution, which may be given

by

Sl (vp) =
∑

b

Sb,l (vp)

=
(

Zpe

2π

)2 ∑
b

{
Im[Gb(vp)]

βmpv2
p

−1

2

∫ 1

−1
dss Im[Gb(svp)]

}
,

(12)

where s = cos θ with the angle θ being the relative angle
between the wave vector in the dielectric function and the
velocity vp, and

Gb(z) = ρb(z)

ρtot(z)
F (z) ln[F (z)/K2], (13)

with ρb(z) = 2πκ2
b z

βmb
f (z) being an odd function related to the

Maxwell-Boltzmann distribution,

ρtot(z) =
∑

c

ρc(z) = ρ0
tot(z) + ρ̃X (z), (14)

being the spectral weight. Here ρ0
tot(z) = ∑′

c ρc(z) with the
superscript ′ denoting the summation of DT plasmas without
mixing with other materials and

ρ̃X (z) = 2πe2

mX

(
ZX + Z2

X

)
ξX nT f (z)z. (15)

Furthermore,

F (z) =
∑

d

κ2
d Jd (z) = F0(z) + F̃X (z), (16)

where Jd (z) = 1− 4π3/2

βmd
(z

∫ ε

0 dtet2−i
√

π

2 ) f (z) with ε =√
βmd

2 z, F0(z) = ∑′
d κ2

d Jd (z), and

F̃X (z) = [
Z−1

X Je(z) + JX (z)
]
κ2

X

= [
Z−1

X Je(z) + JX (z)
]
βZ2

X e2nT ξX . (17)

And then, let us derive the change of classical long-distance
contribution of stopping power of DT plasmas caused by X
mixing, which is given by

Sl (vp) − S0
l (vp) =

(
Zpe

2π

)2[ Im
(∑

b Gb − ∑′
b G0

b

)
βmpv2

p

−1

2
Im

∫ 1

−1
dss

(∑
b

Gb −
∑′

b
G0

b

)]
,

(18)

where S0
l (vp) is the classical long-range contribution of stop-

ping power of DT plasmas without mixing other materials,
and

∑
b

Gb −
∑′

b
G0

b = [F0 + F̃X ] ln

(
F0 + F̃X

K2

)
− F0 ln

(
F0

K2

)
. (19)

We also define

ηl = Sl (vp) − S0
l (vp)

S0
l (vp)

. (20)
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Substituting Eqs. (17)–(19) into Eq. (20), we can clearly find that ηl is not purely linear response to ξX , which differs from the
short-distance term ηs. By performing the Taylor’s series expansion to the limit of ξX →0, we get that

ηl = 1

0(vp)

[
Im

(
{1 + ln[F0(vp)/K2]}F̃X (vp) + F̃ 2

X (vp)

2F0(vp)
− F̃ 3

X (vp)

6F 2
0 (vp)

+ · · ·
)

− 1

2

∫ 1

−1
dss Im

(
{1 + ln[F0(svp)/K2]}F̃X (svp) + F̃ 2

X (svp)

2F0(svp)
− F̃ 3

X (svp)

6F 2
0

(
svp

) + · · ·
)]

, (21)

where

0(vp) = Im{F0(vp) ln[F0(vp)/K2]}

−1

2

∫ 1

−1
dss Im{F0(svp) ln[F0(svp)/K2]}. (22)

And then the linear response to ξX is explicitly given by

ηl (ξX →0) = b1ξX . (23)

where

b1 = βZ2
X e2nT

Im[�1(vp)]− 1
2

∫ 1
−1 dss Im[�1(svp)]

0(vp)
(24)

with

�1(z) = {1+ ln[F0(z)/K2]}[Z−1
X Je(z) + JX (z)

]
. (25)

In contrast to ηs, ηl is related to the density of DT plasma
nT , which is implicitly included in F0(vp) as well as logarithm
functions in Eqs. (21) and (24). In addition, the nonlinear re-
sponse to ξX induced by high-order terms of F̃X (z) in Eq. (21)
may become of importance for larger mixing concentration ξX

as well as larger degree of ionization ZX . Combining the short-
distance contribution and long-range contribution of stopping
power, the linear response of classical part of stopping power
to the mixing concentration ξX could be easily obtained as

ηcl = a1S0
s (vp) + b1S0

l (vp)

S0
s (vp) + S0

l (vp)
ξX . (26)

The last term in Eq. (3) is the quantum correction to the
classical part, which is written as

Sq(vp) =
∑

b

AbQb(vp), (27)

where

Qb(vp) = 1

vp

∫ ∞

0
dvpb[Re ψ (1 + iηpb) − ln ηpb]

× {[1 + α−] fM (v−) − [1 + α+] fM (v+)}. (28)

Here ψ (z) = d ln �(z)
dz is the logarithmic derivative of the

gamma function, ηpb = ZpZbe2

4π h̄vpb
with h̄ the Planck constant,

v± = vp±vpb with vpb = |vp − vb| being the relative veloc-
ity, and α± = Mpb

mb

vp

vpb
( 1
βmbvpvpb

±1). This calculation is exact
to leading and next-to-leading order in the plasma coupling
parameter, including an exact treatment of two-body quantum
scattering [13]. Similarly to ηs shown in Eq. (9), we define
the change ratio of the quantum correction term of stopping

power of DT plasmas caused by X mixing as follows:

ηq = Sq(vp)−S0
q (vp)

S0
q (vp)

, (29)

where S0
q (vp) is the quantum part of stopping power of DT

plasmas without mixing other materials. After some simple
algebraic operations, we have

ηq = c1ξX , (30)

where

c1 = 1

W (vp)

[
ZX Qe(vp)

me
+Z2

X QX (vp)

mX

]
(31)

with W (vp) = mT

m2
D

QD(vp)+ 1
mT

QT (vp)+mD+mT
mDme

Qe(vp), which
is formally consistent with ηs above. Therefore, ηq is also
independent of the densities of DT plasmas but directly pro-
portional to ξX . Finally, the change ratio of the total stopping
power due to the mixing of X ,

η = S(vp) − S0(vp)

S0(vp)
, (32)

is derived as follows:

η = ηsS0
s (vp) + ηl S0

l (vp) + ηqS0
q (vp)

S0(vp)

= α1ξX + α2ξ
2
X + α3ξ

3
X + · · · , (33)

where S0(vp) = S0
s (vp)+S0

l (vp)+S0
q (vp), and the linear re-

sponse coefficient to ξX is analytically given by

α1 = a1S0
s (vp) + b1S0

l (vp) + c1S0
q (vp)

S0(vp)
. (34)

The nonlinear response to ξX is derived from the long-range
contributions of the stopping power. Explicitly,

α2 = S0
l (vp)

S0(vp)
b2, (35)

α3 = S0
l (vp)

S0(vp)
b3, (36)

where

b2 =
(
βZ2

X e2nT
)2{Im[�2(vp)]− 1

2

∫ 1
−1 dss Im[�2(svp)]}

0(vp)
,

(37)

b3 =
(
βZ2

X e2nT
)3{Im[�3(vp)]− 1

2

∫ 1
−1 dss Im[�3(svp)]}

0(vp)
,

(38)
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with

�2(z) =
[
Z−1

X Je(z) + JX (z)
]2

2F0(z)
, (39)

�3(z) = −
[
Z−1

X Je(z) + JX (z)
]3

6F 2
0 (z)

. (40)

The deposition distance of projected particles in plasmas is
given by

r(E , E0, ξX ) =
∫ E0

E
dE ′S−1(E ′), (41)

where E0 is the initial energy of the α particle which is
chosen as the DT reaction energy (E0 = 3.54 MeV) in the
following calculations, and E is the energy of the system.
In the following discussions, we also pay close attention to
the linear response of the change of r(E ; E0) to the mixing
concentration ξX of ablator materials X . For this purpose, we
introduce the change ratio of the deposition distance

χ = r(E , E0, ξX = 0)−r(E , E0, ξX )

r(E , E0, ξX = 0)
= r0−r

r0
, (42)

where r0 = r(E , E0, ξX = 0) = ∫ E0

E dE ′ 1
S0(E ′ ) . Substituting

Eq. (33) into Eqs. (41) and (42) and carrying out the Taylor’s
series expansion to the limit of ξX →0, we have

χ (ξX →0) = r−1
0

∫ E0

E
dE ′ η(E ′)

[1 + η(E ′)]S0(E ′)

= γ1ξX + γ2ξ
2
X + γ3ξ

3
X + · · · , (43)

where the linear and nonlinear response coefficients are given
by

γ1 = r−1
0

∫ E0

E
dE ′ α1(E ′)

S0(E ′)
, (44)

γ2 = r−1
0

∫ E0

E
dE ′ α2(E ′)−α2

1 (E ′)
S0(E ′)

, (45)

γ3 = r−1
0

∫ E0

E
dE ′ α

3
1 (E ′)−2α1(E ′)α2(E ′)+α3(E ′)

S0(E ′)
. (46)

It is distinct that γi (i = 1, 2, 3, . . . ) could be easily obtained
once the coefficients αi (i = 1, 2, 3, . . . ) are known. The for-
mulas of αi and γi are useful and important for understanding
the material-mixing rules in ICF plasmas and thereby may
have advantages in the ICF target design.

III. NUMERICAL RESULTS FOR DT + C, Si, AND Ge

In our calculations, the densities of both D and T
plasmas ρD,T are assumed changing from ∼1 g/cm−3 to
∼500 g/cm−3, which corresponds to the number densities of
D nD = 3×1023 ∼ 1.5 × 1026 cm−3 and the number densi-
ties of T nT = 2×1023 ∼ 1.0 × 1026 cm−3, respectively. The
maximal concentration is taken as ξmax

X = 5% in all calcula-
tions. The temperature we considered is high enough (T = 5–
10 keV) that the DT + X plasmas are fully ionized [43]. This
temperature condition is easily achieved in present ICF exper-
iments [44]. In order to explicitly verify the appropriation of
the BPS model for the plasma conditions considered herein,

we carefully check the overall coupling of the projectile to the
plasma, which is written as [13]

g2
p =

∑
b

β2
(epeb

4π

)2
κ2

b , (47)

where ep = Zpe is the charge of projectile, eb = Zbe is the
charge of plasma species labeled by b, and κb = √

βnbeb is
the Debye wave number of species b. In the following calcu-
lations, we focus on the stopping power of hot dense DT + X
(X = C, Si, Ge) plasmas to the projected α particle. Therefore,
the coupling strength of the α particle to the DT + X (X =
C, Si, Ge) plasmas are calculated. Typical results of gp as a
function of density and temperature of DT plasma are shown
in Fig. 1. As mentioned above, the density of DT changes from
∼1 g/cm3 to ∼500 g/cm3 and the temperature of DT plasma
changes from ∼5 keV to ∼10 keV. Figures 1(a) and 1(b) are
for the cases of DT + C with the mixing concentrations ξC =
2% and ξC = 5%, respectively; Figs. 1(c) and 1(d) are for the
cases of DT + Si with ξSi = 2% and ξSi = 5%, respectively;
while Figs. 1(e) and 1(f) are for the cases of DT + Ge with
ξGe = 2% and ξGe = 5%, respectively. Since gp is directly
proportional to n1/2

b and inversely proportional to T 3/2, we can
see from Fig. 1 that gp increases with increasing the density of
DT but decreases with increasing the temperature of plasma.
For the plasma conditions that ρD,T = 500 g/cm3, T = 5 keV,
and ξX = 5% (X = C, Si, Ge), the maximum values of gp

are 0.051 for DT + C plasma, 0.16 for DT +Si plasma,
and 0.51 DT + Ge plasma, see Figs. 1(b), 1(d), and 1(f),
respectively. Therefore, the DT + X (X = C, Si, Ge) plasmas
studied herein are weakly coupled, which verifies that the
BPS method is appropriate [13]. Furthermore, as mentioned
in Ref. [13], the DT + X plasmas studied in this work are
composed of nonrelativistic particles that have no degeneracy.
Based on these plasma conditions, we first performed the fun-
damentally numerical calculations by employing the Eqs. (32)
and (42) based on the BPS model, and then the formulas of αi

and γi shown above are considered to intensively explore the
linear and nonlinear response effects induced by the mixed
materials.

A. DT + C plasmas

We first discuss the influence of C mixing into the hot
dense DT plasmas. Some numerical results of η [Eq. (32)] as a
function of the incident energy of α-particle Eα (Eα = 1

2 mpv
2
p)

are shown in Fig. 2. Here, the temperature of plasma system is
chosen as T = 5 keV, and a typical mixing concentration of C
is considered that ξC = 2%. Different data symbols in Fig. 2
correspond to different densities of DT plasmas. Explicitly,
black squares, red circles, green triangles, and blue stars in
Fig. 2 are for ρD = ρT = 5, 10, 50, and 100 g/cm3, respec-
tively. The change ratios of total, classical part, and quantum
correction of stopping powers are presented in Fig. 2(a),
Fig. 2(b), and Fig. 2(c), respectively. From Fig. 2(a) we can
see that with increasing the incident energy of α-particle Eα ,
the change ratio of total stopping power η (induced by C
mixing) gradually decreases and then slowly increases. When
the energy of α-particle Eα exceeds about ∼5 MeV, η reaches
a saturation value, hardly varying with Eα . Same as total
stopping power, the change ratio of classical part of stopping
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FIG. 1. Overall coupling strength gp of the projected α particle to the DT + X (X = C, Si, and Ge) plasmas as a function of temperature
T (in unit of keV) and density ρDT (in unit of g/cm3) of DT. Panels (a) and (b) are for the case of DT + C with ξC = 2% and ξC = 5%, panels
(c) and (d) are for the case of DT + Si with ξSi = 2% and ξSi = 5%, and panels (e) and (f) are for the case of DT + Ge with ξGe = 2% and
ξGe = 5%.

power, i.e., ηcl, also exhibits the same variation pattern with
the incident energy of α particle, which is shown in Fig. 2(b).

Remarkably differing from η and ηcl, the change ratio
of quantum correction part of stopping power, i.e., ηq, is
independent of the density of DT plasmas, which could be
found from analytical expressions (29)–(31). Therefore, we
just observe one black squares in Fig. 2(c), and other three
(red circles, green triangles, and blue stars) are overlapped
with the black squares. Moreover, we see from Fig. 2(c) that
when the energy of α-particle Eα is small, ηq tends to zero and
rises rapidly with increasing Eα . This is because that when the
incident velocity of α particle is small, the quantum Coulomb
parameter ηpb in Eq. (28) is large so that the scattering is
nearly dominated by the classical scattering. However, when

Eα is far greater than the system temperature T , ηq no longer
changes with Eα , see Fig. 2(c). This is because that when
Eα→∞, following from Eq. (30), ηq could be approximated
as a simple expression that

ηq(Eα→∞)≈ mD

mD + mT
ZxξX . (48)

Explicitly, for the case of ξC = 2% and ZC = 6, we could
immediately obtain that ηq(Eα→∞) ≈ 4.8, which is well
consistent with the numerical result shown in Fig. 2(c).

In addition, from this asymptotic expression (48), we get
that (i) for the case of C mixing into DT plasmas with ξC =
0.6%, and 5.0%, ηq(Eα→∞) ≈ 1.44%, and 12.0%; (ii) for
the case of Si mixing into DT plasmas with ZSi = 14 and

FIG. 2. Change ratio of stopping power of DT plasmas mixed with carbon to α particle as a function of the incident energy of α-particle
Eα . (a) For the total stopping power, (b) for the classical part of stopping power, and (c) for the quantum part of stopping power. Different
data symbols are for different densities of T, i.e., black squares, red circles, green triangles, and blue stars correspond to ρT = 5, 10, 50, and
100 g/cm3, respectively. The temperature of plasma is chosen as T = 5 keV, the carbon mixing concentration is ξC = 2%, and the density of
D is chosen as ρD = ρT .
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FIG. 3. Change ratio of stopping power of DT + C plasmas to
α particle as a function of the C-mixing concentration ξC . Various
densities of DT plasmas are considered that ρD = ρT = 1, 5, 10, 50,
100, 200, 300, 400, and 500 g/cm3, and the temperature of plasmas
is chosen as T = 5 keV in (a) and T = 10 keV in (b), respectively.
Discrete symbols are calculated via Eq. (32), while the color lines
are calculated via Eq. (33) where just linear term ∼α1ξC is taken into
account. The initial energy of α particle is chosen as E0 = 3.54 MeV.

ξSi = 0.6%, and 5.0%, ηq(Eα→∞) ≈ 3.36%, and 28.0%; and
(iii) for the case of Ge mixing into DT plasmas with ZGe =
32 and ξGe = 0.6%, and 5.0%, ηq(Eα→∞) ≈ 7.68%, and
64.0%. These approximation results are all in good agreement
with the accurately numerical calculations, which are not
shown for briefness.

In order to extract the relationship between η and ξC , we
perform a series of calculations of stopping power of α parti-
cle with initial energy E0 = 3.54 MeV moving in the DT + C
plasmas with various densities that ρD = ρT = 1, 5, 10, 50,
100, 200, 300, 400, and 500 g/cm3 and two temperatures
T = 5 and 10 keV. Firstly, by using the BPS model, we
calculate the stopping powers S(vp) and S0(vp) for DT + C
plasmas and pure DT plasmas, and substitute the results into
Eq. (32) to get the change ratio of stopping power induced
by C mixing. The results are presented by discrete symbols in
Fig. 3, where different shape symbols correspond to different
densities of DT. Figures 3(a) and 3(b) are for the temperature
T = 5 and 10 keV, respectively. These plasma conditions are
easily realized in the modern ICF implosion experiments.
Secondly, by employing Eqs. (33) and (34), we obtain the
linear response term of η to ξC , which are plotted by color
lines in Fig. 3. It is clear that the lines are in good agreement
with the symbols, which indicate that the change ratio of
stopping power of DT plasmas mixed with C to α particles is
linear response to the concentration ξC . We emphasize again
that the maximal concentration is taken as ξmax

C = 5% in our
calculations. The linear response rule that η = α1ξC found
here may be of interest and importance for understanding the
implosion physics as well as hydrodynamic instability in ICF
related experiments, and may be also useful for the design of
ICF capsule with HDC ablator layer. The linear coefficient
α1 for each line in Fig. 3 are summarized in Table I. We can
see from Table I that α1 decreases with increasing the density
of DT plasmas. Furthermore, the maximal change ratio of
stopping power induced by C mixing reaches about ∼8.5%,
see Fig. 3. Comparing the results in Figs. 3(a) and 3(b), we
find that η seems insensitive to the temperature, which could
also be seen from the data of α1 shown in Table I. In addition,
if the concentration ξC is much larger than 5%, the quadratic-
and even cubic-type nonlinear responses to ξC may become
non-negligible (not shown for briefness).

Figure 4 presents the change ratio of deposition depth χ

of an α particle with initial energy E0 = 3.54 MeV injected
in DT + C plasmas with various densities of DT. Similar
to the treatment of stopping power shown in Fig. 3, the
discrete symbols in Fig. 4 are the results calculated by using

TABLE I. The coefficients α1, α2, and α3 obtained by Eqs. (33)–(40) for DT+X (X = C, Si, and Ge) plasmas with various densities of DT
that ρD = ρT = 1, 5, 10, 50, 100, 200, 300, 400, and 500 g/cm3 and two temperatures T = 5 and 10 keV. The values of α1, α2, and α3 listed
in this table correspond to the color curves shown in Fig. 2 for the DT+C case, Fig. 4 for the DT+Si case, and Fig. 6 for the DT+Ge case.

DT+C DT+Si DT+Ge

ρT 5 keV 10 keV 5 keV 10 keV 5 keV 10 keV

(g/cm3) α1 α1 α1 α2 α1 α2 α1 α2 α3 α1 α2 α3

1.0 1.91 1.87 4.04 – 4.05 0.040 6.44 0.829 −0.072 8.60 0.718 −0.062
5.0 1.82 1.79 3.77 – 3.82 0.045 5.32 0.959 −0.084 7.84 0.816 −0.071
10.0 1.79 1.75 3.63 – 3.69 0.048 4.72 1.029 −0.089 7.44 0.866 −0.075
50.0 1.66 1.64 3.21 – 3.34 0.057 2.93 1.239 −0.108 6.30 1.012 −0.088
100.0 1.59 1.57 2.97 – 3.15 0.061 1.91 1.358 −0.119 5.68 1.092 −0.095
200.0 1.50 1.50 2.68 – 2.92 0.066 0.67 1.503 −0.131 4.95 1.184 −0.103
300.0 1.44 1.46 2.33 0.032 2.77 0.070 −0.18 1.603 −0.138 4.46 1.247 −0.109
400.0 1.39 1.42 2.16 0.033 2.65 0.072 −0.77 1.630 −0.140 4.09 1.295 −0.113
500.0 1.35 1.38 2.02 0.034 2.56 0.074 −1.44 1.749 −0.153 3.77 1.334 −0.117
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FIG. 4. Change ratio of deposition depth of α particle moving
in the DT + C plasmas as a function of the C-mixing concentration
ξC . (a) for the temperature of plasmas T = 5 keV, and (b) for T =
10 keV, respectively. Discrete symbols are calculated via Eq. (42),
while the color lines are calculated via Eqs. (43) and (44) where just
linear term ∼γ1ξC is taken into account. Other parameters are the
same as those used in Fig. 3.

Eq. (42), and the color lines are the results calculated by
Eqs. (43) and (44) where only linear term of ξC is taken
into account. The maximal change ratio of deposition depth
induced by C mixing reaches about ∼8.5%. It is clear that
for the small mixing concentration (ξC	5%) the change ratio
of deposition depth of an α particle induced by C mixing
could be well described by a linear response term χ = γ1ξC .
This conclusion is reasonable in wide ranges of density of

DT (from 1 g/cm3 to 500 g/cm3) and temperature (from 5
to 10 keV). The corresponding data of linear coefficient γ1 are
presented in Table II. It is seen from Table II that, same as α1

shown in Table I, the smaller the density of DT, the greater
the first-order coefficient γ1. This is because that γ1 is directly
proportional to the integral of α1.

B. DT + Si plasmas

Now let us turn to discuss the energy loss of α particle
deposited into DT mixed with Si plasmas. For the sake of data
integrity and for the convenience of comparative analysis with
the case of DT + C, a series of numerical calculations are per-
formed for DT + Si plasmas using the same parameters as in
Figs. 3 and 4. Here, the degree of ionization of Si is ZSi = 14
and the atomic effective mass of Si is mSi = 28.086, which are
larger than those of C. The results of η as a function of ξSi are
illustrated in Fig. 5, in which Fig. 5(a) is for the case of T = 5
keV and Fig. 5(b) is for the case of T = 10 keV, respectively.
It is obvious that the maximal change ratio of stopping power
induced by Si mixing is larger than ∼20%. Following the
same way treated to DT + C plasmas, we compare the results
of the completely numerical calculation of the BPS model
(the discrete symbols in Fig. 5) with the results obtained from
the formulas (33)–(36) of linear and/or nonlinear response to
mixing concentration ξSi (the color curves in Fig. 5). Unlike
the case of DT + C, we find that when Si is mixed into
DT plasmas, the quadratically nonlinear response of η to ξSi

will gradually become significant as increasing the density
and temperature of DT. For examples, we find that (i) at a
temperature of 5 keV and DT density greater than 200 g/cm3,
the quadratic term cannot be ignored, see Fig. 5(a); and (ii) at
a temperature of 10 keV and DT density changing from 1
g/cm3 to 500 g/cm3, the quadratic term is needed in order
to predict more precise results, see Fig. 5(b). For much clearer
understanding these analysis, the corresponding data of the
first- and second-order coefficients α1 and α2 are presented
in Table I. We can see that when T = 5 keV (T = 10 keV)
and ρT�300 g/cm3 (ρT�1 g/cm3), α2 becomes larger than
∼0.032 (∼0.040). Furthermore, the linear response coeffi-
cient α1 for DT + Si plasmas is about 2 times larger than that

TABLE II. The coefficients γ1, γ2, and γ3 obtained by Eqs. (44)–(46) for DT+X (X = C, Si, and Ge) plasmas with various densities of DT
that ρD = ρT = 1, 5, 10, 50, 100, 200, 300, 400, and 500 g/cm3 and two temperatures T = 5 and 10 keV. The values of γ1, γ2, and γ3 listed in
this table correspond to the color curves shown in Fig. 3 for the DT+C case, Fig. 5 for the DT+Si case, and Fig. 7 for the DT+Ge case.

DT+C DT+Si DT+Ge

ρT 5 keV 10 keV 5 keV 10 keV 5 keV 10 keV

(g/cm3) γ1 γ1 γ1 γ2 γ1 γ2 γ1 γ2 γ3 γ1 γ2 γ3

1.0 1.66 1.70 3.39 – 3.73 −0.032 8.75 −0.076 −0.048 10.56 −0.371 −0.031
5.0 1.57 1.63 3.11 – 3.51 −0.026 7.72 0.109 −0.074 9.88 −0.175 −0.049
10.0 1.53 1.60 3.05 – 3.26 0.002 7.38 0.190 −0.064 9.51 −0.059 −0.060
50.0 1.40 1.49 2.73 – 2.96 0.019 5.65 0.733 −0.121 8.54 0.195 −0.082
100.0 1.33 1.44 2.55 – 2.67 0.020 4.82 0.912 −0.134 7.92 0.398 −0.103
200.0 1.24 1.37 2.27 – 2.51 0.056 3.52 1.283 −0.169 7.04 0.646 −0.126
300.0 1.17 1.33 1.81 0.072 2.34 0.069 2.98 1.339 −0.170 6.84 0.701 −0.131
400.0 1.13 1.29 1.64 0.082 2.21 0.079 2.39 1.471 −0.181 6.51 0.794 −0.139
500.0 1.09 1.26 1.50 0.086 2.11 0.087 1.88 1.584 −0.190 6.22 0.871 −0.146
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FIG. 5. Change ratio of stopping power of DT + Si plasmas to
α particle as a function of the Si-mixing concentration ξSi. All other
parameters are the same as those used in Fig. 3.

of DT + C plasmas. In addition, we find that with increasing
the density of DT, the linear coefficient α1 decreases while
the second-order coefficient α2 increases, which indicates the
enhancement of the nonlinear response effect.

As mentioned above, similarly to Fig. 4, we exhibit in
Fig. 6 the results of change ratio of deposition depth of α

particle moving in DT + Si plasmas. The initial energy E0

of α particle is still chosen as 3.54 MeV. All parameters
are the same as those used in Fig. 5. After a variety of
careful calculations, we find the second-order term of ξSi is
necessary to provide more accurate results for higher densities
and temperatures of DT plasmas, which is consistent with the
analysis for stopping powers shown in Fig. 5. This could be
clearly seen from Fig. 6 as well as the data of γ1 and γ2 for
DT + Si shown in Table II. The same as the behaviors of
α1 and α2 shown in Table I, with increasing the density of
DT, the linear coefficient γ1 decreases while the second-order
coefficient γ2 increases. Moreover, the maximal change ratio
of χ induced by Si is more than 17%. Compared with the case
of DT mixed with C, we can draw the following conclusion:
Due to larger atomic mass of Si, the mixing of Si into the
DT plasmas does cause a more significant decrease in the
deposition depth of charged particle, but at the same time it
will also result in higher-order nonlinear response of variation
of deposition depth to Si mixing concentration.

C. DT + Ge plasmas

In this subsection, we will discuss the stopping power of
DT + Ge plasmas to α particles. We know that C, Si, and Ge
are all in the fourth main group of the periodic table. Because
of the same number of electrons in their outermost shell,

FIG. 6. Change ratio of deposition depth of α particle moving in
DT + Si plasmas as a function of the Si-mixing concentration ξSi. All
other parameters are the same as those used in Fig. 4.

their chemical properties are similar. This may be one of the
reasons why C, Si, and Ge were used in the ICF target design
[32–39]. Therefore, it is necessary for us to carefully analyze
the influence of Ge mixed into the hot dense DT plasmas
on the stopping power. We suppose Ge is fully ionized, i.e.,
ZGe = 32, when the temperature is higher than 5 keV.

The results of change ratio of stopping power induced
by Ge mixed into DT are shown in Fig. 7. Similarly to the
cases of DT + C and DT + Si shown in Figs. 3 and 5, the
color curves shown in Fig. 7 are the results obtained from
the formulas (33)–(36) which are truncated to the third-order
nonlinear terms, while the discrete symbols are the results
obtained from Eq. (32). The curves agree very well with the
discrete symbols. It can be seen that for the DT + Ge system,
when the concentration of Ge is less than 5%, the third-order
nonlinear effect cannot be ignored. In other words, the linear
response term ∼α1ξGe cannot perfectly describe the physical
dependence mechanism of η on ξGe. This is very different
from DT + C and DT + Si systems. The maximal change
ratio reaches ∼44% (∼53%) when the temperature is 5 keV
(10 keV), which is much larger than those of DT + C and
DT + Si plasmas. The corresponding linear coefficient α1 and
nonlinear coefficients α2 and α3 are listed in the Table I, from
which we can see that α1 and (negative) α3 decrease while
α2 increases as the density of DT is increased. Especially,
α1 becomes negative when the density of DT is larger than
300 g/cm3 and the temperature is 5 keV.

Following the same way used above, we also calculate
the change ratio of deposition depth χ induced by Ge mixed
into DT plasmas, and typical results of χ for three densities
of DT that ρT = 10, 100, and 500 g/cm3 are presented in
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FIG. 7. Change ratio of stopping power of DT + Ge plasmas to
α particle as a function of the Ge-mixing concentration ξGe. All other
parameters are the same as those used in Fig. 3.

Fig. 8. We will not show the results for other densities for
briefness. Same as the behavior of the stopping power, third-
order nonlinear response of χ to ξGe is also of importance,
which can be clearly seen from Fig. 8. The data of coefficients
γ1,2,3 are shown in Table II. The dependence of γ1,2,3 on
the density of DT is the same as the dependence of α1,2,3

on the density of DT. In addition, the maximal change ratio
of deposition depth induced by Ge reaches about 40% much
larger than those induced by C and Si.

IV. DISCUSSIONS

As a consequence, the higher the atomic number of im-
purities mixed into DT plasmas, the more remarkable the
changes of stopping power and deposition depth of charged
particles, and the more significant the nonlinear response of
the change ratios (η and χ ) to the impurity concentration
(ξX ). This nonlinear effect indicates that the long-range clas-
sical collision contribution may be much stronger for the
impurities with higher ionization and heavier atomic mass.
However, based on the systematic investigations and dis-
cussions above, we can determine that the linear response
behaviors of η and χ to ξX is the simplest and the most
important.

As a theoretical study of the effect of impurity mixing on
the stopping power, it should be perfectly reasonable for us to
choose the highest impurity concentration of 5%, but we em-
phasize that the highest mix cases are extreme examples. From
the point of view of energy deposition of charged particles,
the impurity elements mixed in DT hot spot will significantly
reduce the deposition radius of α particle, which is conducive

FIG. 8. Change ratio of deposition depth of α-particle moving in
DT + Ge plasmas as a function of the Ge-mixing concentration ξGe.
Here we just show the results for three different densities ρT = 10,
100, and 500 g/cm3. All other parameters are the same as those used
in Fig. 4.

to the temperature rise of hot spot, and ultimately achieve
ignition. However, from the perspective of the radiation hy-
drodynamic, the incorporation of excessive high-Z elements
(such as CH, Si-doped CH, and Ge-doped CH from the shell
ablator) may radiatively cool the DT hot spot, reducing the ion
temperature and decreasing the neutron yield. For example,
following the formula in Ref. [31], at ∼5% atomic mix and
assuming that the free-free emissivity scales like Z2, one
would expect increases in radiative loss from the fuel from a
factor of ∼3 (for C) to ∼135 (for Ge). These are high numbers
compared to the most mixed experimental cases in Ref. [31],
which is worth noting. Therefore, in the actual design study of
the ICF layered target with an ablator composed of a high-Z
material, an appropriate impurity concentration is crucial. At
present, the level of ablator impurities mixed into DT hot spots
can be determined quantitatively by using the experimentally
measured level of elevated x-ray emission to neutron yield of
the hot spot combined with corresponding theoretical models
[31].

The analysis in this paper is based on the BPS model,
which is only applicable to weakly coupled plasmas. In other
words, our formula can be applied to the case where the
plasma coupling strength is less than unity. In the above cal-
culations of DT + X (X = C, Si, Ge) plasmas, we considered
the temperature of the system from ∼5 keV to ∼10 keV. This
temperature range should be what we expect to find in the
center of an ICF hot spot. As shown in Fig. 1, this temperature
range ensures that the plasma is in the weakly coupled region.
Previous experimental studies have shown that much of the
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effects of α-heating occur at the hot-spot edge and in the cold
fuel layer, where the plasma temperature is about ∼500 eV
to ∼5 keV. From the above results, such as Fig. 7 and Fig. 8,
it can be seen that at lower temperature (i.e., T = 5 keV), the
nonlinear response of α-particle energy deposition to impurity
concentration seems to be more obvious when the middle and
high Z element (such as Ge) is mixed. It is clear to us that the
lower the plasma temperature, the greater the plasma coupling
strength. Conversely, the lower the temperature, the lower the
ionization of the plasma X (X = C, Si, Ge). Therefore, these
factors should be treated very carefully when the formulas
developed in this article are applied to lower-temperature
plasma states, especially when applied to ICF target design.
As long as the plasma is in a weakly coupled state (i.e.,
gp<1), the formulas for impurity effects in this paper should
be applicable.

In order to illustrate this point more clearly, as an example,
here we further calculated the case of DT + X (X = C, Si, Ge)
where the temperature of DT is ∼2 keV, the mass density of
DT is ∼100 g/cm3, and the maximum mixing concentration
of X is still ∼5%. We emphasize that in this plasma state, the
ionization degrees of C, Si, and Ge are nearly Z∗

C ≈ 5.9, Z∗
Si ≈

13.8, and Z∗
Ge ≈ 29.0, respectively. It is clear that C and Si are

almost completely ionized, while Ge is partially ionized. For
such weakly coupled plasmas of partial ionization, our formu-
las are still applicable. It is only necessary to substitute the ef-
fective ionization degree into the above formulas to complete
the corresponding calculations. The overall plasma coupling
strengths are less than unity. Explicitly, the maximum values
of gp are about ∼8.8×10−2, ∼2.7×10−1, and ∼7.0×10−1 for
DT + C, DT + Si, and DT + Ge plasmas, respectively. The
calculations found that (i) for the DT + C plasmas, the change
ratio of stopping power η is linear response to the mixing con-
centration of C ξC by a relationship that η = 1.4ξC+O(ξ 2

C );
(ii) for the DT + Si plasmas, the second-order nonlinear effect
cannot be ignored and η = 1.4ξSi + 0.065ξ 2

Si + O(ξ 3
Si); and

(iii) for the DT + Ge plasmas, higher-order nonlinear effect
is observed and η = ∑4

i=1 αiξ
i
Ge + O(ξ 5

Ge) with the linear re-
sponse coefficient α1= −4.73, and the nonlinear coefficients
α2 = 2.73, α3= −0.46, and α4 = 0.03. Comparing with the
data in Table I, it is not difficult to find that when the temper-
ature is ∼2 keV, the nonlinear effect will be more significant
for DT + Ge plasmas. For briefness, we will not discuss other
lower-temperature situations in detail.

In our work, the theoretical analysis and prediction of the
effect of impurity mixing on the energy deposition of charged
particles are of scientific significance in the application of
BPS model, and the theoretical findings herein have never
been reported in previous literatures. With the significant
development of energy deposition experimental technology
in the world, the concentration of impurity elements mixed
into DT hot spots may be measured quantitatively through
experimental studies of energy deposition of charged parti-
cles. The nonlinear response of energy deposition of charged
particles caused by the incorporation of impurity elements
may be also observed by excellent energy loss related ex-
periments in future. At present, experimental studies on the
energy deposition of the charged particles in dense plasma
focuses on the appropriation of relevant theoretical models
near the Bragg peak of the stopping power [26–30]. Our work

provides more innovative ideas, as well as useful theoretical
basis and data support for experimental scientists to carry
out relevant experimental research in future. This will be
of interest and importance, and has the value of scientific
research, which is beneficial to the actual design research of
ICF target.

Before ending this paper, we would like to point out that
the stopping power per unit areal density [15] dE

d (ρR) show the
same effect due to the change in density. Same as Eq. (32), the
change ratio of the total stopping power per unit areal density

dE
d (ρR) due to the mixing of X is given by η′ =

dE
d (ρR) −

dE0
d (ρR)

dE0
d (ρR)

,

where dE0
d (ρR) is the stopping power without mixing of X . By

employing the relationships that ρX = mX ξX nT , ρD = ρT , and
ρ = ρX +ρD+ρT , we could easily get that

η′ = 2mT

2mT + mX ξX
η − mX ξX

2mT + mX ξX
. (49)

In the limit of lower mixing concentration, i.e., ξX →0, we
have

η′ =
(

α1 + mX

2mT

)
ξX +

(
α2 − mX

2mT
α1 − m2

X

4m2
T

)
ξ 2

X

+
(

α3 − mX

2mT
α2 + m2

X

4m2
T

α1 + m3
X

8m2
T

)
ξ 3

X + · · · , (50)

where Eq. (33) has been used. The change ratio of the total
stopping power per unit areal density also presents linear and
nonlinear response behavior to the concentration ξX , but the
response coefficients are modified compared with Eq. (33)
which casts in terms of the path-length quantity (i.e., dE/dx).
For instances, comparing Eq. (33) with Eq. (50), the linear
response coefficient to ξX is modified from α1 to α1+ mX

2mT
;

the second-order nonlinear coefficient is modified from α2

to α2− mX
2mT

α1− m2
X

4m2
T

; and the third-order nonlinear coefficient

is modified from α3 to α3− mX
2mT

α2+ m2
X

4m2
T
α1+ m3

X

8m2
T

. We will not
discuss it in more detail for briefness.

V. CONCLUSIONS

In conclusion, we have studied the influence of the
impurities mixed into hot dense DT plasmas on the energy
loss of charged particle deposited therein by employing
the BPS model. We have carefully derived the analytical
expressions for the change ratios of stopping power and
the deposition depth of charged particles induced by
impurities in DT plasmas. The change ratios of both classical
short-distance collision and quantum correction contributions
linearly depend on the impurity concentration ξX . While the
change ratio of classical long-range collision contribution
includes higher-order nonlinear responses to ξX . The explicit
expressions for the linear and nonlinear response coefficients
have been obtained. Furthermore, we have also derived the
expression for change ratio of deposition depth of charged
particles induced by impurities in DT plasmas. Combined
the analytical analysis and numerical simulations, we have
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systemically studied the stopping power of hot dense DT
plasmas mixed with impurity X (X = C, Si, Ge) to α particles
within high incident velocity. We have found that when C
is mixed into DT, both change ratios of stopping power and
deposition depth of α particles (i.e., η and χ ) are linear
response to the concentration of C ξC ; while if Si (Ge) is
mixed into DT, the second- (and even third-) order nonlinear
responses of η and χ to ξSi (ξGe) becomes significant. This
nonlinear effect is resulted from the higher ionization degrees
and heavier atomic masses of Si and Ge. We hope that our
findings and analysis in this work will be helpful to the
research of ICF related implosion physics and provide useful
theoretical guidance and data for the design of ICF target.
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