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Parallel propagating electromagnetic waves in magnetized quantum electron plasmas with finite
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We studied parallel propagating electromagnetic waves in a magnetized quantum electron plasma of finite
temperature, as an extension of our previous study on a zero temperature plasma. We obtained simple analytic
dispersion relations in the long wavelength limit that included the thermal effect as correction terms to the zero
temperature results. As in the zero temperature case, the lower branch of the R wave showed significant damping
and became ill-defined at short wavelengths. Quantum effects seemed to give qualitative changes, such as the
appearance of anomalous dispersion regions, to the classical dispersion relations when vF /vth � 0.2 for a set of
exemplary parameters of vF = 0.1c and ωce/ωpe = 0.05 was used. We also noted that introduction of the Planck
constant in the quantum Vlasov equation changed the shape of the anomalous dispersion region qualitatively, by
forming a normal dispersion region in the middle of the original single broad anomalous dispersion region.
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I. INTRODUCTION

A quantum electron plasma is characterized by its high
density and relatively low temperature compared to the corre-
sponding Fermi energy. Hence, in a quantum electron plasma,
the degenerate pressure exceeds or is comparable to the ther-
mal pressure and the (thermal) de Broglie wavelength is larger
than the mean interparticle distance. This requires a quantum
mechanical treatment for the study of its collective behavior.
The importance of theoretical research on quantum electron
plasmas was recently recognized with the progress in laser
plasma experiments, and the miniaturization of electronic
devices [1–4]. It has also long been believed that the interiors
of white dwarfs are also in a degenerate state [5].

Various plasma waves have been studied for magnetized
and unmagnetized quantum electron plasma, with the aid of
fluid or kinetic equations. As can be expected, the quantum
mechanical effects appear both through the fluid or kinetic
equations and from the degenerate pressure or the Fermi-
Dirac distribution function.

The notable difference between quantum mechanical fluid
equations and classical ones is the Bohm potential term that
appears in the momentum equation with the correction of
the order of h̄2, where h̄ is the reduced Planck constant. Its
effect is electrostatic: Only the electrostatic mode and the
electromagnetic X mode which have the electric field in the
propagating direction are affected by the Bohm potential,
whereas the electromagnetic L, R, and O modes, whose elec-
tric fields are perpendicular to the propagating direction, are
not affected. With the Bohm potential term, the electrostatic
wave can propagate even without thermal pressure [6,7].

Kinetic treatment of quantum plasma waves has mostly
been carried out using the classical Vlasov equation, with the
velocity distribution replaced by the Fermi-Dirac distribution,

because of the mathematical difficulty of the quantum Vlasov
equation (Wigner equation): The results are such that the
Fermi velocity acts like the thermal velocity in the case of
classical plasmas, with correction terms added to the corre-
sponding classical results of the pressureless fluid [8,9]. The
effects are also manifested as only minor shifts of cutoff
frequencies in the case of electromagnetic waves.

However, when the exact quantum Vlasov equation is
adopted, qualitative differences are seen. For electrostatic
oscillations, the Landau damping rate takes the form of a
finite difference in the two points located at ±h̄k/2me from
the resonance velocity, which reduces to the classical one
when h̄ → 0 [10,11]. The study of the Landau damping has
been extended to the electromagnetic case: A general expres-
sion for the dispersion relation of electron plasma waves in
electromagnetic wave fields shows that electron and photon
Landau damping processes are very similar [12]. The Wigner-
Maxwell system is also applied to the electromagnetic Weibel
instability and it is found that the quantum mechanical effects
suppress the Weibel instability for anisotropic plasmas [13].
Further, in the case of relativistic quantum plasmas with a
ring velocity distribution, it is shown that the quantum effect
reduces the Weibel instability region whereas the relativistic
effect lowers the growth rate [14]. Recently, it has been argued
that, in the case of zero temperature Fermi-Dirac distribution
in a small range of wave number k just below the R wave
exhibits anomalous dispersion in a small range of wave num-
ber k just below the singular point that originates from the
nonphysical assumption of zero temperature. The wave also
shows damping for k above a critical value before it finally
becomes ill-defined [15].

Thermal effects on the plasma waves in a degenerate
electron plasma have been discussed. In the quantum fluid
equations, when the pressure term in the momentum equation
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was modified to incorporate the Fermi-Dirac distribution, the
dispersion relation for the electrostatic wave was given in
a simple form with a slight modification of the classical
thermal term, which becomes proportional to v2

th in the high
temperature limit and v2

F in the cold temperature limit, where
vth is the thermal velocity and vF is the Fermi velocity [16]. A
kinetic approach has also been taken with the classical Vlasov
equation for an electron plasma wave: With a dispersion
relation quite similar to that of the fluid treatment in the
limit of long wavelength, the damping rate was given in an
analytic form as a function of temperature, Fermi energy, and
the chemical potential [17]. More exact quantum mechanical
treatment with the quantum mechanical Vlasov equation was
carried out for electrostatic waves: The dispersion relation
for electron plasmas was determined to be identical to the
previous fluid results in the limit of long wavelength [18]. Re-
cently, the Landau damping rate for an electrostatic electron
wave was calculated by solving the quantum Vlasov equation
numerically for a wide range of temperatures and chemical
potentials [15].

We would like to extend our previous study of electromag-
netic waves propagating in the direction parallel to the am-
bient magnetic field with zero temperature [15] by including
the finite temperature effect in the present paper. In Sec. II, we
start with the general form of the susceptibility tensor obtained
in our previous paper to apply it to the case of the Fermi-Dirac
distribution function with finite temperature. The dispersion
relations are obtained in simple analytic forms in the long
wavelength limit for the two cases of low degeneracy and
high degeneracy in Sec. III. In Sec. IV, discussions compare
the zero temperature case for representative values of density,
temperature, and the magnetic field. Finally, a summary of the
present work is given in Sec. V.

II. DIELECTRIC FUNCTION

In our previous paper, we derived the susceptibility tensor
for the parallel propagating waves in a magnetized quantum
electron plasma with arbitrary velocity distribution fe0(�v)
[15]. The following expressions were obtained from the quan-
tum mechanical Vlasov equation, with the quantum recoil
effect included:

←→χ = χR
←→
U + χL

←→
U ∗ + χ‖

←→
T , (1)

where

χR = − ω2
pe

2ω2
− πω2

peωce

2ω2

(∫
Ge1(v‖)dv‖

ω+ − ωce − kv‖

+
∫

Ge1(v‖)dv‖
ω− − ωce − kv‖

)

+ πω2
pe

2ω2

me

h̄

(∫
Ge3(v‖)dv‖

ω+ − ωce − kv‖

−
∫

Ge3(v‖)dv‖
ω− − ωce − kv‖

)
, (2)

χL = − ω2
pe

2ω2
+ πω2

peωce

2ω2

(∫
Ge1(v‖)dv‖

ω+ + ωce − kv‖

+
∫

Ge1(v‖)dv‖
ω− + ωce − kv‖

)

+ πω2
pe

2ω2

me

h̄

(∫
Ge3(v‖)dv‖

ω+ + ωce − kv‖

−
∫

Ge3(v‖)dv‖
ω− + ωce − kv‖

)
, (3)

and

χ‖ = 2πω2
peme

h̄k2

(∫
Ge1(v‖)dv‖
ω+ − kv‖

−
∫

Ge1(v‖)dv‖
ω− − kv‖

)
, (4)

with the definition of the matrices
←→
U and

←→
T :

←→
U =

⎡
⎣ 1 i 0

−i 1 0

0 0 0

⎤
⎦,

←→
T =

⎡
⎣0 0 0

0 0 0

0 0 1

⎤
⎦, (5)

and

Ge1(v‖) = 1

n0

∫
fe0(�v)v⊥dv⊥, Ge3(v‖)

= 1

n0

∫
fe0(�v)v3

⊥dv⊥, (6)

where n0 is the electron density. ωpe and ωce are the plasma
frequency and the gyro frequency, respectively:

ωpe =
√

4πn0e2

me
, ωce = |e|B0

mec
. (7)

Here, e and me are the charge and mass of an electron, respec-
tively, and B0 is the strength of the ambient magnetic field.
Finally, ω+ and ω− are the frequencies shifted by +h̄k2/2me

and −h̄k2/2me, respectively:

ω± = ω ± h̄k2

2me
. (8)

With the aid of the Maxwell’s equations, we define the
following dielectric functions for the electromagnetic and
electrostatic waves propagating in the direction parallel to the
ambient magnetic field:

εR = 1 − k2c2

ω2
− ω2

pe

ω2
+ πω2

peωce

ω2

×
(∫

Ge1(v‖)dv‖
v‖ − ω+−ωce

k

+
∫

Ge1(v‖)dv‖
v‖ − ω−−ωce

k

)

− πω2
pe

ω2

me

h̄

(∫
Ge3(v‖)dv‖
v‖ − ω+−ωce

k

−
∫

Ge3(v‖)dv‖
v‖ − ω−−ωce

k

)
,

(9)
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εL = 1 − k2c2

ω2
− ω2

pe

ω2
− πω2

peωce

ω2

×
(∫

Ge1(v‖)dv‖
v‖ − ω++ωce

k

+
∫

Ge1(v‖)dv‖
v‖ − ω−+ωce

k

)

− πω2
pe

ω2

me

h̄

(∫
Ge3(v‖)dv‖
v‖ − ω++ωce

k

−
∫

Ge3(v‖)dv‖
v‖ − ω−+ωce

k

)
,

(10)

and

ε‖ = 1 − 2πω2
peme

h̄k3

(∫
Ge1(v‖)dv‖
v‖ − ω+

k

−
∫

Ge1(v‖)dv‖
v‖ − ω−

k

)
.

(11)

εR and εL are the dielectric functions for the electromagnetic
right (R) and left (L) polarization waves, respectively, and ε‖ is
the dielectric function for the longitudinal electrostatic wave.
The dispersion relations can be obtained by setting εR = 0
for the R wave, εL = 0 for the L wave, and ε‖ = 0 for the
electrostatic wave.

Let us take the Fermi-Dirac distribution for fe0(�v) [19]:

fe0(�v) = 2

(
me

2π h̄

)3 1

1 + exp
(
β
(

1
2 mev2 − μ

)) , (12)

where β = 1/kBT (kB is the Boltzmann constant) and the
chemical potential μ is a function of the electron density
n0 and temperature T. By integrating the above Fermi-Dirac
distribution function over the entire velocity (energy) space,
we obtain the electron density n0 in terms of the thermal
parameter β and the chemical potential μ:

n0 = −1

4

(
2me

πβ h̄2

)3/2

Li3/2(−eβμ), (13)

or equivalently,

Li3/2(−eβμ) = − 4

3
√

3
√

π
(βEF )3/2 = − 4

3
√

π

(
vF

vth

)3

, (14)

where Lis(x) is the polylogarithm function, which can be
defined in two forms, a series expansion and an integral,

Lis(x) =
∞∑

n=1

xn

ns
= 1

�(s)

∫ ∞

0

t s−1

et/z − 1
dt . (15)

The Fermi energy EF and the Fermi velocity vF are defined as

EF = h̄2

2me
(3π3n0)2/3 = 1

2
mev

2
F , (16)

and the thermal velocity vth is defined as

vth =
√

2kBT

me
. (17)

Hence, the velocity moments Ge1(v‖) and Ge3(v‖) can also be
written in terms of the polylogarithm functions:

Ge1(v‖) = 1

2π3/2vth

1

Li3/2(−eβμ)
Li1(−eβ(μ− 1

2 mev
2
‖ ) ), (18)

and

Ge3(v‖) = vth

2π3/2

1

Li3/2(−eβμ)
Li2(−eβ(μ− 1

2 mev
2
‖ ) ). (19)

Using the definition of the polylogarithm functions in Ge1(v‖)
and Ge3(v‖), we can express the following integrals that
appear in the dielectric functions in terms of the plasma
dispersion functions as follows:

∫
Ge1(v‖)dv‖
ω − kv‖

= 1

2πvth

1

Li3/2(−eβμ)

∞∑
n=1

(−1)n enβμ

n

× Z

(
ω

kvth

√
n

)
, (20)

and ∫
Ge3(v‖)dv‖
ω − kv‖

= vth

2π

1

Li3/2(−eβμ)

∞∑
n=1

(−1)n enβμ

n2

× Z

(
ω

kvth

√
n

)
, (21)

where Z (x) is the plasma dispersion function defined as [20]

Z (x) = 1√
π

∫ ∞

−∞

e−t2

t − x
dt . (22)

Hence, the dielectric functions become

εR = 1 − k2c2

ω2
− ω2

pe

ω2
+ ω2

pe

2ω2

ωce

kvth

1

Li3/2(−eβμ)

∞∑
n=1

(−1)n enβμ

n

(
Z

(
(ω+ − ωce)

√
n

kvth

)
+ Z

(
(ω− − ωce)

√
n

kvth

))

− ω2
pe

2ω2

mevth

h̄k

1

Li3/2(−eβμ)

∞∑
n=1

(−1)n enβμ

n2

(
Z

(
(ω+ − ωce)

√
n

kvth

)
− Z

(
(ω− − ωce)

√
n

kvth

))
, (23)

εL = 1 − k2c2

ω2
− ω2

pe

ω2
− ω2

pe

2ω2

ωce

kvth

1

Li3/2(−eβμ)

∞∑
n=1

(−1)n enβμ

n

(
Z

(
(ω+ + ωce)

√
n

kvth

)
+ Z

(
(ω− + ωce)

√
n

kvth

))

− ω2
pe

2ω2

mevth

h̄k

1

Li3/2(−eβμ)

∞∑
n=1

(−1)n enβμ

n2

(
Z

(
(ω+ + ωce)

√
n

kvth

)
− Z

(
(ω− + ωce)

√
n

kvth

))
, (24)
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and

ε‖ = 1 − meω
2
pe

h̄k3vth

1

Li3/2(−eβμ)

×
∞∑

n=1

(−1)n enβμ

n

(
Z

(
ω+
kvth

√
n

)
− Z

(
ω−
kvth

√
n

))
.

(25)

III. DISPERSION RELATIONS IN THE LONG
WAVELENGTH LIMIT

For the long wavelength limit of the dispersion relations
of electrostatic and electromagnetic waves, let us assume
|ω±−ωce

kvth
| 
 1 and |ω±−ωce

kvF
| 
 1 (| ω±

kvth
| 
 1 and | ω±

kvF
| 
 1 in

the electrostatic case). The real part of the plasma dispersion
function can be expanded as

Re(Z (x)) ≈ −1

x
− 1

2x3
− 3

4x5
· · · . (26)

Hence, the real parts of the dielectric functions are

εR,r ≈ 1 − k2c2

ω2
− ω2

pe

ω2
− ω2

pe

2ω2

ωce

kvth

[(
1

ω+ − ωce
+ 1

ω− − ωce

)
(kvth)

+ Li5/2(−eβμ)

2Li3/2(−eβμ)

(
1

(ω+ − ωce)3
+ 1

(ω− − ωce)3

)
(kvth)3 + · · ·

]

+ ω2
pe

2ω2

mevth

h̄k

[
Li5/2(−eβμ)

Li3/2(−eβμ)

(
1

ω+ − ωce
− 1

ω− − ωce

)
(kvth) + · · ·

]
, (27)

εL,r ≈ 1 − k2c2

ω2
− ω2

pe

ω2
+ ω2

pe

2ω2

ωce

kvth

[(
1

ω+ + ωce
+ 1

ω− + ωce

)
(kvth)

+ Li5/2(−eβμ)

2Li3/2(−eβμ)

(
1

(ω+ + ωce)3
+ 1

(ω− + ωce)3

)
(kvth)3 + · · ·

]

+ ω2
pe

2ω2

mevth

h̄k

[
Li5/2(−eβμ)

Li3/2(−eβμ)

(
1

ω+ + ωce
− 1

ω− + ωce

)
(kvth) + · · ·

]
, (28)

and

ε‖,r = 1 − meω
2
pe

h̄k3vth

[(
1

ω+
− 1

ω−

)
(kvth) + Li5/2(−eβμ)

2Li3/2(−eβμ)

(
1

ω3+
− 1

ω3−

)
(kvth)3 + · · ·

]
. (29)

Further, in the long wavelength expansion, we keep only the lowest order corrections of the thermal effect (| kvth
ω±ωce

| � 1 for

the electromagnetic case and | kvth
ω

| � 1 for the electrostatic case) as well as the quantum recoil effect (| h̄k2

2me(ω±ωce ) | � 1 for the

electromagnetic case and | h̄k2

2meω
| � 1 for the electrostatic case) to obtain

εR,r ≈ 1 − k2c2

ω2
− ω2

pe

ω(ω − ωce)

[
1 + Li5/2(−eβμ)

Li3/2(−eβμ)

(
kvth

ω − ωce

)2

+ ωce

ω(ω − ωce)2

(
h̄k2

2me

)2
]
, (30)

εL,r ≈ 1 − k2c2

ω2
− ω2

pe

ω(ω + ωce)

[
1 + Li5/2(−eβμ)

Li3/2(−eβμ)

(
kvth

ω + ωce

)2

− ωce

ω(ω − ωce)2

(
h̄k2

2me

)2
]
, (31)

and

ε‖,r ≈ 1 − ω2
pe

ω2

[
1+3Li5/2(−eβμ)

2Li3/2(−eβμ)

(
kvth

ω

)2

+ 1

ω2

(
h̄k2

2me

)2
]
.

(32)

We note that the above electrostatic dielectric function
corresponds to the electrostatic dispersion of Eq. (32) in
Ref. [21]. The quantum recoil effects, as represented by
the dependence on h̄, appear as a correction proportional to

(h̄k2/2me)2 in all of the above electromagnetic and electro-
static dielectric functions.

A. Low degeneracy plasma

For a large finite thermal velocity in the low degeneracy
case (vth 
 vF ), we claim that for any natural number s

Lis/2(−eβμ)

Li3/2(−eβμ)
= 1 − 4

3
√

π

(
1

2s/2
− 1

23/2

)(
vF

vth

)3

+ O

((
vF

vth

)6
)

. (33)
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Then, the dispersion relations for the low degeneracy case are

εR,r ≈ 1 − k2c2

ω2
− ω2

pe

ω(ω − ωce)

[
1 + 1

2

(
1 + 1

3
√

2π

(
vF

vth

)3
)(

kvth

ω − ωce

)2

+ ωce

ω(ω − ωce)2

(
h̄k2

2me

)2
]
, (34)

εL,r ≈ 1 − k2c2

ω2
− ω2

pe

ω(ω + ωce)

[
1 + 1

2

(
1 + 1

3
√

2π

(
vF

vth

)3
)(

kvth

ω + ωce

)2

− ωce

ω(ω − ωce)2

(
h̄k2

2me

)2
]
, (35)

and

ε‖,r ≈ 1 − ω2
pe

ω2

[
1 + 3

2

(
1 + 1

3
√

2π

(
vF

vth

)3
)(

kvth

ω

)2

+ 1

ω2

(
h̄k2

2me

)2
]
. (36)

If vF = 0, all of the dielectric functions have thermal correc-
tion terms proportional to v2

th: With finite vF , its coefficient is
modified to include a small term proportional to (vF /vth )3.

B. High degeneracy plasma

For the high degeneracy case, eβμ 
 1, and we may use
the following asymptotic expansion [22]:

Lis ≈ − 1

�(s + 1)
(βμ)s

(
1 + π2s(s − 1)

6

(
1

βμ

)2

+ · · ·
)

,

(37)

Lis/2(−eβμ)

Li3/2(−eβμ)
≈ �(5/2)

�(s/2 + 1)
(βμ)

s−3
2

(
1 + (s − 3)(s + 1)π2

24

×
(

1

βμ

)2

+ · · ·
)

, (38)

μ ≈ EF

(
1 − π2

12

(
vth

vF

)4

+ · · ·
)

. (39)

Applying these expansions to the dielectric functions of
Eqs. (31)–(33), we obtain

εR,r ≈ 1 − k2c2

ω2
− ω2

pe

ω(ω − ωce)

[
1 + 1

5

(
1 + 5π2

12

(
vth

vF

)4
)(

kvF

ω − ωce

)2

+ ωce

ω(ω − ωce)2

(
h̄k2

2me

)2
]
, (40)

εL,r ≈ 1 − k2c2

ω2
− ω2

pe

ω(ω + ωce)

[
1 + 1

5

(
1 + 5π2

12

(
vth

vF

)4
)(

kvF

ω + ωce

)2

− ωce

ω(ω − ωce)2

(
h̄k2

2me

)2
]
, (41)

and

ε‖,r ≈ 1 − ω2
pe

ω2

[
1 + 3

5

(
1 + 5π2

12

(
vth

vF

)4
)(

kvF

ω

)2

+ 1

ω2

(
h̄k2

2me

)2
]
. (42)

Whereas thermal correction is proportional to v2
th in the non-

degenerate classical limit, the quantum mechanical correction
is proportional to v2

F , and its thermal correction is such that its
coefficient is modified to include a small term proportional to
(vth/vF )4. We can reproduce the results of the zero tempera-
ture limit in Ref. [15] by taking vth → 0.

IV. DISCUSSION

We obtained the dispersion relations numerically by setting
the right-hand sides of Eqs. (31)–(33) for representative values
of vF = 0.1c and ωce/ωpe = 0.05, corresponding to ne = 6 ×
1026 cm−3 and B0 = 4 × 109G, which are typical values for a
magnetic white dwarf. To obtain thermal effects, we assumed
vth = 0.07c for an exemplary case. The results are shown in
Fig. 1 , compared with those of the zero temperature case.
Figure 1(a) shows the upper branch of the R wave and the
L wave, and Fig. 1(b) the lower branch of the R wave. It is
seen that including the thermal effect increases the phase and
group velocities slightly for both the L wave and the upper

branch of the R wave, and it affects the R wave a little more
than the L wave. For the lower branch of the R wave, on
the other hand, damping is significant and becomes severe at
longer wavelength compared with the zero temperature case,
and the anomalous dispersion seen in the zero temperature
cases does not appear in the case of the present parameters.
Hence, we may expect that the anomalous dispersion occurs
only in the extreme high degeneracy case. In Fig. 2, we have
plotted the dispersion relations of the lower R wave with vF =
0.1c for vth = 0, 0.01c(vth/vF = 0.1), and 0.02c(vth/vF =
0.2). We see two anomalous dispersion regions appear when
vth/vF = 0.1, whereas only the normal dispersion appears
when vth/vF = 0.2. For vth/vF � 0.2, it seems the quantum
recoil effect only gives a minor correction to the classical
characteristics of the R wave without a qualitative change such
as anomalous dispersion. Quantum effects enter the disper-
sion relations through the velocity distribution (Fermi-Dirac
statistics) as well as through the quantum Vlasov equation.
As the Fermi-Dirac distribution introduces two anomalous
dispersion regions, separated by a normal dispersion between
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FIG. 1. The dispersion relations for the case of vF = 0.1c, vth = 0.07c, and ωce/ωpe = 0.05. (a) The upper branch of the R wave
and the L wave. (b) The lower branch of the R wave. The dotted line in (b) corresponds to the large values of εi(>5), implying severe
damping.

them, it should be interesting to examine how the inclusion
of the h̄ terms in the Vlasov equation affects the dispersion
relation since many previous studies on quantum plasma
were based on the classical Vlasov equation, only with the
Maxwellian velocity distribution replaced by the Fermi-Dirac
distribution. Figure 3 shows the dispersion relations of the
lower R wave with zero temperature for the three cases of
arbitrary h̄ normalized by the true Planck constant. We see
a single region of anomalous dispersion when h̄ = 0, whereas
a normal dispersion appears at the center and grows as h̄ in-
creases. In other words, the Fermi-Dirac distribution develops
one broad kinetic effect and divides into two by forming a
normal dispersion region between the two resonance points of
ω = ωce − kvF ± h̄k2/2me.

V. SUMMARY

In the present paper, we extended our previous study on the
parallel propagating electromagnetic waves of a zero temper-
ature quantum electron plasma to the cas of finite temperature.
The following are the main results.

FIG. 2. Temperature effect on the dispersion relation for the
lower R wave with vF = 0.1c and ωce/ωpe = 0.05. No anomalous
dispersion is seen when vth = 0.02c (red, dashed) whereas the cases
of vth = 0 (black, solid) and vth = 0.01c (green, dot-dashed) exhibit
anomalous dispersion.

(1) We obtained simple analytic dispersion relations for the
R and L waves as well as an electrostatic wave in the long
wavelength limit. The quantum kinetic effects appeared as a
correction proportional to (h̄k2/2me)2 in all of the electromag-
netic and electrostatic dielectric functions.

(2) Further, in the extreme degenerate case, the quantum
mechanical correction due to the Fermi-Dirac distribution was
seen to be proportional to v2

F , and its thermal correction was
such that its coefficient is modified to include a small term
proportional to (vth/vF )4.

(3) We obtained the dispersion relations numerically for
a set of exemplary parameters of vF = 0.1, vth = 0.07c, and
ωce/ωpe = 0.05. Whereas the results of the upper branch of
the R wave and the L wave were similar to those of the
classical dispersion relations, with only minor corrections,
the lower branch of the R wave showed significant damping
at short wavelengths and became ill-defined, as in the zero
temperature case. Anomalous dispersion was not seen in this
rather high temperature case.

(4) Quantum effects seemed to be significant only for
vth/vF � 0.2 for the set of exemplary parameters of vF =
0.1c and ωce/ωpe = 0.05, with qualitative changes in the

FIG. 3. Change in the anomalous dispersion region according to
the values of h̄ for vF = 0.1c, vth = 0, and ωce/ωpe = 0.05. The h̄
values in the figure are normalized by the true Planck constant.
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characteristics of the dispersion relations. With the classi-
cal Vlasov equation, a broad single anomalous dispersion
region developed at low temperature due to the Fermi-
Dirac distribution, whereas it was bisected into two anoma-
lous dispersion regions, separated by the region of normal
dispersion when the quantum Vlasov equation was used
instead.
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