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Mitigation of multispecies Weibel instability in a finite non-neutral magnetized beam-plasma system
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Compressing and charge neutralization of the heavy-ion beam in an inertial fusion reactor are considered as
pivotal processes for increasing the energy gain. For this purpose, the ion beam is usually transported through
the plasma channel so that multispecies Weibel instability can grow in this system. Recently, a small solenoidal
magnetic field has been added to this method to have additional control of these processes. On the other hand,
charge and current may not be completely neutralized in this transport; as a result, the fractional charge and
current neutralization can affect the growth rate of this instability. In this work, the dispersion equation has been
obtained in cylindrical, cold, magnetized, non-neutral plasma in the macroscopic fluid frame. Numerical results
show that if the electron cyclotron frequency of the background plasma normalized by plasma frequency is larger
than the ion beam velocity normalized by the speed of light, as well as the current fraction being smaller than
1/2, the eigenmodes of multispecies Weibel instability can be completely stabilized. Moreover, these results are
valid when the percent deviation from the charge-neutral state is positive. In the negative regime of percent
deviation, the instability increases drastically so that the system can be completely unstable only for more than
2%. Therefore, selecting the radius of the ion beam smaller than the electron skin depth of the plasma and the
beam pulse duration much longer than the plasma oscillation time are proposed for quenching of this instability.
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I. INTRODUCTION

Neutralization of the ion beam charge and current states
by the background plasma is an important issue in broad
research areas which involves the transport of fast particles
in plasma, especially in astrophysics [1–4], accelerators [4,5],
and inertial confinement fusion [6–9]. The successful trans-
port and focusing of the relativistic ion beam in the inertial
fusion reactor core on the submillimeter-sized target is a
challenging task. It is usually difficult to reduce the focal spot
of the incident ion such as lithium, potassium, or cesium from
several centimeters to a few millimeters [10,11]. The latest
proposed technique to tackle this problem has been applied
in the Neutralized Drift Compression eXperiment (NDCX)
project at the collaborative program of LBNL, LLNL, and
PPPL. In this project, an ion beam with an initial particle
density of 1010 − 1014 cm−3 was injected into a cylindrical
waveguide that previously was filled by a cold, collisionless
plasma having the temperature 1–10 eV [12,13]. In this
process, the density and the temperature of the beam reach
100 times the initial value, while the radius of the beam has
decreased from a few centimeters to several millimeters [14].
Recently, the application of a solenoidal magnetic field in a
more advanced project, NDCX-II, provides additional control
on the focusing of the ion beam. Here the magnetized plasma
responses to the injection of the intense ion beam excite
the micro-instabilities such as multispecies two-stream and
Weibel instabilities [15–18]. Moreover, the Whistler instabil-
ity and helicon waves may grow in this medium, provided
that ωce/ωe � 2 βb, where ωce, ωe, and βb are the cyclotron
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frequency, plasma electron frequency, and ion beam velocity
to the speed of light, respectively [19].

This research has been focused on the weak magnetic field
(ωce/ωe � 2 βb); consequently, there are no Whistler and heli-
con waves in this medium. However, there still exists concern
about the linear growth rate of the multispecies two-stream
and Weibel instabilities in the non-neutral magnetized plasma.
In most cases, the two-stream instability exhibits a much faster
growth rate than the Weibel instability; however, it finally
reduces the beam quality by pinching [20]. An overview of
multispecies Weibel instability in the absence of the external
magnetic field may be found in Ref. [15]. There, by using
the fluid model, the growth rate of this unstable mode in the
finite neutral state was discussed, and for the nonconstructive
situation of the system, the optimum lengths of the plasma
channel were also derived. Moreover, other studies on the
magnetized infinite plasma in the neutral state, especially
Ref. [18] on the NDCX project, have confirmed that the axial
external magnetic field can moderate the growth rate of the
Weibel instability [21,22].

There is some evidence that charge and current states in
the beam-plasma system may deviate from the neutral state.
The electron response time to the injection of the ion beam
is estimated with the electron plasma frequency (Tresponse =
2π/ωpe) [23]. So, if the pulse duration of the incident ion
beam is smaller than the response time, the ion beam can
experience the charge and current non-neutrality during the
compression stage. The application of a small magnetic field
of ∼100 G may destabilize the beam neutralization. More-
over, it has been pointed out that the axial magnetic field
satisfying the condition of ωce/ωe � βb strongly affects the
degrees of charge and current neutralization [24,25]. In a non-
magnetized plasma, for a thin beam (Zbnb � np), the plasma
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is assumed to be charged quasineutralized, where nb, Zb, and
np are density and charge of the beam and density of the
plasma, respectively. Consequently, the beam-plasma system
experiences a slight deviation from the fully charge-neutral
state. Moreover, if the beam radius is larger than the electron
skin depth of the plasma (rb � c/ωe), the neutralized current
state may be established. However, it has been proved that the
current state must be non-neutral in the opposite region (rb �
c/ωe) [26,27]. In previous studies, it was shown that small
deviations in charge and current neutralization may affect the
growth rate. However, the arbitrary level of the non-neutral
beam-plasma system immersed in the external magnetic field
has not been addressed analytically so far.

To get a deeper insight into the stable transport in the
real beam-plasma system, it is necessary to generalize our
previous formulation to include the condition of the charge
and current non-neutrality. So any modification relative to
the neutral state may shift the key physical parameters, and
thus it proves the sensitivity of the Weibel instability mode
to non-neutrality conditions. Because of the higher inertia,
the rotation of ion species around the magnetic field may
be ignored. Moreover, the induced axial magnetic field by
the electron return current is small compared to the external
magnetic field [28].

Here we have considered a mono-energetic cesium beam
without initial rotation, which carries 1–50 GeV energy in an
argon plasma. Then the growth rate of the multispecies Weibel
instability for the non-neutral finite ion beam-plasma system
at the different magnetic fields strength has been examined.
Finally, using the optimum parameters of the system, forbid-
den parameters to mitigate this instability are determined. For
this purpose, in Sec. II the beam-plasma dispersion equation
is extracted in the fluid model using the laws of mass and mo-
mentum conservations. In Sec. III we first solve numerically
this equation and then evaluate the effects of non-neutrality
and solenoid magnetic field strength on the growth rate of
multispecies Weibel instability. Finally, we will discuss and
compare them with the relevant studies.

II. MACROSCOPIC FLUID MODEL AND
EIGENVALUE EQUATION

Non-neutrality of the plasma and application of the exter-
nal magnetic field can lead to the rotation of the beam-plasma
components. Moreover, plasma particles can rotate in a non-
neutral plasma even in the absence of the external magnetic
field [29]. Hence, taking particle rotation into account is
inevitable in non-neutral plasma. Fortunately, one can neglect
the rotational effects of the ions due to their high inertia,
while rotation of the electrons can have significant effects on
the growth of the multispecies Weibel instability. For adding
the rotation of the beam-plasma components to the dispersion
equation, first, the equilibrium force balance equation of the
particles is written, and then the eigenvalue equation of the
system is derived.

A. Equilibrium force balance equation

In this section, before proceeding to the eigenvalue equa-
tion, the equilibrium force balance equation is investigated for

FIG. 1. Schematic of a cylindrical non-neutral plasma column
confined radially by an applied magnetic field B0 ez. The lack of equi-
librium charge neutrality produces a radial self-electric field Er (r)er ,
and the plasma current in the axial direction produces an azimuthal
self-magnetic field Bs

θ eθ . The azimuthal current associated with the
equilibrium rotation of the plasma components generally produces
a diamagnetic contribution Bs

z(r)ez to the total axial magnetic field
B(r) = B0 + Bs

z(r) [15,24].

a heavy ion beam without initial rotation that is injected into
a cold, multicomponent, non-neutral plasma column aligned
parallel to a uniform applied magnetic field B0 ez in Fig. 1.
This investigation has been done in steady state (∂/∂t = 0)
and cylindrical symmetry (∂/∂θ = 0). The results of this
section are useful for the macroscopic fluid description of the
magnetized beam-plasma system.

As shown in Fig. 1, as soon as the ion beam enters the
plasma, a radial electric field and an azimuthal magnetic
field are induced, which attempt to decay and compress the
ion beam, respectively. However, the radial force is always
focusing, because the electron flow velocity in the return
current is always smaller than the beam velocity, βe � βb [30].
Moreover, the solenoidal magnetic field can change the radial
force from focusing to defocusing in ωce/ωe � βb because the
radial electric field grows faster than the azimuthal magnetic
field [23]. Nevertheless, it has been assumed that the radial
force balance would happen for a component of the plasma in
this work. This balance on the jth component fluid element in
the weak region of the solenoid magnetic field is given by

γjmj v
2
θ j

r
er = qj

{
E s

r (r) er + βθ j
[
B0 + Bs

z(r)
]
er−βzj Bs

θ (r) er
}
.

(1)

In the above relation, qj is the electric charge of the particle,
mj is mass of the particle, Bs

z(r) is the axial induced magnetic
field, and vθ j is the azimuthal velocity of the jth particle.
Moreover, βθ j and βzj are the azimuthal and axial velocities
for jth particle normalized by the speed of light, respectively,
and er, eθ , and ez are the radial, azimuthal, and axial unit
vectors, respectively. This induced electromagnetic field can
be obtained from Maxwell’s equations:

∇ × Bs(r) =
∑

j=i,b,e

4πqjnj(r)(βzj ez + βθ j eθ ), (2)

∇ · Es(r) =
∑

j=i,b,e

4πqjnj(r). (3)

In the above equations, nj(r) is the density of the jth parti-
cle in the plasma. For simplicity, the density is assumed con-
stant for every component. The axial velocity of the particles
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is allowed to be relativistic, while the azimuthal velocity of
particles has been considered nonrelativistic [(vθ j/c)2 � 1].
Therefore, the axial induced magnetic field can be neglected
|Bs

z| � |B0|. The above assumptions and induced electro-
magnetic fields from Eqs. (2) and (3) simplify Eq. (1) as
follows:

ω2
rj + εj ωcj ωrj +

∑
k=i,b,e

2πqjqknk

γj mj
(1 − βjβk ) = 0,

r ωrj = vθ j(r), ωcj = qj B0

γj mj c
,

γj = (
1 − β2

zj − β2
θ j

)−1/2
β2

zj � β2
θ j. (4)

Here ωrj is the angular velocity of particles at r, ωcj is the
cyclotron frequency, γj is the Lorentz factor, and εj denotes the
sign of qj. Equation (4) plays an important role in simplifying
the eigenvalue equation.

B. Fluid model

In the following analysis of the macroscopic fluid model,
using the linear continuity equation and the momentum con-
servation equations in three dimensions in the cylindrical
coordinates, the eigenvalue equation of the system is begun:

∂

∂t
nj(x,t ) + ∇ · [nj(x,t )vj(x,t )] = 0, (5)

(
∂

∂t
+ vj(x,t ) · ∇

)
pj(x,t ) = qj

[
E(x,t ) + vj(x,t ) × B(x,t )

c

]
.

(6)

In these equations, system quantities depend only on the
radial coordinate. The equations can be written for the ion
beams and background plasmas commonly used in NDCX.
However, throughout the paper, the cesium ion beam 133Cs+

and argon plasma 40Ar+ have been applied. Since the ion
beam energy is in the range of 1–50 GeV, the equations are
written in the relativistic form.

Although the density and temperature of the ion beam
increase after compression in the channel, equations have
been obtained for the equilibrium beam radius. Moreover,
density and temperature have been assumed radially uniform
and cold; as a result, the electron pressure tensor force on the
beam body can be neglected: ∇P(r) = [−∇n(r)kT⊥ = 0].

Polarization of electric and magnetic perturbation waves
forms a multispecies Weibel instability; therefore, if the elec-

tric and magnetic field perturbation is given as δE (r, t ) =
δEr (r)e−iωter + δEz(r)e−iωtez and δB(r, t ) = δBθ (r)e−iωteθ ,
axial and radial Weibel modes can be propagated in the
medium. As shown in Fig. 1, the polarization of azimuthal
magnetic field perturbation with the radial electric field per-
turbation forms the axial propagation Weibel modes. More-
over, the polarization of azimuthal magnetic field perturbation
with the axial electric field perturbation generates the radial
propagation of this instability. Note that polarization of the
radial electric field perturbation waves with axial magnetic
perturbation waves or polarization of the radial magnetic field
perturbation waves with axial electric field perturbation waves
forms the azimuthal component of this instability. Fortunately,
the radial and axial magnetic field perturbations are much
lower than the azimuthal magnetic field due to the nonrel-
ativistic azimuthal velocity of the particles. Therefore, this
component of the instability is smaller than others, and the
system can be assumed azimuthally symmetric as stated at the
beginning of the Sec. II A. Also, the density and momentum
perturbations of a fluid element of species j are considered
as δnj(r, t ) = δnj(r)e−iωt and δpj(r, t ) = δpj(r)e−iωt , respec-
tively. Due to these conditions and the use of Eqs. (5) and (6),
the linearized fluid model equations are written as follows:

iω δnj(r) = 1

r

∂

∂r
r[nj δvj(r)], (7)

− iω δprj − ωrj(δpθ j + mj γj δvθ j ) − mj γj δvθ j ωcj

= −qj

[
v0z j δBs

θ (r)

c

]
, (8)

−iω δpθ j − ωrj(δprj + mj γj δvrj ) − mj γj δvrj ωcj = 0, (9)

−iω δpzj = qj δEz(r). (10)

The second step in calculating an eigenvalue equation is
the use of the Maxwell equations:

∇ × E = −1

c

∂B
∂t

, (11)

∇ × B = 4π

c
j(r, t ) + 1

c

∂E
∂t

. (12)

By combining Eqs. (4) and (7)–(12), the system’s eigen-
value equation is obtained as follows:

1

r

∂

∂r
r

⎧⎪⎨
⎪⎩1 +

∑
j=b,e,i

ω2
pj β

2
j

ω2 − (ωcj + 2 ωrj )2 +
[∑

j=b,e,i
ω2

pj βj

ω2−(ωcj+2 ωrj )2

]2

1 − ∑
j=b,e,i

ω2
pj β

2
j

ω2−(ωcj+2 ωrj )2

⎫⎪⎬
⎪⎭

∂

∂r
δEz +

⎧⎨
⎩

ω2

c2
−

∑
j=b,e,i

ω2
pj

γ 2
j c2

⎫⎬
⎭ δEz = 0. (13)

In this equation, ωpj = (4πq2
jnj/γjmj )1/2 is independent of the radius, leading to a Bessel differential equation. For simplicity,

the following variables are defined for solving this equation for inside and outside of the beam. It is important to note that the
beam ions and background electrons move axially in the beam-plasma system, but the background electrons and ions are axially

053206-3



YAGHOUBI, GHASEMIZAD, AND KHOSHBINFAR PHYSICAL REVIEW E 101, 053206 (2020)

motionless in space between the beam and waveguide:

T 2
i =

⎛
⎝ω2

c2
−

∑
j=b,e,i

ω2
pj

γ 2
j c2

⎞
⎠
⎧⎪⎨
⎪⎩1 +

∑
j=b,e,i

ω2
pj β

2
j

ω2 − (ωcj + 2 ωrj )2 +
[∑

j=b,e,i
ω2

pj βj

ω2−(ωcj+2 ωrj )2

]2

1 − ∑
j=b,e,i

ω2
pj β

2
j

ω2−(ωcj+2 ωrj )2

⎫⎪⎬
⎪⎭

−1

, 0 � r � rb,

T 2
O = −

⎛
⎝ω2

c2
−

∑
j=e,i

ω2
pj

γ 2
j c2

⎞
⎠ , rb � r � rw. (14)

Ti
2 and TO

2 in Eq. (14) indicate inside and outside of the ion beam, respectively, and rb and rw are the radius of the ion beam
and waveguide, respectively. By inserting Eq. (14) in Eq. (13), it can be easily recognized that Eqs. (15) and (16) are Bessel’s
equations of order zero:

1

r

∂

∂r
r

∂

∂r
δE I

z + T 2
i δE I

z = 0, 0 � r � rb, (15)

1

r

∂

∂r
r

∂

∂r
δE II

z − T 2
O δE II

z = 0, rb � r � rw. (16)

The solutions of the Eqs. (15) and (16) must be regular at r = 0, continuous at r = rb, and vanish at the conducting wall.
These solutions can be obtained as follows:

δE I
z (r) = A J0(Ti r), 0 � r � rb, (17)

δE II
z (r) = A J0(Ti rb)

K0(TOrw)I0(TOr) − K0(TOr)I0(TOrw)

K0(TOrw)I0(TOrb) − K0(TOrb)I0(TOrw)
, rb � r � rw, (18)

where A is a constant, J0(Tir) is the ordinary Bessel function of the first kind of order zero, I0(TOr) is the modified Bessel
function of the first kind of order zero, and K0(TOr) is the modified Bessel function of the second kind of order zero. The only
remaining boundary condition for the continuity of the tangential electric field perturbation, δEz(r), from Eqs. (17) and (18) in
r = rb, gives the dispersion relation:
⎧⎪⎨
⎪⎩1+

∑
j=b,e,i

ω2
pj β

2
j

ω2−(ωcj+2 ωrj )2 +
[∑

j=b,e,i
ω2

pj βj

ω2−(ωcj+2 ωrj )2

]2

1−∑
j=b,e,i

ω2
pj β

2
j

ω2−(ωcj+2 ωrj )2

⎫⎪⎬
⎪⎭(−J1(Ti rb))Ti = J0(Ti rb)TO

[
K0(TOrw)I1(TOr) + K1(TOr)I0(TOrw)

K0(TOrw)I0(TOrb) − K0(TOrb)I0(TOrw)

]
,

(19)

where J1(Tir) is the Bessel function of the first kind of the first order, and I1(TOr) and K1(TOr) are modified Bessel functions of
the first and second kind of the first order, respectively. Equation (19) constitutes a closed transcendental dispersion relation that
determines the complex oscillation frequency for the electromagnetic perturbations in the magnetized plasma.

For the case where the beam-plasma system extends to the conducting wall (rb = rw), the solution of Eq. (19) is simplified
to J (Tirb) = 0. In this relation, pn0 is the nth zero of J (pn0) = 0 and n = 1, 2, 3, …. Therefore, this transcendental Eq. (19) is
simplified to this polynomial (T 2

i r2
b = p2

n0) :

⎛
⎝ω2

c2
−

∑
j=b,e,i

ω2
pj

γ 2
j c2

⎞
⎠
⎧⎪⎨
⎪⎩1 +

∑
j=b,e,i

ω2
pj β

2
j

ω2 − (ωcj + 2 ωrj )2 +
[∑

j=b,e,i
ω2

pj βj

ω2−(ωcj+2 ωrj )2

]2

1 − ∑
j=b,e,i

ω2
pj β

2
j

ω2−(ωcj+2 ωrj )2

⎫⎪⎬
⎪⎭

−1

= p2
n0

r2
b

. (20)

The rotation term, (ωcj + 2ωrj )2, has been added to Eq. (20) due to the external magnetic field and non-neutrality charge and
current in this system. If beam-plasma is assumed neutralized and not magnetized, Eq. (20) is simplified to Eq. (29) in Ref. [15].
ωrj can be eliminated from Eq. (20) using Eq. (4):

ω±
rj = −εjωci

2

⎧⎪⎨
⎪⎩1 ±

⎡
⎣1 −

∑
k=e,b,i

8πqjqknk

γjmj ω
2
cj

(1 − βjβk )

⎤
⎦

1
2

⎫⎪⎬
⎪⎭. (21)

Variables of this equation have been already defined in Eq. (4). Equation (21) can be written as follows:

(2ωrj + ωcj )
2 = (ω+

rj − ω−
rj )2 =

⎡
⎣ω2

cj −
∑

k=i,e,b

8πqjqknk

γj mj

(
1 − βjβk

)
⎤
⎦. (22)
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For the non-neutral beam-plasma system, fractional charge and current neutralization can be defined as in Eq. (23), where
ions are axially motionless in fractional current neutralization:

f = ne − ni

nb
, fm = neβe

nb βb
, α = nb

ni
. (23)

In Eq. (23), f , fm, and α are the fractional charge neutralization, fractional current neutralization, and beam-to-plasma density
ratio, respectively. Note that f = 1 corresponds to

∑
nkqk = 0 and E s

r (r) = 0, whereas fm = 1 corresponds to
∑

nkβkqk = 0
and Bs

θ (r) = 0. An interesting case for researchers is the neutral state. For example, in this research, the neutral state leads to
two angular frequency modes for ion beam, which are ω−

rb = −ωcb, ω+
rb = 0. For uniform density, inserting Eq. (23) into Eq. (22)

readily gives Eqs. (24)–(26) for the beam ions and the background plasma electrons, and the ions as follows:

(2ωrb + ωcb)2 = {
ω2

cb − 2ω2
pb

[
(1 − f ) − β2

b (1 − fm )
]}

, (24)

(2ωre + ωce )2 =
(

ω2
ce − 2ω2

pe

{
α( f − 1)

( f α + 1)
−

[
αβb fm

( f α + 1)

](
fm − 1

fm

)})
, (25)

(2ωri + ωci )
2 =

[
ω2

ci − 2ω2
piα(1 − f )

]
. (26)

The term proportional to (1 − f ) in Eq. (24) is associated with electric self-field effects, and the ion beam is defocusing
whenever f < 1. On the other hand, the term proportional to −βb

2(1 − fm ) is associated with magnetic self-field effects,
and the ion beam is focusing whenever fm < 1. The net self-field contribution to the beam rotation is focusing, provided that
βb

2(1 − fm ) > (1 − f ). Whenever this condition is satisfied, the rotation of the ion beam exists even in the absence of an axial
magnetic field [29]. This condition is satisfied in this paper.

The dimensionless variables for solution Eq. (20) are defined as follows. In this equation, Ab and Ai denote the atomic mass
number of beam and background ions, respectively:

x = ω

ωpe
, Z = rb

c/ωpe
, � = ωce

ωpe
, α = nb

ni
, R = me

mH
= 1

1836
, Ab = mb

mH
, Ai = mi

mH
, γj = 1√

1 − β2
j

, βj = vj

c
j = e, b,

(27)

A = α2βb f 2
m

(1 + α f )2
[
x2 − (

�2 − 2
{

α( f −1)
( f α+1) − [

αβb fm

( f α+1)

]2( fm−1
fm

)})] ,

B =
(

γe

γb

)
R α βb

Ab(1 + α f )
{
x2 − (

R2

A2
b

(
γe

γb

)2
�2 − 2Rα

Ab(1+α f )

(
γe

γb

)[
(1 − f ) − β2

b (1 − fm )
])} ,

C = γeR α

Ai(1 + α f )
[
x2 − (

R2

A2
i
γe

2 �2 − 2Rα(1− f )
Ai (1+α f ) γe

)] ,

1 + βb(A + B) + (A + B)2

(1 − A − B − C)
+ Z2

γe
2 p2

n0

+ R Z2

Ai (1 + α f ) p2
n0

+ R α Z2

γb
2 (1 + α f ) Ab p2

n0

− x2Z2

p2
n0

= 0. (28)

In the neutral state in the absence of the external magnetic field, the growth rate of small mode numbers in a small radius
of the beam (rb < rw) is somewhat larger than the filled waveguide (rb = rw) [15]. The results of this study in the magnetized
plasma could confirm it in the next section; therefore, Eq. (28) could be trusted as a simple equation for this system.

For very large mode number (n → +∞, pn,0 → +∞) or a very small wavelength (λ → 0) of instability, in the nonmagne-
tized (� = 0) neutral plasma ( f = fm = 1), and nonrelativistic regime (γb → 1), Eq. (28) can be simplified as follows:

1 + α2β2

(1 + α)2x2
+ R α β2

Ab(1 + α)x2
+

[ R α β

Ab(1+α)(x2 ) + α β

(1+α) x2

]2

[
1 − R α

Ab(1+α)x2 − 1
x2 − R α

Ai (1+α)x2

] = 0. (29)

Since x is considered very small with attention to the numerical results in the next section (|x| ∼ 10−4), the growth rate of
multispecies Weibel instability can be obtained from Eq. (29):

x = Im(ω)

ωe
	

√√√√ α2β2

(1 + α)2 + R α β2

Ab(1 + α)
−

[ R α β

Ab(1+α) + α β

(1+α)

]2

[
R α

Ab(1+α) + 1 + R α
Ai (1+α)

] . (30)
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In Eq. (30), the variables are the same as defined in
Eq. (27). For instance, for the cesium and potassium beams,
with α = β = 0.2 in the argon background, the growth rate of
instability may be obtained: xcs

+ = 1.46 × 10−4 and xk
+ =

2.59 × 10−4. Although Eq. (30) cannot show non-neutrality
and axial magnetic field effects, it is a useful approximation
for calculating the growth rate of multispecies Weibel instabil-
ity because it can be used as the initial guess for the numerical
solution of Eq. (19).

III. NUMERICAL RESULTS AND DISCUSSION

As mentioned earlier, for optimum compression and igni-
tion of the fusion targets, the ion beam not only must be neu-
tralized but also must be compressed to the submillimeter ra-
dius. For these purposes, the heavy ion is transported through
the plasma column. Recently the weak solenoid magnetic field
(ωce/ωe � βb) has been used for the improvement of it [23].
Unfortunately, multispecies Weibel instability may happen
when the ion beam is transported through the magnetized
plasma. Charge and current in this system are usually assumed
to be neutral, but this neutralization is almost impossible due
to the mentioned reasons in Sec. I.

For considering the non-neutrality effect on multispecies-
Weibel instability in magnetized plasma, the cesium beam
with 1–50 GeV energy without initial rotation has been in-
jected into the plasma. By combining the linear continuity
equation and the momentum conservation equations in three
dimensions in the cylindrical coordinates, the dispersion equa-
tion of this system was obtained in Eq. (19). This full disper-
sion equation was simplified to a polynomial in Eq. (28) in
the beam-plasma-filled waveguide state. Numerical solution
of Eqs. (19) and (28) can clarify the effects of the non-neutral
charge and current and axial magnetic field on the growth
rate of the instability. Note that only slow-wave solutions
[Im(ω) > 0] that reflect the propagation of the Weibel-like
modes are considered.

FIG. 2. Variation of the growth rate of multispecies Weibel insta-
bility for a 133Cs+ beam in 40Ar+ plasma for different axial magnetic
field strength (�) and the fractional current neutralization ( fm).

Although it is almost impossible to have charge neu-
trality, it is commonly found in more investigations. If the
injected ion beam pulse duration (τb) is much smaller than the
background electron oscillation time (τb � 2π/ωe), charge
neutrality of the system is usually assumed more than 99%.
On the other hand, charge neutrality is very sensitive to the
external magnetic field strength. However, it has been proved
that the effect of the magnetic field on charge neutrality can
be neglected in the weak magnetic field region (ωce/ωe � βb)
[27]. Moreover, a small degree of charge non-neutrality may
drastically increase the growth rate of this instability.

In Fig. 2 using the above assumptions would give charge
non-neutrality of the system, but it is noted that the current
is non-neutral because the beam radius is smaller than the
electron skin depth of the plasma (Z = 1/2). However, the
growth rate has been obtained in the fully neutral system
( f = fm = 1) for the comparison.

Figures 2 and 3 illustrate the growth rate of the multi-
species Weibel instability for the cesium ion beam with energy
of 2.6 GeV (β = 0.205) in a relative density α = 0.2 in the
beam-plasma-filled waveguide state (rb = rw). This assess-
ment has been done for the charge-neutral state in Fig. 2 and
the current-neutral state in Fig. 3. The effects of the external
magnetic field and the fractional current neutralization have
been shown in Fig. 2 in four states. In case (1), the system
is neutral in current and nonmagnetized ( fm = 1, � = 0).
In this state, the growth rate is more than in the others.
In case (2) ( fm = 1, � = 0.2), the external magnetic field
has been added to the system. Case (3) ( fm = 0.5, � = 0)
shows that the fractional current neutralization reduces insta-
bility in nonmagnetized plasma more than does case (2). In
case (4) the hybrid effect of the external magnetic field and
the current fraction ( fm = 0.5, � = 0.2) reduce instability
severely. Hence the two first eigenmodes have been com-
pletely stabilized [Im(ω) = 0], and instability has decreased
almost 13 times relative to case (1) for other modes (1.78 ×
10−4/1.33 × 10−5 ∼ 13.38). It should be emphasized that all

FIG. 3. Variation of the growth rate of multispecies Weibel insta-
bility for a 133Cs+ beam in 40Ar+ plasma for different axial magnetic
field strength (�) and the fractional charge neutralization ( f ).
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eigenmodes are completely stabilized due to a slight reduction
in the current fraction relative to case (4). This point has been
checked for fm = 0.49.

In Fig. 3 four different states have been analyzed. The
effects of the fractional charge neutralization on the instability
in the magnetized plasma also have been tested. Since the
current in the beam-plasma system is neutral ( fm = 1), it has
been assumed that the beam radius is larger than the electron
skin depth of the plasma (Z = 3), unlike Fig. 2. In case (1),
there is no external magnetic field (� = 0), and plasma is
fully neutral ( fm = f = 1). This case is similar to case (1) in
Fig. 2. In case (2), the existence of the axial magnetic field
reduces the instability from 1.77 × 10−4 to 1.6 × 10−4. In
case (3), the system has deviated 10% from the full neutral
state ( f = 0.9) in nonmagnetized plasma (� = 0); as a result,
the growth rate of instability increases almost 10 times relative
to previous cases. If the axial magnetic field (� = 0.2) is
added to the background plasma, case (3) is converted to
case (4). Due to this change, the growth rate of the instability
decreases from 9.43 × 10−4 to 6.39 × 10−4. Furthermore, the
ion beam can be defocused in this state because of (1 − f ) �
β2(1 − fm ). Finally, note that Figs. 2 and 3 show localized
filaments that pinch the ion beam if they are thinner than the
skin depth of plasma. The physics of large Weibel modes is
interesting and can be elucidated with attention to filament
size. As the instability grows, the filaments with a typical
length scale σ ∼ rb/pn,0 carry a current I ∼ qnbβbcσ 2. This
current produces a magnetic field which pinches the ion beam.
In the cold theory or this work, the pinching force has a
maximum value that is approximately constant in large Weibel
modes; consequently, the growth rate of instability in high
mode numbers or small filaments can be saturated [31]. In the
absence of the temperature, pinching continues for any width
of filaments. However, if the thermal effect is added to this
system, filaments are expanded; as a result, the pinching force
must exceed the pressure force for the instability to grow.

Figure 4 shows the eigenfunction of δEz(r) that has been
normalized by δEz(0) for some eigenmodes. Note that the
growth rates, obtained by solving Eq. (19), have been substi-
tuted into Eqs. (17) and (18) when the ion beam has a radius
smaller than the waveguide radius. For beam-plasma-filled
waveguide, the instability wave is cut off at the waveguide
wall. This case can be seen in n = 2, rb/rw = 1. For n = 4
and Z = 3, if the beam radius is larger than the skin depth
of the plasma, the eigenfunction descends according to the
geometric factor between the beam and waveguide space. This
factor can be defined from Eq. (18) as follows:

gl = K0(TOrw)I0(TOr) − K0(TOr)I0(TOrw)

K0(TOrw)I0(TOrb) − K0(TOrb)I0(TOrw)
. (31)

However, for n = 4 and Z = 1/3, eigenfunction is cut off
in r = rb, and instability may not propagate outside the beam.
It should be emphasized that the current is not neutral for
fm = 1/3 because the beam radius is smaller than the skin
depth of the plasma.

Figure 2 showed the decreasing effect of current neutrality
on the instability growth rate. Hence in Figs. 5 and 6, for all
variations of the current fraction at different intensities of the
external magnetic field (� = 0, 0.07, 0.2) for eigenmodes in

FIG. 4. Eigenfunction of δEz(r) relative to δEz(0) versus the
ratio of the beam radius to the waveguide radius in αCs

+ = βCs
+ =

0.2, f = fm = 1 for all states, except for Z = 1/3, where fm has been
replaced by 1/3.

n = 1 and n → +∞, this point has been checked. Figure 5
presents the results for n = 1. In the absence of the external
magnetic field (� = 0), there is instability for all values of
the current fraction, but external magnetic field (� = 0.07,
0.2) would create forbidden values (0 � fm � 0.8) that the
instability cannot propagate in this system [Im(ω) = 0]. It is
important to note that the maximum region has been obtained
for � � 0.2. For this intensity of the magnetic field, � �
0.2, this region is constant. If the system deviates only 2%
from the charge neutrality, this region decreases to (0 � fm �
0.2). For convenience, the percent deviation from the charge-
neutral state has been defined as follows: � f = ( f − 1) ×
100%. For example, � f = −2% is equivalent to f = 0.98 in
Fig. 5. This means that the density difference of background

FIG. 5. Weibel instability growth rate for various fractional cur-
rent neutralization for eigenmode n = 1, f = 1, and α = β = 0.2.
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FIG. 6. Weibel instability growth rate for various fractional cur-
rent neutralization for eigenmodes n � 5, f = 1, and α = β = 0.2.

electrons and ions is smaller than the ion beam density; hence
background electrons cannot neutralize the ion beam charge.
Consequently, the radial electric field can be amplified, and
the growth rate of instability increases. In the opposite region
(� f � 0), the electron population can completely neutral-
ize the ion beam charge; as a result, multispecies Weibel
instability must be completely stabilized. In Figs. 5 and 6,
� f > 0 has not been considered because instability is not
virulent in this region. Also, the percent deviation from the
current neutrality has been applied in Fig. 7. This parameter
can be defined as follows: � fm = ( fm − 1) × 100%. For this
parameter, there is no positive state because the return current
of electrons is always smaller than the beam current [30]. Note
that f and fm have been defined in Eq. (23).

FIG. 7. Comparison of the growth rate of Weibel instability in a
neutral and non-neutral magnetized plasma in the fluid model with
Ref. [18] for α = 0.2, β = 0.125, rbωe/c = 3, and n = 7.

Figure 6 illustrates other radial modes’ behavior. If the
radial mode numbers are increased to large values (n →
+∞) in the magnetized plasma, the same result is obtained
for other modes that are larger than five (n � 5). Strength
of the external magnetic field from the condition � � βb

can be calculated as B0 � 320.7 × 10−5 γbβb
√

ne G. In this
relation, ne, βb, and γb have been defined in Sec. II A and
Eq. (27). For instance, in a system with the properties of
Fig. 6 and background plasma density ne = 1010 cm−3, the
external magnetic field intensity must be larger than 64.14 G.
It should be emphasized that increasing density and velocity
of the ion beam increase the growth rate of the instability, but
the forbidden values remain unchanged. As it is seen, a small
deviation from charge neutrality (� f = −2%) can eliminate
the forbidden values for these modes. With these interpreta-
tions, the multispecies Weibel instability can be completely
stabilized if the electron cyclotron frequency normalized by
the plasma electrons frequency is larger than beam velocity
normalized by the speed of light (� � βb). Also, fractional
current neutralization must be smaller than 1/2( fm � 0.5).
Of course, these conditions are valid when the system is
charge-neutral ( f = 1).

For charge neutrality of the system, the beam pulse dura-
tion (τb) must be selected longer than the oscillation period of
the plasma electrons (τb � 2π/ωe). Moreover, for minimiz-
ing instability, the current must be non-neutral. Therefore, the
beam radius must be selected smaller than the electron skin
depth of the background plasma (rb � c/ωe).

Figure 7 compares the growth rate of this instability in
the macroscopic fluid model with Fig. 4 in Ref. [18]. In
this reference, the solution of the Eq. (9) gives the growth
rate versus β/� in ck⊥/ωe = 20. k⊥, c, and ωe are verti-
cal wave number of the instability, the speed of light, and
plasma electron frequency, respectively. In this study, for
further adaption, the parameters have been chosen the same
as Ref. [18] except for the wave number. We have purposely
selected k⊥ = 20 ωe/c in Ref. [18] and pn,0/rb = ωe/3c for
n = 7 in the fluid model because of separating these diagrams.
Therefore, pn,0/rb can be defined as an effective wave number
of the instability (k⊥ = pn,0/rb). If this equality is established,
two diagrams can be adapted. It should be noted that the
beam ions and the background ions are proton and helium,
respectively. Moreover, the dispersion equation is valid only in
k2c2/ωe

2 � 1 for very small wavelengths in Ref. [18], while
the fluid model considers the entire spectrum of the instability
in magnetized, finite, non-neutral plasma. The effects of in-
creasing and decreasing the charge and current fraction on the
growth rate in the fluid model for a slight deviation (� f =
−0.01%, � fm = −1%) from the neutral state is completely
obvious.

Although instability was investigated in a cold, collision-
less plasma, it should be emphasized that compression of the
beam might increase the temperature of the real system. How-
ever, it can be neglected because the growth rate of this insta-
bility usually decreases at a higher temperature. Moreover, the
beam radius diminishes during transport, but this investigation
has been carried out in a force balance equilibrium in an
arbitrary radius and has not considered the temporal evolution
of the system. Furthermore, the external magnetic field causes
the diamagnetic effect in plasma. Fortunately, it has been
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proved that its effect is not significant; for example, when the
external field strength is set at 900 G, the self-magnetic field
reaches 37 G [28]. Consequently, it is negligible compared to
the external magnetic field.

IV. CONCLUSIONS

To summarize, in the present paper, we have studied
multispecies Weibel instability of the heavy-ion beam in the
cold, non-neutral plasma in the cylindrical waveguide. The
application of a weak axial magnetic field can control the
growth of this instability. The fractional charge and current
neutralization can induce a radial electric field and azimuthal
magnetic field that have an increasing and decreasing effect on
the growth rate of this instability. Moreover, the conducting
wall of the waveguide led to the quantization of the insta-
bility wave. Hence the growth rate was obtained for these
eigenmodes by the solution of the dispersion Eq. (19). This
investigation presents a more general state relative to Ref. [15]
that has considered this instability in the neutral state in the
absence of external magnetic field and Ref. [18] that was
limited to small wavelengths in infinite plasma. Furthermore,
it has been proved that the results of this paper have good
agreement with cited papers in the same regions. Moreover,
findings of Ref. [15] have proposed a constraint on the length
of the waveguide for escaping from instability as follows:
Im(ω)/ωe � vb/L. Here vb and L are the beam velocity and
waveguide length, respectively. This means that the interac-

tion time of the beam with plasma must be smaller than the
time that instability can be dominant in the system, while
our results can release it from this constraint by forbidden
values.

In the initial analysis, simplifying the dispersion equation
led to a good approximation of the growth rate in Eq. (30).
Moreover, numerical results anticipate that if electron cy-
clotron frequency normalized by the plasma frequency is
larger than the velocity of the ion beam normalized by the
speed of light (� � β) and the response current of electrons
is half the ion beam current ( fm = 1/2), multispecies Weibel
instability may not propagate in this medium. Furthermore, to
validate this result, the system must be fully charge-neutral
( f = 1). It is noted that decreasing this fraction relative to
the neutral state ( f = 1) increases the growth rate severely.
Consequently, these achievements can determine the char-
acteristics of the beam-plasma system for avoiding multi-
species Weibel instability. Selecting the beam radius smaller
than the skin depth of the plasma (rb � c/ωe) causes that
charge current not to be neutral ( fm < 1). Furthermore, if the
pulse duration of the ion beam (τb) is selected very longer
than the plasma oscillation time (τb � 2π/ωe), the charge
of the system can be neutralized ( f ∼ 1). In this work, the
temperature and density of the components of the plasma
have been assumed cold and uniform. Hence one can neglect
pressure tensor. The diamagnetic effect in plasma was not so
noticeable because the induced axial magnetic field was so
much smaller than the solenoid magnetic field. Consequently,
these achievements can be reliable.
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