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Gain of electron orbital angular momentum in a direct laser acceleration process
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Three-dimensional “particle in cell” simulations show that a quasistatic magnetic field can be generated in
a plasma irradiated by a linearly polarized Laguerre-Gauss beam with a nonzero orbital angular momentum
(OAM). Perturbative analysis of the electron dynamics in the low intensity limit and detailed numerical analysis
predict a laser to electrons OAM transfer. Plasma electrons gain angular velocity thanks to the dephasing process
induced by the combined action of the ponderomotive force and the laser induced–radial oscillation. Similar to
the “direct laser acceleration,” where Gaussian laser beams transmit part of its axial momentum to electrons,
Laguerre-Gaussian beams transfer a part of their orbital angular momentum to electrons through the dephasing
process.
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I. INTRODUCTION

The recent advent of laser sources carrying orbital angular
momentum in the relativistic intensity regime contribute to
an increasing interest to their interaction with plasma. These
works are motivated by numerous applications such as high-
order harmonic generation with controlled orbital angular
momentum (OAM) [1,2], amplification of twisted laser pulses
via stimulated Raman scattering [3,4] particle acceleration
[5], and magnetic field generation [6–9]. Several numerical
configurations have been proposed to generate a quasistatic
magnetic field. Ali et al. [6] theoretically propose to replace
the usually considered circularly polarized Gaussian beam in
the inverse Faraday effect by a linearly polarized Laguerre-
Gaussian (LG) beam [10]. In their numerical setup, the gener-
ated azimuthal current requires the bremstrahlung process to
trigger the energy transfer from laser to electrons. Shi et al.
[7] numerically demonstrate that the magnetic field can be
generated by plasma waves driven by two copropagating in-
tense twisted lasers. All of these works require an intermediate
process to transfer OAM from laser to electrons. A direct
transfer is studied in Ref. [8], where Hu et al. propose to
irradiate a wire target with a relativistic Laguerre-Gaussian
pulse and, in Ref. [9], where we theoretically and numerically
demonstrate that a wireless solenoid could be produced from
the irradiation of a low dense plasma with radially polarized
LG beams. Beyond all of these works, there is still no answer
on what is the electron dynamics when a homogeneous low
dense plasma is irradiated by relativistic linearly polarized LG
beams. In this simplest possible configuration, does the laser
beam transfer OAM to electrons, and what is the associated
electron OAM distribution?

This work aims to describe this plasma dynamics. First,
in Sec. II, we focus our attention on the dynamics of plasma

electrons experiencing only the action of an OAM laser beam.
We do not consider the influence of the self-consistent fields
generated by the plasma. In Sec. II A, a perturbative approach
is applied to the motion equations for electrons in order
to identify the accelerating processes. It requires analytical
expressions for the electromagnetic field components, which
are computed from an expansion of the laser OAM fields over
the LG basis in Appendix B. The second order approximation
considered in the perturbative analysis is appropriate for the
low intensity regime. It is not sufficient to explain the laser
to plasma OAM transfer observed at high laser intensity. A
detailed numerical analysis of PIC simulations, performed in
Sec. II B, reveals that similar to the “direct laser acceleration”
mechanism [11,12], where Gaussian laser beam transmits a
part of its axial momentum to electrons when a dephasing
process breaks the adiabaticity between the laser pulse and the
electrons, LG beam transfers a part of its OAM to electrons
through the dephasing action of the ponderomotive force
combined with the laser-induced radial oscillation. Finally, we
show in Sec. III that the plasma induced self-consistent fields
reduce the efficiency of the laser to electrons OAM transfer.
However, for the chosen laser and plasma parameters, we
observe the generation of a quasistatic magnetic field, which
survives over more than 50 fs.

II. DYNAMICS OF PLASMA ELECTRONS DRIVEN
BY A LAGUERRE-GAUSS BEAM—NO PLASMA-INDUCED

SELF-CONSISTENT FIELDS

In a first approach, we focus our attention on the dynamics
of electrons in a linearly polarized laser beam carrying an
OAM. We do not consider the effect of plasma-induced self-
consistent fields. This last feature will be analyzed further, in
Sec. III.
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At the focal point x = x f , a linearly polarized OAM laser
beam is defined in the cylindrical coordinates (r, θ, x) with

�E (r, θ, t, x f ) = E0g(t )

(
r

w0

)|l|
e−( r

w0
)2

cos (lθ − ω0t ) �ey,

(1)
with the temporal envelope g(t ) = cos2(π t−t0

τ
) in the time

interval |t − t0| < τ/2, the laser OAM index l , the focal beam
waist w0 equal to 2.5 laser wavelength, the pulse duration τ

equal to n = 6 optical periods (T = 2π/ω0), the central beam
time t0, the laser amplitude E0, and the y-unit vector �ey. In
practical applications, one may consider the laser frequency
ω0 = 2.3 × 1015 s−1 corresponding to the laser wavelength
λ0 = 0.8 μm. In the following, we express the physical quan-
tities in dimensionless units as presented in Appendix A.

A. Analytical development of electron dynamics

The relativistic equations of motion for the electrons are
written in the dimensionless units

ṗr = −Er − vθBx + vxBθ + pθ θ̇ , (2)

ṗθ = −Eθ − vxBr + vrBx − pr θ̇ , (3)

ṗx = −Ex − vrBθ + vθBr, (4)

where pr = γ vr = γ ṙ, pθ = γ vθ = γ rθ̇ , and px = γ vx =
ẋ are the radial, azimuthal, and longitudinal electron mo-

menta, respectively, γ =
√

1 + p2
r + p2

θ + p2
x is the Lorentz

factor, and r, θ, x are the cylindrical coordinates. Here, the
Er, Eθ , Ex, Br, Bθ , and Bx describe only the electromagnetic
field components; no plasma self-consistent fields are consid-
ered:

Er (r, θ, x) = a0 f (r)g(t ) cos [t − lθ − (x − x f )] cos θ, (5)

Eθ (r, θ, x) = −a0 f (r)g(t ) cos [t − lθ − (x − x f )] sin θ, (6)

Ex(r, θ, x) = a0
f (r)

r
g(t )

{[
|l| − 2

(
r

w0

)2]
× cos θ sin [t − lθ − (x − x f )]

+ l sin θ cos [t − lθ − (x − x f )]

}
, (7)

Br (r, θ, x) = −Eθ , (8)

Bθ (r, θ, x) = Er, (9)

Bx(r, θ, x) = a0
f (r)

r
g(t )

{[
|l| − 2

(
r

w0

)2]
× sin θ sin [t − lθ − (x − x f )]

− l cos θ cos [t − lθ − (x − x f )]

}
, (10)

where a0 = eE0
meω0c is the dimensionless laser field amplitude,

me, e are the mass and charge of electron, respectively, c is
the light velocity in vacuum, and f (r) = (r/w0)|l|e−(r/w0 )2

is
the beam radial distribution. The computations of the OAM
laser field components are detailed in Appendix B. Equations
(5)–(10) have been obtained by neglecting the Gouy phase,

its integration over x, and the curvature terms because the
laser-plasma interaction takes place over a longitudinal dis-
placement smaller than the Rayleigh length (|x − x f | < xR).

In a low laser intensity regime, we apply a perturbative
analysis on the equations of motion Eqs. (2)–(4) and calculate
the electron OAM value Lx = r pθ . The perturbative devel-
opment is expressed in powers of a0, such that the physical
quantities are written as X = X (0) + X (1) + X (2) + · · · with
X (i) depending on ai

0, where i denotes the power order. At the
first order, the equation for the electron OAM reads dt L(1)

x =
r0dt p(1)

θ , where r0, θ0, x0 are the electron initial coordinates,
dt p(1)

θ = −Eθ , and dt = d
dt denotes the time derivative. This

results in

L(1)
x (t ) = a0

2
r0 f (r0) sin θ0

×
[

sin(t − φ0) + 1

2(1 + 1
n )

sin

([
1 + 1

n

]
t − φ0

)

+ 1

2(1 − 1
n )

sin

([
1 − 1

n

]
t − φ0

)

−(−1)n 1

n2 − 1
sin φ0

]
, (11)

with n = 6 the number of optical periods in the pulse duration
and φ0 = lθ0 + x0 − x f . By integrating Eq. (11) over the laser
pulse duration and by averaging it over the initial longitudinal
positions, we obtain L(1)

x (nT ) = 0. We conclude that, in the
first order, no laser OAM is transferred to electron.

Thus we compute the electron OAM at the second order.
Its time derivative solves

dt L
(2)
x = r (1)dt p(1)

θ + p(1)
r p(1)

θ + r0dt p(2)
θ , (12)

where dt p(2)
θ is the second order of Eq. (3):

dt p(2)
θ = −dEθ

d�r �r (1) − p(1)
x Br + p(1)

r Bx − p(1)
r p(1)

θ

r0
. (13)

It results in

dt L
(2)
x = r (1)dt p(1)

θ − r0 p(1)
x Br + r0 p(1)

r Bx − r0
dEθ

d�r �r (1), (14)

where the electron momenta and coordinates solve

dt p(1)
r = −Er, dt r

(1) = p(1)
r ,

dt p(1)
θ = −Eθ , dtθ

(1) = p(1)
θ

r0
,

dt p(1)
x = −Ex, dt x

(1) = p(1)
x .

(15)

By including solutions of Eq. (15) (given in Appendix C) in
Eq. (14), and averaging over initial longitudinal positions, we
obtain

L(2)
x (nT ) = nπ

(
a0 f (r0)

2

)2[
|l| − 2

(
r0

w0

)2] 1
n2(

1− 1
n2

)2 sin 2θ.

(16)

Thus the perturbative theory predicts an OAM transfer from
the laser beam to the electrons. However, the presence of
a sin 2θ term in the L(2)

x (nT ) expression sets to zero the
final angle-integrated plasma OAM. Opposite to the radially
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FIG. 1. Electron OAM distribution versus the initial radial coor-
dinate computed at ω0t = 150 (black circle) once the laser has left
the plasma. The red solid curve draws the averaged value; the blue
dotted curve displays the radial position where the laser intensity is
maximal.

polarized case [9], where the perturbative theory predicts a
magnetic field generation, the linearly polarized case enables
a laser to electron OAM transfer, but no quasistatic magnetic
field generation because the averaged electron OAM over the
azimuthal angle is zero.

B. Numerical modeling of the electron dynamics

The interaction of a linearly polarized OAM laser beam
with a collisionless underdense plasma is studied with the
3D PIC code OCEAN [13]. To compare with the analytical
development, we switch off the computation of the plasma
induced self-consistent fields in the PIC code such that plasma
particles only experience the electric and magnetic fields
of the laser beam. Thus the laser beam propagation is not
affected by the presence of plasma. The numerical box is
composed of 1000 cells along the longitudinal axis x, and
804 × 804 cells in the transverse plane (y, z), with a spatial
resolution of λ0/42. Absorbing conditions for the electromag-
netic fields and particles are defined at the box boundaries.
The laser pulse is characterized with an OAM l = 1 and an
intensity 2 × 1018 W/cm2 at the focal plane, x f = 8 μm. It
is injected into the numerical box from the left border by
considering Maxwell’s consistent algorithm described in [14].
The total laser energy is 2.5 mJ. The plasma composed of
electrons and protons has an initial density equal to 1.74 ×
1019 cm−3, corresponding to 1% of the plasma critical density
nc = 1.74 × 1021 cm−3. Localized at the left border of the
numerical box, it has a rectangular shape filling the transverse
dimension of the box and a length equal to 13 wavelengths.
With these parameters, the laser-plasma interaction takes
place from ω0t = 0 to ω0t = 135. Ten macroparticles per cell
are considered, and the macroparticles are initialized with a
zero velocity.

Black circles in Fig. 1 display radial distribution of the
electron orbital angular momentum once the laser field has left
the plasma (ω0t = 150). Note that, for computational reasons,
we could not store the characteristics of all plasma electrons,

FIG. 2. Distribution of the electron Lx computed at ω0t = 150
versus the radial displacement r − r0 and the initial radial coordinate
r0 once the laser left the plasma (data have been interpolated with
a spline function). Green dotted curve displays electron radial dis-
placement induced by the radial ponderomotive force. Black solid
curve shows the radial position where the laser intensity is maximal.

only a few of them are tracked and displayed. These tracked
particles have been randomly chosen in the whole plasma
area. As predicted by the perturbative theory, we observe
a laser to electrons OAM transfer. Whereas this transfer is
inefficient near the axis (r = 0), electrons gain higher OAM
as their initial radial coordinate increases. The red solid curve,
showing the averaged Lx value, highlights nonzero values
for an initial radial coordinate smaller than 25c/ω0. This is
different from the perturbative theory result, which predicts
a zero angle-averaged electron OAM. We observe that the
transfer is maximal for electrons initially localized near the
laser peak intensity (shown with the blue dotted curve).

Because the transverse spatial distribution of the laser
beam is inhomogeneous (characterized with a donut shape)
electrons gain an average momentum due to the ponderomo-
tive force:

〈 �p(2)〉 = −a2
0

4

∫ t

0

�∇[ f 2(r0)g2(t ′)]dt ′, (17)

where f (r) is the radial function defined in Sec. II A and g(t )
is the temporal envelope given in Eq. (1). By computing the
radial component from Eq. (17), we obtain

〈
p(2)

r

〉 = −a2
0

4
f 2(r0)

[
|l| − 2

(
r0

w0

)2] t

r0
(18)

resulting in the radial displacement

	r = −a2
0

4

f 2(r0)

r0

[
|l| − 2

(
r0

w0

)2]
t2, (19)

where 〈p(2)〉, 	r, and t are expressed in units of mec, c/ω0,
and 1/ω0, respectively.

Figure 2(a) details the dynamics by displaying the electron
Lx versus the initial radial position (r0) and their final dis-
placement 	r = r − r0 at ω0t = 150. The green dotted curve
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FIG. 3. Distribution of the electron Lx computed at ω0t = 150
versus the longitudinal displacement x − x0 and the initial longi-
tudinal coordinate x0 (a) once the laser left the plasma area (data
have been interpolated with a spline function). Averaged value of Lx

versus x − x0 (b).

shows the electron radial displacement due to the pondero-
motive force [Eq. (19)], when the interaction with the laser
is ended. This curve fits perfectly the electron Lx distribution
from the PIC simulations, and confirms that electrons expe-
rience a radial drift due to the laser induced ponderomotive
force. However, we observe that the electron radial displace-
ment does not influence the final OAM values. Indeed, the
maximal amplitudes of Lx are obtained in the 8c/ω0 < r0 <

18c/ω0 zone, whatever the final radial displacement is. It
is ever more intriguing that electrons gain their maximal
OAM where the ponderomotive force is zero (	r = 0). We
then conclude that the constant part of laser-induced radial
ponderomotive force does not contribute to the laser to plasma
OAM transfer.

Figure 3(a) shows the Lx distribution as a function of their
longitudinal displacement (x − x0) and their initial longitudi-
nal coordinate x0. Electrons that do not experience longitu-
dinal displacement (x − x0 < λ0/3) gain positive or negative
Lx values randomly. These electrons do not contribute to the
nonzero plasma Lx value. However, those ones which move
over a higher longitudinal distance gain mainly negative Lx

values.
Figure 3(b) displays the averaged electron Lx values as

a function of the longitudinal displacement. We observe
an increase of the Lx amplitude with the longitudinal dis-
placement up to a saturation value that is reached for a
longitudinal displacement equal to one laser wavelength. It
appears evident that the laser to plasma OAM transfer is
made possible due to the longitudinal displacement of the
electrons. This axial displacement, caused by the longitudi-
nal ponderomotive force, is not accounted for in the sec-
ond order perturbative development of Lx; it requires the
development to higher order terms. This momentum transfer
from laser to electron appears very similar to the so-called

“direct laser acceleration” (DLA) [11,12]. The constant part
of the ponderomotive force accelerates longitudinally the
electrons and breaks the adiabaticity between the laser and
the electrons. The field seen by a moving electron appears
chirped, which results in a longitudinal and angular momen-
tum gain. The following part of the manuscript details this
feature.

C. Dependence of the OAM transfer on the laser polarization

Using the PIC code, we also model the interaction of
azimuthally and radially polarized LG beams with a low dense
plasma. The simulation with the azimuthally polarized LG
beam is the one which displays the less efficient laser to
plasma OAM transfer. The final Lx values are much weaker
than in the linearly polarized case. By contrast, as demon-
strated in Ref. [9], the radially polarized OAM laser beam
leads to the most efficient laser to plasma OAM transfer.

We consider these three polarization cases to compare the
dynamics of a single electron interacting with an OAM laser
beam. This electron has an initial radial coordinate in the
spatial region where the laser field is maximal. Figure 4 dis-
plays the time evolution of four temporal diagnostics for three
different laser polarizations (radial, azimuthal, and linear).
Figure 4(a), displaying the electron Lx temporal evolution,
shows the final Lx values equal to 0.03mecω0/e for the az-
imuthally polarized LG beam, −0.45mecω0/e for the linearly
polarized LG beam, and −0.55mecω0/e for the radially po-
larized one. The laser to electron OAM transfer efficiency is
higher for the radial polarization, as already shown in [9].

The electron in the three polarization cases display al-
most the same longitudinal displacement [Fig. 4(c)], due to
the constant part of the longitudinal ponderomotive force.
This force, originating from the temporal shape of the laser
beam, is similar for the three polarization cases. The main
difference in the particle dynamics is observed in the radial
motion [Fig. 4(b)]. Because of the weak radial component
for the azimuthally polarized beam, the particle experiences
a very weak radial oscillation. In contrast, these oscillations
are larger for the linear and radial polarizations. The laser
to electron OAM transfer is efficient thanks to these forced
radial oscillations combined with the longitudinal motion of
the electrons. The constant part of the longitudinal pondero-
motive force accelerates electrons, which results in an electron
longitudinal momentum gain. Because of this longitudinal
velocity, electrons do not experience a periodically oscil-
lating radial field [Er � sin(t )], but a “temporally chirped”
one [Er � sin(t − αt2)]. This is observable in Figs. 4(b) and
4(c), where the radial position displays a temporal oscillation
with an increasing period. This process, which breaks the
adiabaticity between the laser and the electron, is similar to
the dephasing process in the direct laser acceleration mech-
anism, where an additional electrostatic field is added to the
interaction [15,16]. Then, electrons experience a large radial
oscillation and gain an angular velocity in the field oscillation
(pθ � dEθ

dr ).
The axial momentum transfer from a Gaussian beam to

electrons in the DLA process is made possible because of the
longitudinal acceleration. Here, we show that the laser does
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FIG. 4. Temporal evolution of (a) orbital angular momentum, (b) radial coordinate, (c) longitudinal position, and (d) azimuthal angle of a
single “tracking particle” for three laser polarizations: linear (black solid curve), radial (red dotted curve), and azimuthal (green dash-dotted
curve). The inset figure in (a) displays a zoom of the panel (a), i.e. the Lx values as a function of the time expressed in units of 2π/ω0.

not transfer only its axial momentum; it can also transfer part
of its orbital angular momentum if it is nonzero.

III. DYNAMICS OF ELECTRONS PLASMA IRRADIATED
BY A LAGUERRE-GAUSS BEAM AND EXPERIENCING

THE INDUCED SELF-CONSISTENT FIELDS

In the previous section, we have identified the physical
processes which make the laser to plasma OAM transfer
possible. This identification has been performed by neglecting
the plasma induced self-consistent fields. Now, we present
PIC simulations where the plasma self-consistent fields are
switched on, so that the plasma electrons experience OAM
laser fields modified by the plasma induced self-consistent
fields.

A. Laser to plasma OAM transfer

Figure 5 compares the electron Lx radial distribution from
PIC simulations where plasma induced self-consistent fields
are activated (yellow triangles, red dotted curve) and deac-
tivated (black circles, red curve). As in Sec. II B, we ob-
serve a nonzero averaged plasma Lx value, resulting from an
inhomogeneous azimuthal distribution. However, the plasma
self-consistent fields reduce the amplitude of plasma elec-
tron OAM values. Whereas, at the maximum peak intensity,
the plasma OAM reaches −0.2mecω0/e when the plasma
induced self-consistent fields are switched off, it only reaches
−0.18mecω0/e when they are considered.

The plasma, defined with a finite longitudinal length,
possesses charge separating fields on its border [17]. These
electrostatic fields keep the electrons trapped in the plasma
area, such that their interaction with the laser field is reduced.
As a result, the electron OAM values are also reduced but not

canceled, such that, for realistic laser and plasma parameters,
the laser OAM may be transferred to the plasma.

Figure 6(a) presents the transverse spatial distribution of
the electron Lx. In the central part of the distribution (r �
11.6c/ω0), we observe two lobes with positive values and two
lobes with negative values, as predicted by the perturbative
theory [near sin(2θ )]. But, in contrast to this theory, their re-
spective weights are not equal and we note a large prevalence
of electrons with negative OAM. This results in a nonzero
value for the plasma OAM displayed in Fig. 5 with the red
curve.

FIG. 5. Electron Lx radial distribution when the self-consistent
fields are switched on (yellow triangles) or switched off (black cir-
cles) at ω0t = 150, once the laser left the plasma. The corresponding
plasma averaged Lx values are displayed with red and red dotted
curve, respectively.
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FIG. 6. (a) Transverse and (b) longitudinal spatial distribution of the electron OAM at ω0t = 165 computed at x0 = 40c/ω0 and y0 = 0,
respectively, once the laser beam left the plasma.

The longitudinal distribution of Lx in Fig. 6(b) shows that
the laser transfers part of its OAM to all the plasma electrons.
This transfer is optimal at a radius corresponding to the laser
peak intensity. The focal point, localized at x f = 62.83c/ω0,
separates negative from positive Lx values.

B. Magnetic field

We compare Fig. 6(b) with the quasistatic axial magnetic
field Bx displayed in Fig. 7. The area where the magnetic field
is maximal (50c/ω0 < x < 60c/ω0) corresponds to the area
where the electron Lx values are optimal and where its asso-
ciated transverse distribution is narrow. As this distribution
transverse size increases (from x = 60c/ω0 to x = 100c/ω0),
the magnetic field amplitude decreases. These results clearly
demonstrate that the laser to plasma OAM transfer enables
generation of a quasistatic axial magnetic field.

The quasistatic magnetic field generation is a robust effect
and this field slowly decays in time, as shown in Fig. 8,
drawing the magnetic field 60 fs later. Its profile evolves
in time due to the electrons longitudinal oscillation between

FIG. 7. Longitudinal Bx field at ω0t = 165, once the laser has
left the plasma area, computed at y0 = 0. Dashed line shows the
left plasma boundary at x = 7.5c/ω0. The right boundary is at x =
82.5c/ω0.

the plasma edges. Indeed, in addition to the orbital angular
momentum, the electrons gain also longitudinal momenta
under the longitudinal ponderomotive force.

IV. CONCLUSION

By using 3D particle in cell simulations, we model the
interaction of a low dense plasma with relativistic Laguerre-
Gauss beams characterized with three different polarizations:
radial, linear, and azimuthal. We observe that the three po-
larizations lead to a laser to electron OAM transfer, but this
transfer is more efficient in the case of radial polarization [9].
It appears to be an excellent candidate to efficiently generate
an optimal “wireless” solenoid.

We develop a theoretical method to analytically describe
the electromagnetic field components of Laguerre-Gaussian
beams with any polarization. By inserting these expressions
in the equations of motion, we analytically describe the dy-
namics of electrons irradiated by such laser beams in the
perturbative regime. For linearly polarized LG beams, the
perturbative theory predicts a laser to electron OAM trans-
fer depending on the initial azimuthal position of electrons.

FIG. 8. Longitudinal Bx field at ω0t = 315 computed at y0 = 0.
Dashed line shows the left plasma boundary at x = 7.5c/ω0. The
right boundary is at x = 82.5c/ω0.
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Averaging the electron OAM values over all plasma particles
should result in a zero plasma OAM. However, relativistic PIC
simulations display a nonzero plasma OAM and the genera-
tion of a quasistatic magnetic field. The difference between
the analytical expression and the numerical results originates
from the forced radial oscillation of electrons combined with
the longitudinal ponderomotive force which breaks the phase
between the laser and the electrons. These processes are not
included in the second order of the perturbative theory, and
require additional analysis.

The physical processes responsible for the laser to plasma
OAM transfer are similar to the one involved in the direct laser
acceleration mechanism. Here, the constant part of the longi-
tudinal ponderomotive force acts as a dephasing process as it
increases the electron velocity. As a result, the electric fields
seen by the electron are temporally chirped, and then electrons
gain angular momentum in the forced radial oscillation in the
laser.
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APPENDIX A: DIMENSIONLESS UNITS

Throughout the manuscript, we express the physical quan-
tities in dimensionless units. The mass and charge are ex-
pressed in electron mass me and charge e, respectively. The ve-
locities and momenta are expressed in c and mec, respectively,
where c is the light velocity in vacuum. Time and lengths
are expressed in 1/ω0 and c/ω0, respectively, with ω0 being
the laser pulsation. Orbital angular momenta are expressed
in mec2/ω0. Electric and magnetic fields are expressed in
meω0c/e and meω0/e, respectively.

APPENDIX B: DECOMPOSITION OF THE FIELDS OVER
THE LG BEAMS BASIS

Theoretical description of the electron dynamics requires
the analytical expressions of the electromagnetic field compo-
nents. Only the real part of the field components is considered
in the electron dynamics equations. However, here, the de-
composition procedure is general and considers the complex
expressions for the field components.

Thus we expand the field components given by Eq. (1) over
the orthonormal basis formed with the LG functions [10]:

Up,l (r, θ, t, x) = Cp,l

w(x)

(
r
√

2

w(x)

)|l|
L|l|

p

(
2r2

w2(x)

)
e−( r

w(x) )2

eilθ

× e
ik xr2

2(x2+x2
R ) e−i(2p+|l|+1) arctan( x

xR
)
, (B1)

with the normalization factor Cp,l =
√

2
π

√
p!

(p+|l|)! , the

Rayleigh length xR = πw2
0/λ0, and the laser beam waist

w(x) = w0

√
1 + (x/xR)2. Ll

p(X ) denotes the generalized La-
guerre polynomials where the radial and azimuthal indexes
are p and l , respectively.

To simplify the computation, we consider g(t ) = 1 in
Eq. (1) and write the electric field y component as

Ey(r, θ, t, x) =
∑
p′,l ′

Ap′,l ′
y Up′,l ′ (r, θ, t, x − x f ), (B2)

with Ap′,l ′
y = 〈Up′,l ′ |Ey〉 = E0C0,l

πw0

21+ |l|
2
δl ′,lδp′,0. Figure 9 com-

pares the real part of Ey computed from Maxwell’s consistent
algorithm [14] and from Eq. (B2) for l = 1; both expressions
are shown at the focal point (x = x f ). Decomposition over
the LG beams basis [Fig. 9(b)], computed from Eq. (B2), fits
exactly Maxwell’s consistent solution [Fig. 9(a)], even for the
considered small beam waist. We retrieve the two lobes with
opposite signs originated from the helicoidal field distribution
for l = 1.

FIG. 9. Real part of the Ey component computed at the focal point from Ref. [14] (a) and from the decomposition over the LG basis (b) for
l = 1.
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FIG. 10. Real part of the Ex component computed at the focal point from Ref. [14] (a) and from the decomposition over the LG basis
(b) for l = 1.

We compute a longitudinal component of the electric field by solving the Poisson equation �∇ �E = 0 and assuming Ez = 0 as

Ex(r, θ, t, x) � iA0,l
y

[ √
2

w(x − x f )
cos θ U1,|l|−1ei(l−|l|+1)θ ei(2+||l|−1|−|l|) arctan

x−x f
xR

− 2
r

w2(x − x f )
cos θ

1

xR
[1 − i(x − x f )]U0,l (r, θ, t, x − x f ) − i

l

r
sin θ U0,l (r, θ, t, x − x f )

]
, (B3)

where we neglect a contribution related to the longitudinal variation of the Gouy phase. The real part of the Ex components,
computed from Maxwell’s consistent algorithm and from the decomposition over the LG basis, are compared in Fig. 10. The
longitudinal component involves a LG mode with an higher radial index, described by U1,|l|−1 in Eq. (B3).

The magnetic field components, computed from the Maxwell-Faraday equation ∂ �B
∂t = −�∇ × �E , are Bz = Ey/c, By = 0, and

Bx(r, θ, t, x) � iA0,l
y

[ √
2

w(x − x f )
sin θ U1,|l|−1ei(l−|l|+1)θ ei(2+||l|−1|−|l|) arctan

x−x f
xR

+ 2i
r

w2(x − x f )
sin θ

x − x f

xR
U0,l (r, θ, t, x − x f ) + i

l

r
cos θ U0,l (r, θ, t, x − x f )

]
. (B4)

FIG. 11. Real part of the Bx component computed at the focal point from Ref. [14] (a) and from the decomposition over the LG basis
(b) for l = 1.
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We present a comparison between the exact solution of Bx and its decomposition over the LG beams basis in Fig. 11. As
in the previous cases, we observe a perfect agreement between both panels. This agreement is also observed for both real and
imaginary components (not shown here) computed in the whole space and, particularly, for the injection plane (x = xb). This
method applies for electromagnetic fields which slightly diverge from the paraxial approximation, as the one presented in this
article. Within a certain accuracy, it can be applied for all such beams carrying OAM with any polarization, such as, for example,
radial or azimuthal polarization. It only requires an analytical expression of the transverse electric fields at the focal plane.

APPENDIX C: PHYSICAL QUANTITIES AT THE FIRST ORDER

The solutions of Eq. (15) are

p(1)
r (t ) = −a0

2
f (r0) cos θ0

[
sin(t − φ0) + 1

2(1 + 1
n )

sin

([
1 + 1

n

]
t − φ0

)

+ 1

2(1 − 1
n )

sin

([
1 − 1

n

]
t − φ0

)
− (−1)n 1

n2 − 1
sin φ0

]
, (C1)

r (1)(t ) = a0

2
f (r0) cos θ0

[
cos(t − φ0) + 1

2(1 + 1
n )2

cos

([
1 + 1

n

]
t − φ0

)

+ 1

2(1 − 1
n )2

cos

([
1 − 1

n

]
t − φ0

)
+ (−1)n 3n2 − 1

(n2 − 1)2
cos φ0 + (−1)n nπ + t

n2 − 1
sin φ0

]
, (C2)

p(1)
θ (t ) = a0

2
f (r0) sin θ0

[
sin(t − φ0) + 1

2(1 + 1
n )

sin

([
1 + 1

n

]
t − φ0

)

+ 1

2(1 − 1
n )

sin

([
1 − 1

n

]
t − φ0

)
− (−1)n 1

n2 − 1
sin φ0

]
, (C3)

θ (1)(t ) = −a0

2

f (r0)

r0
sin θ0

[
cos(t − φ0) + 1

2(1 + 1
n )2

cos

([
1 + 1

n

]
t − φ0

)

+ 1

2(1 − 1
n )2

cos

([
1 − 1

n

]
t − φ0

)
+ (−1)n 3n2 − 1

(n2 − 1)2
cos φ0 + (−1)n t + nπ

n2 − 1
sin φ0

]
, (C4)

p(1)
x (t ) = −a0

2

f (r0)

r0

{
−

[
|l| − 2

(
r0

w0

)2
]

cos θ0

[
cos(t − φ0) + 1

2(1 + 1
n )

cos

([
1 + 1

n

]
t − φ0

)

+ 1

2(1 − 1
n )

cos

([
1 − 1

n

]
t − φ0

)
+ (−1)n 1

n2 − 1
cos φ0

]
+ l sin θ0

[
sin(t − φ0) + 1

2(1 + 1
n )

sin

([
1 + 1

n

]
t − φ0

)

+ 1

2
(
1 − 1

n

) sin

([
1 − 1

n

]
t − φ0

)
− (−1)n

n2 − 1
sin φ0

]}
, (C5)

x(1)(t ) = a0

2

f (r0)

r0

{[
|l| − 2

(
r0

w0

)2
]

cos θ0

[
sin(t − φ0) + 1

2(1 + 1
n )2

sin

([
1 + 1

n

]
t − φ0

)

+ 1

2(1 − 1
n )2

sin

([
1 − 1

n

]
t − φ0

)
− (−1)n 3n2 − 1

(n2 − 1)2
sin φ0 + (−1)n t + nπ

n2 − 1
cos φ0

]

+ l sin θ0

[
cos(t − φ0) + 1

2(1 + 1
n )2

cos

([
1 + 1

n

]
t − φ0

)
+ 1

2(1 − 1
n )2

cos

([
1 − 1

n

]
t − φ0

)

+ (−1)n 3n2 − 1

(n2 − 1)2
cos φ0 + (−1)n t + nπ

n2 − 1
sin φ0

]}
. (C6)
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