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High-temperature ion-thermal behavior from average-atom calculations
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Atom-in-jellium calculations of the Einstein frequency were used to calculate the mean displacement of an
ion over a wide range of compression and temperature. Expressed as a fraction of the Wigner-Seitz radius, the
displacement is a measure of the asymptotic freedom of the ion at high temperature, and thus of the change
in heat capacity from six to three quadratic degrees of freedom per atom. A functional form for free energy
was proposed based on the Maxwell-Boltzmann distribution as a correction to the Debye free energy, with a
single free parameter representing the effective density of potential modes to be saturated. This parameter was
investigated using molecular dynamics simulations, and found to be ∼0.2 per atom. In this way, the ion-thermal
contribution can be calculated for a wide-range equation of state (EOS) without requiring a large number of
molecular dynamics simulations. Example calculations were performed for carbon, including the sensitivity of
key EOS loci to ionic freedom.
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I. INTRODUCTION

Accurate equations of state (EOS) are essential to un-
derstand stellar and planetary formation and evolution, as-
trophysical impacts, and engineering challenges such as the
development of thermonuclear energy sources. However, the
behavior of the ionic heat capacity of condensed matter at
temperatures between melting and the formation of an ideal
plasma is poorly understood, limiting the insight and accu-
racy of theoretical EOS. Wide-ranging EOS [1] are almost
invariably constructed using empirical models originally de-
rived as approximate representations of observations of the
variation of the heat capacity in the liquid of metals of low
melting point at one atmosphere [2], and assumed to apply at
arbitrary compression [3,4]. Experiments to test or improve
on this assumption are challenging: where even attempted,
uncertainties on measurements of the temperature of warm
dense matter are typically greater than 10% (see, for instance,
[5,6]), which is not adequate to distinguish the details of the
ion-thermal heat capacity.

The most rigorous theoretical techniques applicable are
path integral Monte Carlo (PIMC) and quantum molecular
dynamics (QMD), in which the kinetic motion of an ensemble
of atoms is simulated, where the distribution of the electrons
is found with respect to the changing location of the ions
using quantum mechanics [7,8]. The energy of the ensemble
is determined from an average over a sufficient time interval,
and the heat capacity can be found from the variation of
energy with temperature. This procedure is computationally
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expensive, requiring o(1016) or more floating-point operations
per state to determine the ionic heat capacity using QMD,
equivalent to thousands of CPU hours per state; PIMC re-
quires roughly an order of magnitude more. It is typically
deemed impractical to perform these simulations for matter
around or below ambient density and above a few tens of
electron volts using QMD, limiting the regions of state space
over which the EOS models can be calibrated in this way.

Recent PIMC and QMD results have indicated that the
simpler approach of calculating the electron states for a single
atom in a spherical cavity within a uniform charge density
“jellium” of ions and electrons, representing the surrounding
atoms, reproduces the electronic component of their more
rigorous EOS models [9,10]. This atom-in-jellium approach
has been used previously to predict the electron-thermal en-
ergy of matter at high temperatures and compressions [11],
as an advance over Thomas-Fermi and related approaches
[12]. A development of atom-in-jellium was used to estimate
ion-thermal properties using the Debye model [13], and we
have found that it can be used to construct the complete
EOS [14]. However, the model as originally implemented
did not account for the decrease in ionic heat capacity at
high temperatures as the ions cease to be caged between
their neighbors, losing the contribution from potential energy.
We also noted cases where the atom-in-jellium Debye model
deviated from more rigorous calculations.

In the work reported here, we extend the atom-in-jellium
ion-thermal model developed previously [14] to estimate the
asymptotic freedom of ions at high temperature, and hence
predict the form of the heat capacity of matter in the fluid-
plasma regime. Because of the efficiency of average-atom cal-
culations, this approach should enable EOS models to be con-
structed with consistently accurate electronic contributions
and the correct ion-thermal behavior over a wide range of
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states from expanded to compressed matter and over the
full range of temperatures relevant to stellar and planetary
interiors, and thermonuclear fusion science.

We consider carbon (C) as an interesting test case because
it is notable for exhibiting directional bonds that also change
in strength and nature under compression, leading to multiple
solid phases on compression. The atom-in-jellium method
does not distinguish between different structural phases, and
so is inherently unable to capture the details of and changes
in bonding. C is thus a particularly challenging material to
treat with the atom-in-jellium model. The relative contribution
to the EOS of the high-temperature decrease in the ionic
heat capacity falls with atomic number Z: for high Z , the
electron-thermal contribution to the heat capacity becomes
dominant in the fluid-plasma regime because of the greater
number of electrons. The accuracy of a good EOS model
and good state measurements at high pressure and temper-
ature is typically o(1%), so it is most practical to focus on
elements where the effect on the EOS is at the level of at
least several percent, i.e., Z � 10; this range does cover the
vast majority of matter in the universe. Of these elements,
C is particularly convenient for experiments, being readily
available and presenting relatively little complication in the
preparation of samples, being nontoxic, chemically stable, and
solid at ambient conditions. Because of its importance for
inertial confinement fusion studies, C has been the subject
of extensive previous studies, including the construction of a
state-of-the-art multiphase EOS model [9].

II. PREVIOUS ION-THERMAL MODELS

As condensed matter is heated from absolute zero, the heat
capacity of the ions rises from zero as vibrational modes are
excited. If all modes are excited before any dissociation oc-
curs, the ionic heat capacity for quadratic degrees of freedom
reaches 3kB per atom, where kB is the Boltzmann constant,
representing three kinetic and three potential modes [15]. The
attractive potential between atoms has a finite depth, and once
an ion has more energy, it behaves as a free particle with only
kinetic modes available to it, and thus contributes 3kB/2 to the
heat capacity.

The instantaneous separation and velocity of the ions are
described by a distribution, and the most appropriate de-
scription of the ion energies is also by a distribution. Even
at low temperatures some ions are free, and even at high
temperatures some ions are bound. The detailed distribution
of ion energies depends on the shape of the interatomic
potential as well as the temperature, which complicates the
analysis.

EOS models have been constructed using very simple
estimates of the ion-thermal contribution, such as a constant
specific heat capacity which may be the value at STP, 3kB per
atom, or 3kB/2 per atom [16]. A generalization has been to
use the Debye model [17], which assumes a simple form for
the phonon density of states (PDOS), proportional to h̄ω2 for
phonon frequencies 0 � ω � kBθD, and 0 for higher ω. This
model captures the rise of ion-thermal heat capacity from zero
to 3kB per atom as modes are excited, but does not capture
the detailed heat capacity arising from the actual PDOS. EOS
models can be constructed using more accurate PDOS [18],

though, in practice, because integrations are performed over
the PDOS, the EOS is not sensitive to the full detail of the
spectrum, and high-fidelity models have been constructed
using a combination of a few Debye frequencies instead [19].
More importantly for the present study, the Debye model ig-
nores the asymptotic freedom of the ions at high temperature.

In the ion-thermal model developed for use with atom-
in-jellium calculations [13], perturbation theory was used to
calculate the Hellmann-Feynman force on the ion when dis-
placed from the center of the cavity in the jellium. Given the
force constant k = −∂ f /∂r, the Einstein vibration frequency
νe = √

k/ma was determined, where ma is the atomic mass,
and hence the Einstein temperature θE = hνe/kB. The Debye
temperature θD was inferred from θE, by equating either
the ion-thermal energy ei or the mean-square displacement
ū2, giving slightly different results. These calculations are,
respectively,

ei
ma

3kBT
= xE

[
1

exp(xE) + 1
+ 1

2

]
= D3(xD) + 3

8
xD (1)
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ma

3h̄2 = 1
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]
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4

]
, (2)

where xE = θE/T , xD = θD/T , and Di is the Debye integral

Di(x) ≡ i

xi

∫ x

0

xi dx

ex − 1
. (3)

The ion-thermal free energy was then calculated from

fi = kBT

[
3 ln(1 − e−θD/T ) + 9θD

8T
− D3(θD/T )

]
, (4)

where 9
8 kBθD is the zero-point energy. Unusually, θD is a

function of temperature as well as compression, effectively
because changes in ionization can result in a change to the
stiffness and hence the vibration frequency. However, despite
the accuracy of atom-in-jellium predictions of the electronic
EOS [14], and the ingenuity of using perturbations of the ion
from equilibrium to predict θD and hence fi for condensed
matter, the lack of a treatment of the high-temperature ionic
heat capacity is a notable limitation in an approach otherwise
suited to warm dense matter.

An approach used widely in constructing EOS for fluid-
plasma applications is the Cowan model [3], in which the heat
capacity is assumed to vary as

cv = 3

2
kB

{
1 + min

[
1,

(
T

Tm(ρ)

)−1/3
]}

, (5)

where Tm(ρ) is the melting temperature as a function of mass
density ρ. The effect of the term in brackets is for the potential
modes to fall as (T/Tm)−1/3 for T > Tm, and for cv to be held
at 3kB for T � Tm. Variants of the Cowan model have been
used with more general dependence on T/Tm, also treating the
latent heat of melting in ad hoc fashion as an increased ionic
heat capacity over a finite temperature range [4].

QMD studies of carbon [9] found that the heat capacity
dropped more abruptly than in the Cowan model, and were
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FIG. 1. Root-mean-square fractional displacement urms/rWS cal-
culated for carbon using atom-in-jellium theory. Contours shown are
from 0.1 to 1.0 at intervals of 0.1, and then 2.0 to 4.0 at intervals
of 1.0. A fractional displacement of 1 would correspond to ionic
freedom, ignoring the velocity distribution of the ions.

represented better as a free energy of the form

fi = fb − kBT ln

[
erf

(√
Tr

T

)
−

√
4Tr

πT
e−Tr/T

]
, (6)

where fb is the free energy of bound ions and Tr (ρ) is a
reference temperature curve determined from QMD. This
approach appears to be as accurate as QMD can achieve, but is
limited by the restricted range of states accessible in practice
to QMD.

III. ASYMPTOTIC FREEDOM OF IONS IN JELLIUM

In the method developed for calculating the vibrations of
ions in jellium [13], the mean-square displacement ū2 was
obtained in calculating θD [Eq. (2)]. Here we use the root-

mean-square (rms) displacement urms ≡
√

ū2 as a measure
of ionic freedom: when it exceeds the Wigner-Seitz radius,
rWS = (3ma/4πρ )1/3, the ion is effectively free. The atom-
in-jellium computer program [20] was modified to calculate
and output the rms fractional displacement, urms/rWS(ρ, T )
(Fig. 1).

An average atom would be bound for urms < rWS, with
ionic heat capacity 3kB, and then free for urms � rWS, with
heat capacity 3kB/2. Given an energy distribution for the
atoms, the change in heat capacity can be represented more
accurately as a continuous variation with temperature. An
accurate distribution could be calculated from the set of avail-
able ion-thermal energy levels populated using Boltzmann
factors, but the average-atom-in-jellium method gives only a
rough approximation to the states and hence to the energy
levels. A simpler estimate can be made using the Maxwell-
Boltzmann distribution for the velocity v of free ions,

f (v) =
(

ma

2πkBT

)3/2

4πv2e−mav
2/2kBT (7)

FIG. 2. Characteristic binding temperature Tb = Tr2
WS/ū2 calcu-

lated for carbon. Contours shown are {1, 2, 5} × 10{4,5,6,7} K. Where
contours of Tb are not vertical, its temperature dependence is
significant.

[15]. The cumulative probability distribution, giving the frac-
tion of ions whose velocity is less than v, is

Pr(<v) = erf

⎛
⎝

√
mav2

4kBT

⎞
⎠ −

√
2mav2

πkBT
e−mav

2/2kBT . (8)

The minimum displacement urms = rWS for an ion to become
free can be equated to a cutoff value vc in the velocity distribu-
tion. Compared with free particles, binding between ions can
be thought of as adding a saturable attractive potential. Thus,
in a statistical sense, we choose to interpret vc in terms of a
characteristic binding temperature Tb for an effective number
N of quadratic potential modes to become saturated,

1

2
mav

2
c � N

2
kBTb, (9)

where

T

Tb
= ū2

r2
WS

. (10)

Tb can be thought of as the temperature at which urms = rWS,
which might naively suggest a dependence Tb(ρ). However,
in our analysis, its dependence is Tb(ρ, T ), since urms(ρ, T )
and ū2 do not in general vary linearly with T (Fig. 2). This
behavior is related to the unusual but general dependence
θD(ρ, T ) of the jellium oscillations model, discussed above.

We have not so far found an integral of the Maxwell-
Boltzmann derived heat capacity to represent the free energy
in closed form, but we can generalize the similar functional
form used previously [9] and derived from the partition func-
tion of a particle in a harmonic potential of finite volume [21].
This relation exhibits the desired temperature dependence for
the heat capacity, giving a modification to the Debye free
energy (or any other free energy fb representing bound ions)
so that the heat capacity falls at high temperature,

fi = fb − kBT ln

[
erf

(√
NTb

T

)
−

√
4NTb

πT
e−NTb/T

]
. (11)

This approach is similar, except that T/Tb(ρ, T ) is determined
directly from the average-atom calculations, and the mode
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number N is expected to be a constant o(1) with ρ, T , and
atom type. In contrast, the approach used in the previous study
[9] requires QMD simulations to be performed for at least
a few temperatures and over the full range of densities of
interest, for each substance.

Although we have used the generalized Debye model based
on jellium oscillations, the same approach could be adopted
with calculations that are more accurate for condensed matter,
such as quasiharmonic phonons. The advantage of the atom-
in-jellium method is the ability to predict states over a wider
range in density and temperature very efficiently. In principle,
a θD that varies with temperature as well as density can be used
to represent anharmonic contributions to fi, although atom-
in-jellium calculations are unlikely to predict them as well as
multiatom calculations.

IV. QUANTUM MOLECULAR DYNAMICS SIMULATIONS

QMD simulations were performed to predict the variation
of ionic heat capacity cvi directly. Such simulations treat the
motion of the ions as classical, with three kinetic modes. The
total potential energy is calculated from the electron states
with respect to the instantaneous configuration of the ions at
the temperature of interest. The potential contribution to the
cvi must thus be inferred from the total cv , by calculating and
subtracting the electronic heat capacity cve [22]. Along each
isochore, cvi was found to fall just as cve started to rise, so the
deduced variation in cvi(T ) was sensitive to the treatment of
cve. In addition, the drop in cvi started to become appreciable a
little above the melt locus, so its precise variation depended on
discriminating the latent heat of melting, which may be spread
out in temperature in a relatively small ensemble of atoms.
The entropy of melting is around 0.8kB/atom for most materi-
als, though some have values between 1.5 and 4kB/atom [23],
so melting may make a significant and insidious contribution
when inferring cvi.

QMD simulations were performed using the electronic
structure program VASP [24]. The projector augmented wave
method [25] was used, with carbon ions represented with a
pseudopotential subsuming the inner two electrons. Electron
wave functions were represented with a plane-wave basis set
cut off at 1000 eV, at the Baldereschi mean-value point in
reciprocal space [26]. Density functional theory in the local
density approximation [27–29] was used for the exchange-
correlation energy; some states were recalculated with the
Perdew-Burke-Ernzerhof functional [30] for comparison. The
simulations were in the NVT ensemble, using the Nosé-
Hoover thermostat [31], with periodic boundary conditions.
For each state of density and temperature, the motion of 64
atoms was integrated for 20 000–50 000 steps of 0.05–0.5 fs.
Convergence with respect to plane-wave cutoff energy was
tested at 2000 K and 5 g/cm3 with calculations up to 3000 eV,
and found to be converged to <0.06% in pressure and
<4 meV/atom. Overall, given the finite cell size and use of
the single mean-value k point, the pressure is likely to be
converged to <2% and the energy to <10 meV/atom.

Simulations were performed along isochores at 5, 10, and
15 g/cm3, spanning a pressure range ∼0.4 to 10 TPa. Higher
densities would have required a different pseudopotential sub-
suming fewer bound electrons, increasing the computational
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FIG. 3. Variation of heat capacities along sample isochores, de-
duced from QMD simulations. Fully activated vibrational modes
give 3kB/atom, and unbound kinetic modes 3

2 kB/atom.

expense and potentially introducing systematic differences.
Lower densities were not computationally tractable for simu-
lations of the size required. However, the isochore at 5 g/cm3

is within a small fraction of the density range to the ambient
density of diamond at 3.51 g/cm3, and so the trends in the
calculations should apply down to zero pressure.

Each simulation yielded a value for the total energy e
and the electronic entropy se, the latter from the population
of electron states. The total heat capacity was deduced
from e(T ),

cv = ∂e

∂T

∣∣∣∣
v

(12)

and the electronic heat capacity was deduced from se,

cve = T
∂se

∂T

∣∣∣∣
v

. (13)

In both cases, polynomials were fitted to sections of each
isotherm to obtain continuous functions for which the deriva-
tives could be evaluated. The ionic heat capoacity was then
deduced as the difference,

cvi = cv − cve. (14)

Given the numerical uncertainties in convergence, differenti-
ation, and subtraction, the uncertainty in ionic heat capacity
was around 0.25kB/atom (Fig. 3).

To interpret the QMD results, the temperature along each
isochore was expressed as ū2/r2

WS(ρ, T ) ≡ T/Tb from the
atom-in-jellium calculations. The best fit of the hypothesized
free-energy function, Eq. (11), was found for N = 0.2 ± 0.03
(Figs. 4 and 5). The nominal best value varied slightly using
the alternative prescriptions for θD [Eqs. (1) and (2)] but the
difference was much less than the uncertainty and the shape
of cvi(T ) was the same. The QMD results and the fit diverged
systematically at low temperatures, along all three isochores.
Although the deviation was within the estimated uncertainty
of the QMD heat capacity, it may reflect inaccuracy of the
free-energy function, Eq. (11), or of the underlying atom-in-
jellium calculation.
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FIG. 4. Variation of ion-thermal heat capacity along the
10 g/cm3 isochore, from QMD (dashed) and atom-in-jellium with
different values of the parameter N in Eq. (11) (solid).

The atom-in-jellium method is usually inaccurate around
ambient conditions as the method ignores molecular bonding
and angular forces between atoms, particularly where they
stabilize structures far from close-packed. The approach de-
scribed here for estimating ion-thermal effects in the fluid and
plasma is unlikely to be adequate when the underlying atom-
in-jellium is inaccurate. However, we have found that atom-
in-jellium EOS are often accurate at low temperatures (even in
the solid) and high pressures. Even if the atom-in-jellium EOS
fails to capture the precise details of the ionic heat capacity as
it starts to fall as the fluid is heated, it is probably adequate in
situations where the system passes through these conditions as
is usual in high-energy-density experiments and applications.

V. EQUATION OF STATE FOR CARBON

Several wide-range EOS models have been constructed
for C, mostly using Thomas-Fermi theory for high compres-
sions and temperatures. We compare against one such EOS
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employing a Cowan-like ion-thermal model, SESAME EOS
7834 [32], which was constrained by QMD calculations and
Hugoniot measurements up to shock melting, but does not
include the melting transition explicitly. In contrast, the five-
phase EOS model [9] used atom-in-jellium calculations for
the electron-thermal contribution only, and was constructed to
include an explicit melting transition. In our present approach,
the electronic component and Debye ionic component were
constructed using the procedure described previously [14],
and the ionic component was modified as above [Eq. (11)]
to account statistically for freedom at high ion velocities.
We used the displacement calculation of Debye temperature
[Eq. (2)] for consistency with the use of the rms displacement
in the high-temperature ionic heat capacity. The energy cal-
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FIG. 7. Ambient isochore (3.51 g/cm3) for carbon from previous
EOS models [9,32], compared with atom-in-jellium (AJ) predictions
using different values of the parameter N in Eq. (11). Where distin-
guishable, the solid curves are N = 0.1 (lower), 0.2 (middle), and 0.5
(upper).
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culation [Eq. (1)] would not be significantly different on the
scales considered here.

The principal shock Hugoniot was deduced by numerical
solution [33,34] for each EOS model. The treatment of ionic
freedom caused a variation of up to 20% in pressure between
6 and 12 g/cm3 (1 and 10 TPa), large enough to investigate
experimentally (Figs. 6 and 7).

VI. CONCLUSIONS

Atom-in-jellium estimates of thermal vibrations of the ion
were used to construct a model of the reduction in ionic heat
capacity at high temperatures as the ions become free. The
model has a single free parameter, equivalent to the effective
number of potential modes that must be saturated before
the high-energy tail of the Maxwell-Boltzmann distribution
describes free particles. This parameter was investigated using
molecular dynamics simulations and found to be 0.2 ± 0.03,
with a weak dependence on compression.

Carbon was chosen as a prototype material as its atomic
number is low, emphasizing changes in the ionic heat capacity
compared with the electrons, and it is widely used as a sample

and ablator in high-pressure experiments. The principal shock
Hugoniot and ambient isochore showed a modest sensitivity
to the treatment of ionic heat capacity, which may be experi-
mentally detectable.

Atom-in-jellium predictions of electronic states in warm
dense matter were previously shown to reproduce the more
rigorous approaches of PIMC and QMD. The work reported
here extends the atom-in-jellium based treatment of ion-
thermal energies into the dense plasma regime, and means
it is now possible to calculate all contributions to the EOS
self-consistently, and efficiently enough to construct an entire
wide-range EOS model for an element in a few CPU hours
at most. In particular, atom-in-jellium calculations can readily
be performed in regimes where PIMC and QMD themselves
are intractable.
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