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Physical topology of three-dimensional unsteady flows with spheroidal invariant surfaces
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Scope is the response of Lagrangian flow topologies of three-dimensional time-periodic flows consisting of
spheroidal invariant surfaces to perturbation. Such invariant surfaces generically accommodate nonintegrable
Hamiltonian dynamics and, in consequence, intrasurface topologies composed of islands and chaotic seas.
Computational studies predict a response to arbitrary perturbation that is dramatically different from the classical
case of toroidal invariant surfaces: said islands and chaotic seas evolve into tubes and shells, respectively,
that merge into “tube-and-shell” structures consisting of two shells connected via (a) tube(s) by a mechanism
termed “resonance-induced merger” (RIM). This paper provides conclusive experimental proof of RIM and
advances the corresponding structures as the physical topology of realistic flows with spheroidal invariant
surfaces; the underlying unperturbed state is a singular limit that exists only for ideal conditions and cannot
be achieved in a physical experiment. This paper furthermore expands existing theory on certain instances
of RIM to a comprehensive theory (supported by experiments) that explains all observed instances of this
phenomenon. This theory reveals that RIM ensues from perturbed periodic lines via three possible scenarios:
truncation of tubes by (i) manifolds of isolated periodic points emerging near elliptic lines or by either (ii)
local or (iii) global segmentation of periodic lines into elliptic and hyperbolic parts. The RIM scenario for
local segmentation includes a perturbation-induced change from elliptic to hyperbolic dynamics near degenerate
points on entirely elliptic lines (denoted “virtual local segmentation”). This theory furthermore demonstrates
that RIM indeed accomplishes tube-shell merger by exposing the existence of invariant surfaces that smoothly
extend from the tubes into the chaotic shells. These phenomena set the response to perturbation—and physical
topology—of flows with spheroidal invariant surfaces fundamentally apart from flows with toroidal invariant
surfaces. Its entirely kinematic nature and reliance solely on continuity and solenoidality of the velocity field
render the comprehensive theory and its findings universal and generically applicable for (arbitrary perturbation
of) basically any incompressible flow—in fact any smooth solenoidal vector field—accommodating spheroidal
invariant surfaces.
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I. INTRODUCTION

The paper concerns the response of Lagrangian flow
topologies of three-dimensional (3D) unsteady flows con-
sisting of nontoroidal invariant surfaces to perturbation. The
response scenarios for the classical case of toroidal in-
variant surfaces are well known: resonant and nonresonant
tori disintegrate and survive, respectively, perturbation ac-
cording to (3D counterparts of) the Poincaré-Birkhoff and
Kolmogorov-Arnold-Moser (KAM) theorems [1–4]. Most
tori generically survive weak perturbation and thus the
unperturbed flow topology is largely retained. Surviving
tori may develop defects due to local resonances (as op-
posed to global resonances causing tori breakdown as per
the Poincaré-Birkhoff theorem) that, if occurring, result
in gradual global dispersion of tracers through repeated
“switching” between tori and crossing of separatrices [4–8].

Key to the response scenarios for toroidal invariant surfaces
is intrasurface Lagrangian motion that generically consists
of helical trajectories centered on the toroidal axis; both
the Poincaré-Birkhoff and KAM theorems explicitly rely on

this [1]. However, the dynamics inside nontoroidal invariant
surfaces may be fundamentally different and thus invalidate
said theorems and corresponding scenarios. A case of great
practical relevance exists in spheroidal invariant surfaces en-
countered in 3D lid-driven cavity flows (serving as physical
models for, e.g., batch mixers and bio-reactors yet also for
flow in microdroplets or lung alveoli), tumblers for granu-
lar media, or (kinematic models for) 3D microfluidic flows
induced by magnetic beads [9]. This furthermore includes
quasi-two-dimensional (2D) geophysical flows, that is, large-
scale oceanographic and atmospheric flows with an orienta-
tion parallel to the spherical surface of the Earth [10]; the
Lagrangian motion in such flows is in the corresponding 2D
limit topologically similar to that restricted to (subregions of)
spheroidal invariant surfaces.

Spheroidal invariant surfaces in 3D unsteady flows generi-
cally accommodate nonintegrable Hamiltonian dynamics and,
in consequence, intrasurface flow topologies composed (con-
trary to helical trajectories in tori) of islands and chaotic
seas [11]. Computational studies predict a response to arbi-
trary perturbation that is dramatically different from tori: said
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islands and chaotic seas evolve into tubes and shells, respec-
tively, that merge into intricate “tube-and-shell” structures
consisting of two shells connected via (a) tube(s). Such tube-
shell merger was first observed in 3D time-periodic flows in-
side a lid-driven cylindrical cavity in [12–14]. The follow-up
study in [15] on an external microflow driven by rotating mag-
netic beads revealed essentially the same tube-and-shell struc-
tures upon perturbation of the spheroidal invariant surfaces of
the corresponding unperturbed limit. Moreover, the dynamics
in the 3D time-periodic granular flow in a spherical tum-
bler investigated in [16] also exhibits the characteristics for
perturbation-induced tube-shell merger, i.e., spheroidal invari-
ant surfaces with nonintegrable Hamiltonian dynamics in the
unperturbed state, yet without explicit exploration of this phe-
nomenon. The findings particularly in [12–15] strongly sug-
gest that the tube-and-shell structures constitute the physical
topology of 3D unsteady flows with spheroidal invariant sur-
faces and the underlying unperturbed state is a singular limit.
Similar Hamiltonian dynamics in fact occur in nontoroidal
invariant surfaces of greater topological complexity [17] as
well as in quasi-2D representations of Lagrangian transport in
geophysical flows [18,19]. Hence, though beyond the present
scope, the behavior associated with (perturbed) spheroidal
invariant surfaces investigated below likely generalizes to a
broader class of systems involving restriction of Lagrangian
motion to (subregions of) nontoroidal invariant surfaces.

The above findings are to date only indirectly supported
by experimental evidence [20]. Moreover, full explanation of
the underlying mechanisms exists only for some instances of
RIM; other manifestations of this phenomenon are beyond
current theories. The principal goals of this paper therefore
are (i) conclusive experimental validation of RIM (Sec. III)
and (ii) development of a rigorous and comprehensive theory
that explains all observed instances of RIM and demon-
strates that this phenomenon indeed involves merger of
(instead of random switching between) Lagrangian entities
(Secs. IV–VI).

II. Physical VERSUS THEORETICAL TOPOLOGY

A. Configuration and unperturbed dynamics

The system considered by [20] is adopted as representative
case for investigation of the dynamics of flows with spheroidal
invariant surfaces and corresponds with the configuration of
the above-mentioned computational studies that first exposed
RIM [12–14]. It consists of a solenoidal time-periodic flow
u(ξ, t ) = u(ξ, t + T ) in a cylinder (radius R and height H =
2R), with T the period time and ξ = (x1, x2, x3) the Cartesian
reference frame, driven by repetition of the sequence of
piecewise steady translations of the bottom wall at velocity
U and angles θk = 2kπ/3 (k ∈ {0, 1, 2}) with the x axis and
of duration T/3 (Fig. 1). The Lagrangian motion of passive
tracers released in this flow at positions ξ(0) = ξ0 is governed
by the kinematic equation

dξ

dt
= u(ξ, t ), (1)

which admits formal solution by the mapping

ξn+1 = �(ξn), ξn = ξ(nT ), (2)

FIG. 1. Representative flow configuration: time-periodic flow in-
side a cylinder of radius R and height H = 2R driven by piecewise
steady translations at velocity U of the bottom wall (left) under angle
θk = 2kπ/3 (k ∈ {0, 1, 2}) with the x axis (right).

with n � 0 the period. The sequence of consecutive tracer
positions governed by (2), i.e.,

P (ξ0) = {ξ0, ξ1, . . . }, (3)

defines the stroboscopic map (or “Poincaré section”) of a
tracer starting at ξ0 and visualizes the Lagrangian transport.
This stroboscopic map is synchronized with the start of
the first wall (θ1 = 0) at time levels t = nT (n � 0) in the
periodic forcing sequence by the bottom wall. The system
is parametrized by the nondimensional wall displacement
D = UT/3R (= 4 hereafter) and the Reynolds number Re =
UR/ν, with ν the kinematic viscosity.

Lagrangian motion is in the Stokes limit Re = 0 confined
to spheroidal invariant surfaces as demonstrated in Fig. 2(a)
(left) by simulation of a stroboscopic map (black tracers)
in a typical spheroid (cyan) using an analytical flow field
following [20]. The corresponding projection in the rz plane
[Fig. 2(a), right] clearly reveals this confinement. [Tracer
positions in Fig. 2(a) (left) on the bottom side of the spheroid
are visible only through its transparent surface and thus appear
somewhat dim.] Transformation to a curvilinear reference
frame ζ = (ζ1, ζ2, ζ3), with Jacobian J = |∂ξ/∂ζ|, such that
coordinates (ζ1, ζ2) and ζ3 are locally tangent and normal,
respectively, to the spheroids translates the kinematic equation
(1) into the Hamiltonian form

dζ1

dt
= 1

J

∂ψ

∂ζ2
,

dζ2

dt
= −1

J

∂ψ

∂ζ1
, (4)

with ψ (ζ, t ) the corresponding Hamiltonian. This implies
intrasurface flow topologies characteristic of 2D nonau-
tonomous Hamiltonian systems: islands surrounded by
chaotic seas. The tracer in Fig. 2(a) occupies such a chaotic
sea and outlines two intrasurface islands on opposite sides of
the invariant surface (indicated by black arrows).

B. Impact of perturbations

The above Hamiltonian topology is the theoretical state yet
constitutes a singular limit that changes dramatically under
arbitrary perturbation. Introduce to this end a perturbation of
the flow forcing of the Stokes limit Re = 0 by an additional
translation of the top wall at an angle θ ′ relative to the stepwise
translation direction θk and relative magnitude εU , with ε �
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FIG. 2. Physical vs theoretical topology in flows with spheroidal
invariant surfaces demonstrated by the stroboscopic map of a sin-
gle tracer (left, 3D from identical viewpoints; right, rz projection)
in time-periodic cylinder flow driven by stepwise translations of
the bottom wall at angles θk = 2kπ/3 (k ∈ {0, 1, 2}) with the x
axis. (a) Simulated theoretical topology (unperturbed limit Re =
0) of tracers (black) restricted to the chaotic sea in invariant sur-
faces (cyan/gray) and outlining intrasurface islands (black arrows).
(b) Simulated physical topology of tube (magenta/gray) and shell
(black) structures due to explicit perturbation by the top wall
(Re = 0). (c) Experimental topology originating from natural distur-
bances. Blue, curve periodic line; green star/yellow circle, degenerate
points.

1, following [20]. Figure 2(b) gives the stroboscopic map
P (ξ0) for the same initial position ξ0 as in Fig. 2(a) for θ ′ =
π/6 and ε = 5 × 10−4. (Initial position ξ0 is chosen to admit
one-to-one comparison between simulated and experimental
dynamics, Sec. III B). The tracer positions ξn in the first
stage of the stroboscopic map P (ξ0) are indicated by black
markers and delineate a thin shell centered on the chaotic
sea in the original spheroid [Fig. 2(a), left], signifying similar
dynamics as before. However, the second stage of the tracer
evolution (magenta markers) involves a major departure from
the unperturbed dynamics: the tracer enters (and periodically
alternates between) a pair of tubes (emerging near the above-
mentioned islands) and progressively migrates away from said

spheroid. Basically any tracer on any spheroid delineates such
tube-and-shell structures for arbitrary top-wall perturbation
(θ ′, ε); alternative perturbation by weak fluid inertia via Re ∼
O(10−3–10−2) has the same effect [12–14,20]. Moreover, an
entirely different system, i.e., the above-mentioned magnetic-
bead-driven microflow, also exhibits this behavior [15]. This
implies that the physical topology of flows with spheroidal
invariant surfaces generically consists of tube-and-shell struc-
tures as shown in Fig. 2(b).

Critical for the emergence of tube-and-shell structures is
the coexistence of islands and chaotic seas of comparable size
within the invariant spheroids so as to facilitate the formation
of both tubes and shells upon perturbation. This requires
intrasurface Hamiltonian dynamics in the unperturbed system
sufficiently far away from the integrable state. Intrasurface
topologies close to the integrable state, namely, consist pre-
dominantly of islands and upon perturbation thus “fail” to
produce sizable chaotic shells necessary for tube-and-shell
merger.

Nontoroidal invariant surfaces of greater topological com-
plexity as well as quasi-2D representations of Lagrangian
transport in geophysical flows accommodate similar Hamil-
tonian dynamics as shown in Fig. 2(a) [17–19]. This strongly
suggests that the response to perturbation (including forma-
tion of tube-and-shell structures) demonstrated in Fig. 2(b)
likely generalizes to a broader class of systems involving re-
striction of Lagrangian motion to (subregions of) nontoroidal
invariant surfaces. Further exploration of this matter is beyond
the present scope, however.

The phenomenon causing tube-and-shell structures is de-
noted “resonance-induced merger” due to its correlation with
periodic lines, i.e., material curves of periodic points

ξ0 = �p(ξ0), (5)

that systematically return to their initial position after p
periods, in the unperturbed flow topology [9,12–15]. The
blue curve and green/yellow points in Fig. 2(b) indicate the
periodic line and relevant degenerate points (specified in
Sec. IV A), respectively, for shown instance of RIM. However,
two key issues remain open. First, RIM has been explicitly
demonstrated only in computational analyses; its physical
existence is to date supported only by circumstantial exper-
imental evidence [20]. Second, the underlying mechanisms
remain elusive; existing theory relies on the emergence of
isolated periodic points ξ0 according to (5) near perturbed
periodic lines yet, though valid for an analogous flow and
thus suspected here as well [15,20], fails to explain many
instances of RIM in the cylinder flow (including that in Fig. 2).
The current paper addresses these issues by (i) conclusive
experimental proof of RIM and (ii) a comprehensive theory
to explain the occurrence of RIM.

III. EXPERIMENTAL PROOF OF RIM

A. Long-term particle tracking

Experimental investigation of RIM involves direct mea-
surement of the (evolution of) the tracer positions ξn of stro-
boscopic maps P (ξ0) following (3) by 3D particle-tracking
velocimetry (3DPTV) using a modified version of the labora-
tory setup of [20] shown schematically (left) and in actuality
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FIG. 3. Laboratory setup for measurement of stroboscopic maps
using 3DPTV. (a) Schematic of the setup (adapted from [20]).
(b) Actual setup.

(right) in Fig. 3. This setup incorporates the following key
modifications (refer to [20] for other specifications). First, we
employ high-viscosity silicon oil AK30000 by Wacker GmbH
(kinematic viscosity ν = 0.03 m2/s, density ρ = 970 kg/m3)
for extremely close approximation of the Stokes limit (Re �
6.6 × 10−4). Second, we employ fluorescent polyethylene
tracer particles (density ρp = 1002 kg/m3, diameter dp =
75–90 μm) for enhanced imaging via fluorescence induced
by illumination via two arrays of LEDs on either side of
the test section [Fig. 3(a)]. Fluorescence, namely, yields a
far greater intensity compared to conventional illumination
and, by occurring at a color (red) different from the LEDs
(blue), admits optical elimination of the background. This
tremendously improves the tracking performance. Third, we
implement an interactive module to the tracking algorithm for
manual connection of segments of tracer paths upon visual
inspection. Paths identified as separate entities, namely, often
concern one tracer yet automated connection proves very
difficult and unreliable. This interactive procedure, though
laborious, gives a further significant improvement in tracking
performance.

These modifications in conjunction with a low seeding
density (around five particles per experiment) enable iso-
lation of sufficiently long Lagrangian trajectories to ex-
pose RIM. Moreover, the relative settling velocity Up/U =
|ρp − ρ|gd2

p/18ρνU ∼ O(10−6) and Stokes number St =
ρpd2

pU/18ρνR ∼ O(10−9) imply negligible effects of buoy-
ancy and inertia, respectively, on the particle dynamics and
thus indeed motion in accordance with passive tracers gov-
erned by kinematic equation (1).

B. Lagrangian dynamics in realistic flows

The experimental stroboscopic map P (ξ0) following (3) of
a tracer released at the same position ξ0 as in Figs. 2(a) and
2(b) is shown in Fig. 2(c) and reveals a striking resemblance
with the simulated perturbed state in Fig. 2(b) by revealing
the same progression from a thin shell (black) into a pair of
tubes (magenta). (The actual procedure is for practical reasons
reversed: the simulated stroboscopic maps in Figs. 2(a) and
2(b) concern a tracer released at the same position ξ0 as in
Fig. 2(c) [21]). Moreover, the experimental and numerical
structures have a similar spatial extent and correlation with
the simulated periodic line (blue). This is direct experimental
proof of RIM and a physical topology in the present flow

FIG. 4. Buoyancy-driven background circulation of magni-
tude v ∼ O (10−4 mm/s) due to a y-wise temperature drop 
T ∼
O(0.15 K) as measured by 3DPTV. (a) Top view. (b) Side view.

class that generically consists of corresponding tube-and-
shell structures. These findings consolidate the hypothesis
advanced in [20] that RIM, given explicit perturbation is
absent, in the experiments results from natural disturbances
and thus is inherent in realistic flows. The origin of these
disturbances is established below.

Close proximity to the Stokes limit means Re is consid-
erably below the range Re ∼ O(10−3–10−2) for significant
fluid inertia determined above and thus eliminates this as
experimental perturbation for RIM. This furthermore implies
that, given linearity of Stokes flows, the natural perturbation
stems from a superimposed background flow due to a forcing
other than the bottom wall (akin to e.g., the top-wall pertur-
bation in the simulations). The 3DPTV for a stationary bot-
tom wall indeed reveals a weak circulation (predominantly)
parallel to the yz plane of magnitude v ∼ O(10−4 mm/s) as
shown in Fig. 4 and suggests a buoyancy-driven flow. Tem-
perature measurements expose a minute y-wise temperature
drop 
T ∼ O(0.15 K) due to (inevitably) imperfect ambient
conditions that (upon verification by simulations in a 2D
square cavity using a commercial CFD package) is consistent
with such a circulation. The experimental perturbation is of
strength v/U ∼ O(10−4) relative to the bottom-wall velocity
U � 1 mm/s and thus is comparable to that of the simulations.
This quantitatively supports the experimental proof of RIM.
Moreover, given the perturbation has yet another origin, this
further demonstrates that its particular nature is immaterial.

IV. TOWARDS A COMPREHENSIVE THEORY FOR RIM

The spheroidal invariant surfaces each accommodate at
least one periodic point ξ0 following (5) on account of
Brouwer’s fixed-point theorem and the sets of points thus
formed, by virtue of continuity, coalesce into periodic lines
in the 3D domain. Hence such lines are inherent in the present
flow class and computational analyses implicate these entities
in RIM [9,12–14]. Thus the response of periodic lines to
perturbation forms the basis for the comprehensive theory for
RIM (including further experimental proof) developed below.
This leans on expression of the Lagrangian dynamics near
these entities in canonical forms that are valid under generic
and universal conditions irrespective of the particulars of the
flow system.
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FIG. 5. Simulated periodic lines in time-periodic cylinder flow for Re = 0 and D = 4. (a) Periodic lines inside the symmetry plane.
(b) Periodic lines outside the symmetry plane. Blue/red (dark/light gray), elliptic/hyperbolic (segments of) periodic lines; green star and green
star/yellow circle, degenerate points for αp = 2 and −2, respectively; shaded plane (perspective view)/tilted line (top view), symmetry plane
� = π/6.

A. Canonical dynamics near periodic lines

Periodic lines in the time-periodic cylinder flow (Re = 0
and D = 4 as before) consisting of periodic points following
(5) for p = 1 and 2 are given in Fig. 5 and hereafter denoted
period-1 and period-2 lines, respectively. These lines are
arranged relative to a symmetry plane � = π/6 (shaded);
they either coincide with or are reflected about the latter ac-
cording to Fig. 5(b) [14]. (Physical existence of periodic lines
is demonstrated experimentally in [20,22]). The highlighted
segments and points distinguish essentially different local
dynamics and such segmentation is typical of periodic lines
and crucial to the response to perturbations. Characterization
of the line segments embarks on expression of mapping (2) in
canonical form via its local linearization

ξ′
n+1 = F0ξ

′
n, F0 = ∂�0

∂ξ

∣∣∣∣
ξ0

, (6)

with ξ′ = ξ − ξ0 the local Cartesian reference frame at a
periodic point ξ0 on the periodic line and F0 the deformation
tensor for mapping �0 (subscript “0” indicates unperturbed
conditions). The dynamics in the eigenspace x of F0 are
described by the canonical map

xn+1 = F0xn, (7)

with F0 a linear operator that admits two nondegenerate cases
discriminated by

α = tr(F0) − 1, (8)

and corresponding with

F0(α) =
⎡⎣λ 0 0

0 λ−1 0
0 0 1

⎤⎦, F0(α) =
⎡⎣c −s 0

s c 0
0 0 1

⎤⎦, (9)

for |α| > 2 and |α| < 2, respectively, with coefficients

λ(α) = α

2
+

√(
α

2

)2

− 1, c(α) = cos μ = α

2
, (10)

and s = sin μ = √
1 − c2. Here z axis and planes z = const

represent the periodic line and spheroidal invariant surfaces,
respectively, in canonical space x. These planes correspond

with coordinate surfaces ζ3 = const of the curvilinear refer-
ence frame ζ adopted for the Hamiltonian representation (4)
of the system in physical space. The planar motion in (x, y)
directions corresponds with the local intrasurface Hamiltonian
dynamics in (ζ1, ζ2) directions near the periodic line in ques-
tion. Refer to Appendix A for a detailed discussion.

Discriminant (8) generically varies along a given periodic
line, meaning that these entities are in canonical space char-
acterized by a line-specific relation

α = α(z), (11)

which determines the unperturbed dynamics according to
(7) by a canonical operator (9) dependent on the local line
properties via F0[α(zn)]. Thus α = α(zn) governs the local
planar dynamics in the invariant surfaces z = const as follows
(colors refer to Fig. 5): hyperbolic orbits

(xn+1, yn+1) = (λxn, yn/λ) (12)

for |α| > 2 (red) and circular concentric orbits

(rn+1, ϑn+1) = (rn, ϑn + μ) (13)

for |α| < 2 (blue), with (r, ϑ ) standard polar coordinates fol-
lowing (x, y) = (r cos ϑ, r sin ϑ ) and coefficients (λ,μ) given
by (10). Line segments yielding (12) and (13) are denoted
“hyperbolic” and “elliptic,” respectively, and are separated by
degenerate points z̃ defined implicitly as

α (̃z) = αp = ±2, (14)

and termed “parabolic points.” The periodic lines in Fig. 5
accommodate such parabolic points both for αp = 2 (green)
and αp = −2 (green/yellow). Moreover, the unstable (stable)
manifold of hyperbolic line segments coincides in each in-
variant surface z = const with the x(y) axis and y(x) axis for
αp > 2 and αp < −2, respectively.

Existence of the above relations relies solely on continuity
and solenoidality of flow u underlying mapping (2). Thus the
canonical form is valid for periodic lines in basically any flow
subject to incompressibility. This generality and universality
extends to the perturbed canonical mapping introduced below
that derives from this form.
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B. Canonical dynamics for perturbed conditions

Arbitrary perturbation extends canonical map (7) to

xn+1 = Fxn + d, (15)

with the operator F to leading order given by

F =

⎡⎢⎣Aλ 0 0

0
B

λ
0

0 0 C

⎤⎥⎦, F =

⎡⎢⎢⎢⎢⎣
c′

√
C

− s′
√

C
0

s′
√

C

c′
√

C
0

0 0 C

⎤⎥⎥⎥⎥⎦, (16)

for |α| > 2 and |α| < 2, respectively, with C = 1/AB and

c′ = cos μ′ = (A + B) cos μ

2
√

AB
=

√
1 − s′2, (17)

where coefficients (λ,μ) are following (10). The additional
coefficients (A, B) = (1 + a, 1 + b) affect the deformation
characteristics of the unperturbed state via a = b = ε1 (equal-
ity permitted without loss of generality unless stated other-
wise) and vector

d = (0, 0, ε2) (18)

introduces a z-wise background drift normal to the invariant
surfaces. Thus parameters |ε1,2| � 1 control the perturba-
tion of a periodic line characterized by a given discriminant
α = α(z) following (11); canonical map (15) identifies with
its unperturbed counterpart (7) for ε1 = ε2 = 0. Refer to
Appendix B for derivation and parametrization of perturbed
map (15).

Canonical map (15) has an isolated periodic point

x∗ = (I − F )−1d = (0, 0, z∗), z∗ = ε2

1 − C
, (19)

and thus admits distinction of two relevant cases: presence
and absence of (an) isolated periodic point(s) in the domain
of interest. Presence can be represented by x∗ = 0 via z∗ = 0
(ε2 = 0); absence can be represented by placement of x∗
outside said domain via |z∗| � 1.

The general impact of perturbations on the dynamics near
periodic lines, assuming absence of a periodic point x∗ fol-
lowing (19), is determined by operator F. Comparing (9) and
(16) reveals that F retains the structure of F0, implying that
the basic nature of the dynamics is preserved. The perturbed
xy-wise orbits shadow the unperturbed ones and remain hy-
perbolic and elliptic for |α| > 2 and |α| < 2, respectively.
The fundamental departure from the unperturbed state exists
in the emergence of a z-wise drift zn+1 − zn ≈ ε2 for arbi-
trary nonzero ε2 and the inherent breakdown of the invariant
surfaces z = const, which manifests itself in dramatically
different ways for hyperbolic versus elliptic lines.

For hyperbolic lines, significant planar motion parallel to
the original invariant surface for regime α > 2 is in the x di-
rection and relates to the corresponding normal drift following

xn+1 − xn

zn+1 − zn
= γhxn, γh ≈ λ − 1

ε2
, γh � 1, (20)

implying a rapid x-wise divergence from the unperturbed
periodic line before an appreciable z-wise drift can develop
(Appendix C1). Likewise behavior occurs in the y direction

for regime α < −2. Hence planar motion along the unstable
manifold dominates over the normal drift and, in consequence,
confines tracers to a thin shell around the chaotic sea of the
corresponding invariant surface. Thus the perturbation has an
only marginal impact on the dynamics near hyperbolic lines.

For elliptic lines, on the other hand, planar (radial) motion
parallel to the original invariant surface is relatively weak, i.e.,

rn+1 − rn

zn+1 − zn
= γern, γe ≈ 1 − √

C√
Cε2

, |γe| � 1, (21)

implying prolonged (radial) entrapment near the original peri-
odic line in conjunction with an appreciable drift normal to
the unperturbed invariant surface (Appendix C2). Thus the
perturbation, in contrast with their hyperbolic counterparts,
has a major impact on the dynamics near elliptic lines. Here
this induces helical motion around the z axis and transverse to
the original invariant surfaces along invariant tubes [for any
|α(z)| < 2] parametrized by

G(r, z) = r2(z − z∗), (22)

and approximately of constant radius for |z∗| � 1. Relation
(22) follows from (15) and (16) upon elimination of ε2 via
(19) and expression of planar motion in polar coordinates.
This gives C = r2

n/r2
n+1 = (zn+1 − z∗)/(zn − z∗) and implies a

constant of motion G(rn+1, zn+1) = G(rn, zn) and, inherently,
tubular invariant surfaces described by its level sets. Both
the radial and normal displacements scaling (reciprocally)
with coefficient C stem from condition det(F ) = det(F ) = 1
and thus incorporate the solenoidality of flow u underlying
mapping (2).

The drift normal to the original invariant surfaces occurs
for any perturbation and thus causes the physical topology
to generically consist of chaotic shells and tubes instead of
chaotic seas and islands within (spheroidal) invariant surfaces.
Moreover, these structures, rather than coexisting, merge into
tube-and-shell structures as shown in Figs. 2(b) and 2(c) by
RIM.

Resonances in the angular motion are key to RIM by
enabling the escape of tracers from tubes (into a chaotic
environment) through interruption of the so-called averaging
principle that underlies the survival of tubes under weak
perturbation [4]. Such resonances—and resulting escapes—
are widely studied yet exclusively for local defects in tubes
on fully elliptic lines (i.e., case |α| < 2 of the canonical map).
Generalize to this end the spatial variation of the periodwise
angular displacement in (13) from μ(zn) = μ(z0), ensuing
from (9) and (11), to μ = μ(rn, zn) = μ(r0, z0) (which is
necessary only to capture local resonances). Local defects
due to resonances occur if the angular displacement becomes
commensurate with 2π in certain curves in the rz plane, i.e.,

μ(r, z) = 2πk/m, (23)

with (k, m) arbitrary integers, where the surfaces of revolu-
tion described by the curves are termed “resonance sheets.”
This triggers either random switching between tubes (de-
noted “resonance-induced dispersion” or “scattering”) near
the resonance sheets or prolonged oscillation around the latter
(“capture into resonance”) [5–7].
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RIM, instead of local defects through resonances (23), in-
volves full truncation of such tubes and depends solely on the
properties of the periodic line characterized by discriminant
α = α(z) following (11). The canonical map enables distinc-
tion of three truncation scenarios and thus yields a comprehen-
sive theory that (as opposed to current theories) explains all
instances of RIM. Two of these scenarios involve resonance
phenomena due to commensurate μ following (23) yet for
describing full tube truncations necessitate only μ = μ(z) via
(11). Moreover, the canonical map enables demonstration that
RIM indeed involves merger of (instead of random switching
between) Lagrangian entities. This comprehensive theory is
elaborated below.

The (un)perturbed canonical map is nonlinear via the de-
pendence of discriminant (11) in operator F0 in (7)—and thus
also F in (15)—on the normal coordinate z yet with a special
structure in that the dynamics are (according to conventional
perturbation theory) linear in the planar coordinates (x, y)
within an invariant surface z = const. Thus the canonical map
can adequately capture the local (perturbed) dynamics asso-
ciated with a given periodic line with arbitrary characteristics
including segmentation.

Possible perturbation-induced nonlinear interactions with
entities of nearby periodic lines, particularly between chaotic
trajectories around a hyperbolic line segment and islands on
neighboring elliptic lines, are beyond the perturbed canonical
map. However, the premise of intrasurface Hamiltonian dy-
namics in the unperturbed system sufficiently far away from
the integrable state (Sec. II B) strongly diminishes (or even
precludes) such islands in a chaotic sea. Thus corresponding
nonlinear interactions generically are (if existent at all) highly
localized in the flow regime relevant for RIM.

C. RIM due to formation of periodic points

The first RIM scenario hinges on the formation of an
isolated periodic point x∗ following (19) near a perturbed
elliptic line (|α| < 2), which can be identified with the origin
without loss of generality (Sec. IV B). The local dynamics
around x∗ are described by map (15) for |α| < 2 and ε2 = 0
and (consistent with findings in [6]) retain the nature of the
elliptic line in that tracers perform helical motion—describing
tubes—around the associated one-dimensional (1D) manifold
W1D (z axis). However, contrary to cases devoid of periodic
points, the z-wise drift reverses on either side of the associated
2D manifold W2D (plane z = 0). The z-wise motion in the
perturbed map (15), namely, simplifies to zn+1 = Czn for ε2 =
0 and thus gives rise to

zn+1 > zn for zn > 0 and zn+1 < zn for zn < 0,

for C > 1. Case C < 1 yields the opposite dynamics, i.e.,

zn+1 < zn for zn > 0 and zn+1 > zn for z0 < 0,

and causes the helical paths to diverge upon approaching
W2D as illustrated in Fig. 6 by the stroboscopic map (left) of
a tracer (black) released at x0 = (0.2, 0.2,−2) (red) below
W2D (gray) of x∗ (magenta) using α = 0.2 in Fig. 6 (right)
as characteristic discriminant α(z) following (11) (ε1 = 10−3,
ε2 = 0). Thus W2D truncates the tubes into two families of

FIG. 6. Tube-shell merger (left) due to formation of isolated
periodic point x∗ (magenta sphere) near the elliptic line (blue),
characterized by |α(z)| < |αp| = 2 (right), demonstrated by the per-
turbed canonical map (left) of a single tracer (black, time progression
upwards) released at x0 (red star). Gray horizontal plane, W2D of x∗;
cyan funnel, invariant surfaces describing tube-and-shell structures.

funnel-shaped invariant surfaces parametrized by (22) for
z∗ = 0 (cyan).

The above RIM scenario occurs in the magnetic-bead-
driven flow in [15] and is, by analogy, also attributed to RIM
in the cylinder flow [20]. However, computational studies
reveal that the instances of RIM observed in this system
(including Fig. 2) are in fact devoid of periodic points and
thus beyond the associated theory in [15] (which is based on
[6]). This includes instances of RIM in [15] due to the sudden
deflection of 1D manifolds W1D (upon which tubes are cen-
tered) into chaotic shells at locations without other periodic
points.

The absence of periodic points lends further credence to an
essentially different RIM scenario suggested in [12–14] (and
its name giver): tube-shell merger induced by resonances in
the dynamics associated with the periodic line. RIM occurs
according to this scenario near positions z on the periodic line
where the angular displacement μ = μ(z) following (10) sat-
isfies condition (23). This hypothesis is validated hereafter by
theoretical analysis and experimental proof and advances two
further scenarios: RIM due to local and global segmentation
of periodic lines (Sec. V). This furthermore demonstrates that
RIM indeed involves merger of Lagrangian entities—instead
of random switching reminiscent of “resonance-induced dis-
persion” or “scattering” (Sec. IV B)—by exposing the exis-
tence of invariant surfaces that smoothly extend from the tubes
into the chaotic shells (Sec. VI). Thus existing theory, holding
only for RIM due to isolated periodic points, is expanded to a
comprehensive theory for all instances of RIM.

V. RIM DUE TO SEGMENTATION OF PERIODIC LINES

A. Resonances on periodic lines

The resonance phenomena described in Sec. IV B interrupt
the averaging principle that underlies the survival of tubes
under weak perturbation and thus causes local defects in these
entities [4–7]. RIM involves an essentially different resonance
phenomenon that concerns the transition between elliptic and
hyperbolic dynamics according to (12) and (13), respectively.
Regions with former and latter dynamics, namely, join at
invariant surfaces z = const in which discriminant α(z) fol-
lowing (11) identifies with the parabolic limit (14) and yields
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an angular displacement μ = μ(z) through (10) that satisfies
condition (23). This gives two distinct cases.

(1) Case α (̃z) = αp = 2 yields μ(̃z) = 0 and correspond-
ing coefficient λ(̃z) = 1. Both (12) and (13) collapse on
(xn+1, yn+1) = (xn, yn), implying an invariant surface z̃ =
const consisting entirely of period-1 points.

(2) Case α (̃z) = αp = −2 yields μ(̃z) = π and corre-
sponding coefficient λ(̃z) = −1. Here (12) and (13) col-
lapse on (xn+1, yn+1) = (−xn,−yn), implying (xn+2, yn+2) =
(xn, yn) and thus an invariant surface z̃ = const consisting
entirely of period-2 points.

Thus resonances underlying RIM are in essence special
cases of (23) in that the resonance sheets identify with in-
variant surfaces z = const. These sheets in principle cause the
same defects in tubes as in the resonance phenomena follow-
ing Sec. IV B yet their impact on the dynamics, notwithstand-
ing this similarity, is fundamentally different. First, the reso-
nance sheets thus formed, akin to the 2D manifold associated
with RIM due to periodic points (Sec. IV C), fully truncate
the tubes instead of causing only local defects. Second, these
sheets, given their emergence on the boundary between ellip-
tic and hyperbolic line segments, facilitate the migration of
tracers into chaotic shells and vice versa. This gives rise to
two further RIM scenarios complementary to that following
Sec. IV C: RIM due to local and global segmentation of
periodic lines into elliptic and hyperbolic segments. This is
elaborated in Secs. V B and Sec. V C, respectively. Section
V D expands the scope of RIM due to local segmentation by
demonstrating that this scenario in fact includes periodic lines
consisting entirely of elliptic segments separated by parabolic
points.

B. Local segmentation

Local segmentation may occur near parabolic points z̃ fol-
lowing (14) on elliptic periodic lines as indicated by green and
blue, respectively, in Fig. 2(b). Such points are accompanied
by small line segments that approach the parabolic limit α =
αp = ±2 up to a tolerance 
 � 1 and any sections within this
tolerance for which

|αp| < |α| � |αp| + 
 (24)

demarcate small weakly hyperbolic segments on an otherwise
elliptic line. [Green markers in Fig. 2(b) in fact delineate
line segments within tolerance 
 = 5 × 10−3.] The impact of
such local segmentation on the perturbed dynamics without
periodic points admits representation by map (15) using ε2 >

0 and discriminant

α(z) = γ |z| + β, |β| > |αp| = 2, (25)

yielding a weakly hyperbolic segment following (24) for

 = |β| − 2 and bounded by parabolic points z̃ = ±
/γ .
Figures 7(a) and 7(b) demonstrate the two possible cases
αp = 2 and −2, respectively, identified in Sec. V A by the
stroboscopic map (left) of a tracer released at x0 = (1, 1,−1)
and characterized by shown discriminant α(z) (right) for
(ε1, ε2) = (10−5, 10−3) and (γ , β ) = (±0.5,∓2.01) (yield-
ing z∗ = 50 and z̃ = ±0.02): (i) deflection of a single orbit
from the tube on the lower elliptic segment (blue) along
the unstable manifold (dark gray) of the hyperbolic seg-

FIG. 7. Tube-shell merger due to segmentation of periodic lines
demonstrated by the perturbed canonical map (left) of a single
tracer (black, time progression upwards) released at x0 (red star)
near the periodic line (vertical axis; blue/red, (dark/light gray) el-
liptic/hyperbolic) characterized by α(z) (right). (a) Local segmen-
tation for αp = 2. (b) Local segmentation for αp = −2. (c) Global
segmentation for αp = 2. (d) Global segmentation for αp = −2.
Dashed line in α(z), parabolic limit αp = ±2; light/dark gray vertical
planes, stable/unstable manifolds of the hyperbolic line segment;
cyan, diverging upright cylinders, invariant surfaces describing tube-
and-shell structures.

ment (red) for β = 2.01 upon crossing resonance sheet z̃ =
−0.02 corresponding with parabolic limit α (̃z) = αp = 2 and
(ii) emergence of two deflected orbits for β = −2.01 upon
crossing the resonance sheet z̃ = −0.02 corresponding with
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parabolic limit α (̃z) = αp = −2. Single versus double orbit(s)
occur due to period-1 (μ(̃z) = 0) versus period-2 (μ(̃z) = π )
resonance, respectively, at given parabolic limits according to
Sec. V A.

Lagrangian motion is in the perturbed map restricted to
newly formed invariant surfaces indicated in cyan for shown
tracers in Figs. 7(a) and 7(b) that are topologically equivalent
to the funnel-shaped invariant surfaces in Fig. 6 for the RIM
scenario according to Sec. IV C. This implies that RIM,
as opposed to random dispersion due to resonance-induced
defects in tubes, indeed merges tubes and shells. The origin
and structure of these invariant surfaces are elaborated in
Sec. VI. Furthermore, Sec. V D demonstrates that RIM due to
local segmentation includes periodic lines consisting entirely
of elliptic segments separated by parabolic points.

C. Global segmentation

Global segmentation involves, instead of small weakly hy-
perbolic segments following (24) on an otherwise elliptic line,
hyperbolic and elliptic segments of similar extent. Consider to
this end map (15) for discriminant

α = γ z + β, β = αp = ±2, (26)

partitioning the periodic line into an elliptic (z < 0) and
hyperbolic (z > 0) segment at parabolic point z̃ = 0. Fig-
ures 7(c) and 7(d) demonstrate the two possible cases αp =
±2 (Sec. V A) by a tracer released at x0 = (1, 1,−1) for
(ε1, ε2) = (10−5, 10−3) and γ = 0.01 (z∗ = 50): deflection of
a single and pair of orbit(s) from the tube on the elliptic seg-
ment (blue) along the unstable manifold (gray) of the hyper-
bolic segment (red) for α (̃z) = αp = 2 and −2, respectively.
Again, cases αp = ±2 distinguish period-1 versus period-2
resonances (Sec. V A) and Lagrangian motion is restricted to
invariant surfaces (cyan).

Thus global segmentation basically yields dynamics com-
parable to that ensuing from local segmentation. The differ-
ence between former and latter primarily exists in the extent
and interaction of the associated invariant surfaces and their
impact on the dynamics. This is elaborated in Sec. VI.

D. Local segmentation revisited

Behavior equivalent to that ensuing from local segmenta-
tion of periodic lines following Sec. V B occurs near parabolic
points on otherwise entirely elliptic lines. The dynamics on
line segments close to the parabolic limit αp = ±2, demar-
cated by a discriminant

αmin � |α| � |αp|, αmin = 4
√

AB

A + B
� |αp|, (27)

namely, undergoes a qualitative change from elliptic unper-
turbed dynamics governed by operator F0 (right) in (9) to
hyperbolic perturbed dynamics governed by operator F (left)
in (16) (Appendix D). Thus a periodic line partitioned only
into elliptic segments by parabolic points yields perturbed dy-
namics essentially similar as for “actual” local segmentation
in that line segments meeting (27) cause the same behavior
as local hyperbolic segments following (24). This implies a
“virtual local segmentation” of the elliptic line near parabolic
points.

FIG. 8. Tube-shell merger due to virtual local segmentation of
the elliptic periodic line (right; vertical axis) characterized by α(z)
(left) with the parabolic point at z̃ = 0 demonstrated by the perturbed
canonical map (right) of a single tracer (black, time progression up-
wards) released at x0 (red star). (a) αp = 2. (b) αp = −2. Dynamics
near blue (dark gray) and red (light gray) line segments remains
elliptic and becomes hyperbolic, respectively, upon perturbation.
Dashed line in α(z), parabolic limit αp = ±2.

Property αmin < |αp| for any perturbation a �= b means that
virtual local segmentation is generic and basically always
happens for some finite line segment near parabolic points
on an elliptic line (Appendix D). (Note that, unlike the
other response scenarios, inequality a �= b is essential here).
However, such line segments—and thus local emergence of
hyperbolic dynamics—are confined to the direct proximity
of said points; significant perturbation |a, b| ≈ 0.1 gives an
only minute departure αmin ≈ 1.99 from the parabolic limit.
(Refer to Fig. 14 for a full visualization of αmin versus the
perturbation strength). Hence the discriminant on an elliptic
line, save these localized regions near parabolic points, meets
α < αmin and the perturbed dynamics generically retains the
elliptic nature of the unperturbed state.

Consider an elliptic line characterized by a discriminant
α(z) � 2 following (25), with γ = −0.01 and β = αp = 2,
partitioned by a parabolic point z̃ = 0 [Fig. 8(a), left]. Pertur-
bation a = −b = ε1 and drift d following (18), with (ε1, ε2) =
(0.02, 10−3), yields αmin = 1.9996 and a line segment −̃z∗ �
z � z̃∗, with

z̃∗ = (αmin − β )/γ = 0.0392, (28)

meeting condition (27). This implies virtual local segmen-
tation and the perturbed dynamics in Fig. 8(a) (right) of a
tracer (black) released at x0 = (1, 1,−1) (red) indeed exhibits
the same deflection from the periodic line upon approaching
line segment |z| � z̃∗ (highlighted in red) as found for actual
local segmentation in case of αp = 2 in Fig. 7(a). Similar
equivalence occurs for case αp = −2; compare to this end
Fig. 8(b) with Fig. 7(b).
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An important (quantitative) difference between actual and
virtual local segmentation is that the latter constitutes a far
weaker mechanism. Similar discriminant and perturbation
as for the local segmentation in Fig. 7(a), namely, yield
|αp| − αmin ∼ O(10−10) and z̃∗ ∼ O(10−9), signifying a neg-
ligible effect. Thus sufficiently strong perturbation, i.e.,
“large” departures of (A, B) in (27) from unity, and sufficiently
flat profiles for the discriminant near parabolic points, i.e.,
“small” γ in (28), are imperative for a significant impact by
virtual segmentation.

Both actual local and global segmentation strictly also
involve virtual local segmentation in that the dynamics near
portions of the elliptic line segment(s) adjacent to the hy-
perbolic segment meeting (27) become hyperbolic upon per-
turbation. However, this only slightly shifts the separation
between perturbed elliptic and hyperbolic dynamics from the
parabolic point |αp| = 2 to |α| = αmin and otherwise is incon-
sequential for the corresponding RIM scenarios. Moreover,
the relative weakness of RIM due to virtual local segmentation
established above renders this shift negligible for perturbation
strengths typical of RIM due to local and global segmentation.

E. Typical manifestations of RIM in realistic flows

The response scenarios developed in Secs. V A–V D enable
explanation of the instance of RIM shown in Figs. 2(b)
and 2(c). The fact that the tube-shell merger occurs near a
parabolic point αp = −2 (green/yellow marker) on an other-
wise entirely elliptic periodic line (blue curve) implies virtual
local segmentation according to Fig. 8(b) as underlying mech-
anism. Further investigation reveals that tubes smaller than
those in Fig. 2 tend to continue past the parabolic point by
randomly switching between tube segments on either side of
the hyperbolic region (not shown) reminiscent of “scattering”
following [7]. This reflects the relative weakness of RIM due
to virtual local segmentation pointed out in Sec. V D and
suggests that for this scenario typically only the outer tubes
sufficiently close to the surrounding chaotic sea exhibit global
behavior according to Figs. 2(b) and 2(c). The switching be-
tween the inner tubes nonetheless involves a highly localized
manifestation of RIM in that tracers cross over via a thin
hyperbolic layer separating two tube families (Sec. VI). This
is demonstrated below for another instance of RIM.

Further manifestations of RIM in the cylinder flow due to
the segmented periodic lines in Fig. 5 are shown in the simu-
lated stroboscopic map of a single tracer in Fig. 9(a). Parabolic
points I–III and IV concern actual (αp = −2) and virtual
(αp = 2) segmentation, respectively, and time progression is
from IV to I. The dynamics at points I–III are, similar to Fig. 2,
entirely consistent with the canonical behavior in Figs. 7(a)–
7(d) corresponding with actual segmentation of periodic lines
into elliptic and hyperbolic parts. Point I separates elliptic
and hyperbolic segments of comparable extent and thus corre-
sponds with global segmentation. However, the close proxim-
ity of points II and III induces behavior characteristic of local
segmentation by resulting in nontrivial interaction between
the perturbed dynamics near the separated elliptic segments:
the tracer randomly switches between the invariant surfaces
associated with both instances of RIM (cyan in Fig. 7) and
thus effectively crosses over from one tube segment into

FIG. 9. Manifestations of RIM in cylinder flow due to segmented
periodic lines (color coding and labeling as before) demonstrated
by the stroboscopic map of a single tracer. (a) Simulated map.
(b) Experimental map. Parabolic points I–III and IV concern actual
(αp = −2) and virtual (αp = 2) segmentation, respectively; time
progression is from IV to I.

another via the intermediate hyperbolic region. Figure 9(b)
gives the corresponding experimental stroboscopic map (and
simulated periodic line) and its close agreement with Fig. 9(a)
provides further experimental proof of the physical existence
and universality of RIM due to segmentation of periodic lines.

Figure 10(a) shows the continuation of the simulated stro-
boscopic map of the single tracer in Fig. 9(a) at parabolic
points I (cyan) and IV (magenta) forward and backward in
time, respectively. The tracer beyond point I clearly migrates
from the tube segment into a chaotic shell and thus supports
the above finding of RIM due to global segmentation. The
experimental stroboscopic map of a nearby tracer in Fig. 10(b)
exposes a similar chaotic shell and its coincidence with the
simulated chaotic shell demonstrated in Fig. 10(c) (cyan ver-
sus blue) physically validates the location and extent of this
shell and thus, indirectly, further validates this instance of
RIM.
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FIG. 10. Further investigation of RIM due to segmented periodic lines in Fig. 9(a). (a) Continuation of the simulated stroboscopic map
of a single tracer in Fig. 9(a) (black) at parabolic points I (cyan/light gray) and IV (magenta/medium gray) forward and backward in time,
respectively. (b) Experimental chaotic shell at point I. (c) Coincidence of the experimental (blue/dark gray) and simulated (cyan/light gray)
chaotic shell.

Parabolic point IV sits on an entirely elliptic segment of the
periodic line, implying, similar to the situation in Fig. 2(b),
virtual segmentation upon perturbation. However, in contrast
with a global manifestation of RIM according to Fig. 2(b),
here the tube continues past the parabolic point as demon-
strated in Fig. 9(a). This suggests essentially the same highly-
localized manifestation of RIM as observed before for the
inner tubes corresponding with the behavior in Fig. 2(b) (not
shown): tracers switching tube segments via a thin hyperbolic
layer. The rz projection of the stroboscopic map in Fig. 11
substantiates this by exposing a distinct gap between the tube
segments (distinguished by black and magenta) on either side
of parabolic point IV (green marker).

Parabolic points I and II in Fig. 9 are intersections of the
segmented period-1 line in the symmetry plane (shaded) with
the shown pair of period-2 lines and thus correspond with
case αp = −2 in Fig. 7(d). The resulting period-2 resonance
(Sec. V A) induces oscillatory dynamics at points I and II
and this is particularly clear in the simulated stroboscopic
map in Fig. 12(a). The shown tracer, namely, enters a pair
of period-2 tubes, forming in the chaotic zone at point I
around the unperturbed period-2 line, and thus describes a
bifurcating tube. Formation of the period-2 tubes and discrim-

FIG. 11. Highly localized manifestation of RIM at point IV in
Fig. 9(a) due to virtual segmentation upon perturbation: switching
between tube segments (black and magenta/medium gray) via the
hyperbolic layer at point IV (green/light gray marker).

inating whether tracers enter these entities (Fig. 12) or the
chaotic zone (Fig. 9) is beyond the canonical map following
Sec. IV B. This is an essentially nonlinear phenomenon that
involves perturbation-induced interaction of chaotic trajec-
tories around the period-1 hyperbolic segment with elliptic
islands of the nearby period-2 elliptic lines emanating from
said line intersections. The assumption of intrasurface Hamil-
tonian dynamics sufficiently far away from the integrable
state implies that such islands—and the corresponding tube
bifurcations—are in general highly localized (Secs. II B and
IV B) and the system generically exhibits RIM following
Fig. 10(a). However, the emergence of sizable bifurcating
tubes as shown in Fig. 12(a) means that here islands within
the intrasurface chaotic sea remain significant and the above
assumption locally breaks down. The experimental strobo-
scopic map in Fig. 12(b) closely agrees with its computational
counterpart and thus validates the tube bifurcation associated
with RIM. Moreover, emergence of tube-and-shell structures
due to global segmentation at point I as shown in Fig. 10(a)
(black/cyan) that envelop the bifurcating tubes in Fig. 12
implies that the latter, notwithstanding their substantial size,
indeed are localized nonlinear phenomena within an instance
of RIM.

Essentially similar manifestations of RIM due to line seg-
mentation occur for all configurations of the 3D cylinder flow
considered to date [12–14] as well as in the above-mentioned
cases in the magnetic-bead-driven microflow in [15] without
isolated periodic points. Hence expansion of existing theory
relying on the emergence of such points (Sec. IV C) by the
RIM scenarios according to Secs. V B–V D indeed yields a
comprehensive theory.

VI. INVARIANT SURFACES DUE TO RIM

RIM both by periodic points and line segmentation yields
invariant surfaces (cyan in Fig. 7) and thus indeed accom-
plishes actual tube-shell merger. Invariant surfaces associated
with periodic points are parametrized by (22) for z∗ = 0 as
explained before (Sec. IV C); their formation via line segmen-
tation is investigated below.

Consider RIM due to global segmentation of a periodic
line with discriminant (26) for αp = 2 [Fig. 7(c)]. The corre-
sponding invariant surface S (G) (cyan) consists in the elliptic
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FIG. 12. Tube bifurcation by period-2 resonance (αp = −2) at
the parabolic point (green star) between elliptic (blue/dark gray)
and hyperbolic (red/light gray) segments of the period-1 line in the
symmetry plane (shaded) demonstrated by the stroboscopic map of a
single tracer. (a) Simulated map. (b) Experimental map.

region (α < 2) of tubes parametrized by G following (22) and
terminating in resonance sheet z = z̃ (= 0) at circles

C(G) : x2
0 + y2

0 = r2
0 = G/(̃z − z∗). (29)

The extension of each invariant surface S (G) into the hyper-
bolic region (α > 2) is composed of the union of forward
mappings Mn(D), with M according to (7) and n � 1, of
the tube end D bounded by circle C following (29) and its
backward mapping M−1(C). Hence the hyperbolic portion of
each invariant surface smoothly “grows” out of its tube end D
as demonstrated in Fig. 13(a) for the invariant surface (cyan)
of the tracer (black orbit) in Fig. 7(c) emerging from circle C
(magenta) centered on the parabolic point z̃ = 0 (black star).

The forward mappings of circle C(G) [cyan curves in
Fig. 13(a)] bound the evolving tube ends D that describe the

FIG. 13. Hyperbolic portions of invariant surfaces for RIM due
to segmentation of the periodic line (dashed) at parabolic points
(stars). (a) Invariant surface for global segmentation (cyan/light gray)
for a tracer (black) expelled into a chaotic shell and neighboring
surface (blue/dark gray). (b) Invariant surfaces for local segmentation
(cyan/light gray and red/dark gray) for tracers (black/gray) dots
expelled into/entrained from the shell. Magenta (dark gray)/green
(light gray), circles connecting elliptic/hyperbolic surface portions.

invariant surface S (G) and are given by

(xn/Anλ̃n)2 + (xnλ̃n/Bn)2 = r2
0 , (30)

with λ̃n = �n−1
i=0 λ(zi) > 1, describing ellipses of radius

rmaj = Anλ̃nr0 > r0, rmin = Bnr0/̃λn < r0, (31)

along the major and minor axes, respectively. Thus the invari-
ant surfaces (i) constitute (along the entire line) a continuous
family of smooth surfaces S (G) parametrized by G that are (ii)
topologically tubes and (iii) self-similar in r. Hence positions
on S (G1) (cyan) and S (G2) (blue) in Fig. 13(a) for any z2 = z1

relate via x2/x1 = y2/y1 = r2/r1.
The exponential growth or diminution of radii rmin,maj

following (31) with progressing mapping n signifies rapid
contraction and stretching of the elliptic cross section of
shown invariant surfaces with increasing z in Fig. 13(a)
along the minor and major axes, respectively, and reflects
the impact of the stable (dark gray) and unstable (light gray)
manifolds on the dynamics. This results in an extreme x-
wise divergence of the invariant surfaces upon entering the
hyperbolic region as predicted by (20); contrast to this end the

053109-12



PHYSICAL TOPOLOGY OF THREE-DIMENSIONAL … PHYSICAL REVIEW E 101, 053109 (2020)

relative thickness 
z = (zmax − zmin)/r0 ≈ 0.05 and aspect
ratio (xmax − xmin)/
z ≈ 70 of shown hyperbolic portions
with the only minute excursion α − 2 � 7 × 10−3 into the
hyperbolic regime. Hence entering the hyperbolic region im-
mediately triggers a sudden deflection of tracer paths into a
thin chaotic shell as demonstrated in Fig. 7(c).

The above concerns expulsion of tracers from tubes into
the chaotic shell via the unstable manifold for αp = 2 as
demonstrated in Fig. 7(c) yet this readily extends to case
αp = −2 in Fig. 7(d). Moreover, entrainment of tracers from
the chaotic shell into tubes may occur [12–15,20]. The canon-
ical map captures this by backward mapping xn = M−n(x0),
yielding a path that enters the tube along the stable manifold
(manifolds switch stability upon time reversal). RIM at points
(I,III) and II in Fig. 9(a), e.g., corresponds with expulsion and
entrainment for αp = −2, respectively.

The invariant surfaces for local segmentation as demon-
strated in Figs. 7(a) and 7(b) are in essence similar to the
above global counterparts. Surfaces with an elliptical cross
section following (30) emerge from the bounding circles C(G)
following (29) of the lower tube family in resonance sheet
z = z̃ < 0; Fig. 13(b) gives the invariant surface (cyan) and
corresponding circle (magenta) for the tracer expelled from
the lower tube (black orbit) in Fig. 7(a) for αp = 2. The princi-
pal difference with global segmentation is that simultaneously
entrainment of tracers from the chaotic sea into the upper
tube family across the hyperbolic region bounded by reso-
nance sheet z = z̃ > 0 occurs. The corresponding invariant
surfaces are demarcated by backward mappings of the tube
end attached to the upper bounding circles C(G). Figure 13(b)
gives this circle (green) and resulting surface (red) for a tracer
passing through x′

n = −x0, with x0 the initial position of the
tracer expelled via the cyan surface, and following the gray
orbit during entrainment.

Thus two families of invariant surfaces emerge for RIM
due to (virtual) local segmentation [Fig. 13(b)]: surfaces
SR(G) associated with tracer expulsion into the chaotic shell
from one tube family (cyan) via the unstable (dark gray)
manifold and surfaces SA(G) associated with tracer entrain-
ment from this shell into the companion tube family (red) via
the stable (light gray) manifold. Thus former and latter tube
families behave as repellers (“R”) and attractors (“A”) for the
tracer dynamics. Both processes involve, as before, sudden
deflection of the tracer paths due to extreme divergence of
surfaces SR,A in the hyperbolic region [relative thickness

z ≈ 0.03 and aspect ratio (xmax − xmin)/
z ≈ 1000 for α −
2 � 10−2].

Simultaneous expulsion into and entrainment from the
chaotic shell causes certain tracers to cross over from the
tubes in SR to those in SA. This is reminiscent of “scatter-
ing” following [7] yet here occurs, instead of via defects in
tubes, through a finite-thickness hyperbolic layer separating
two tube families. The corresponding paths coincide with the
intersections

L(G1, G2) = SR(G1) ∩ SA(G2), (32)

and the subset of tracers crossing over is determined by the ra-
dial extent of the tubes. The parameters are, namely, bounded
as 0 � G1,2 � Gmax, with Gmax = r2

max(z∗ − zref ) and rmax the
maximum tube radius at an arbitrary reference plane z = zref.

This restricts tracers crossing over to but a small subset; the
vast majority is expelled into the chaotic shell. Consider for
illustration the lower/upper tube families demarcated by the
magenta/green circles in Fig. 13(b). The intersection curve
of SA (red) and SR (cyan) describes one “cross-over” path
following (32) in the shown quadrant; a companion path is
defined in the same way in each of the other quadrants. This
reveals that only tracers exiting the lower tube family in the
narrow strip bounded by the intersection of SA with the lower
interface of the hyperbolic layer (red curve within magenta
circle) and the y axis enter the upper tube family; all other
tracers exiting the lower tube family are expelled into the
chaotic shell.

The emergence and structure of invariant surfaces for
actual local segmentation readily generalize to virtual local
segmentation. Essentially similar hyperbolic portions of in-
variant surfaces as in Fig. 13(b), e.g., emanate for the case
shown in Fig. 8(a) from circular tube ends (green/magenta) in
z-wise planes attached to the end points z = ±̃z∗ (stars) of the
line segment −̃z∗ � z � z̃∗ (dashed) on the periodic line that
meets condition (27).

It must be stressed that strict differentiation between global
and local segmentation may be difficult (if not impossible) in
realistic flows. Revisit to this end the typical manifestations
of RIM due to line segmentation discussed in Sec. V E and
shown in Fig. 9. The extent of the segments demarcated
by parabolic points II and III implies global segmentation
yet the interaction between invariant surfaces is reminiscent
of local segmentation. Thus the dynamics in realistic flows
may exhibit features of both RIM scenarios. However, this
is inconsequential for the validity and universality of the
phenomena described above.

VII. CONCLUSIONS

The scope of the present paper is the response of La-
grangian flow topologies of 3D time-periodic flows consisting
of spheroidal invariant surfaces to perturbation. Such invariant
surfaces generically accommodate nonintegrable Hamiltonian
dynamics and, in consequence, intrasurface topologies com-
posed of islands and chaotic seas. Computational studies
predict a response to arbitrary perturbation that is dramat-
ically different from the classical case of toroidal invariant
surfaces: said islands and chaotic seas evolve into tubes and
shells, respectively, that merge into “tube-and-shell” struc-
tures consisting of two shells connected via (a) tube(s) by a
mechanism termed “resonance–induced merger”. This paper
provides conclusive experimental proof of RIM by direct
measurements of long-term Lagrangian motion of passive
tracers by 3D particle-tracking velocimetry. Moreover, these
3DPTV studies demonstrate that the underlying unperturbed
state is a singular limit that exists only for ideal conditions and
cannot be achieved in a physical experiment. Hence the per-
turbed state of tube-and-shell structures constitutes the phys-
ical topology in realistic 3D unsteady flows with spheroidal
invariant surfaces accommodating dynamics sufficiently away
from the integrable state.

A comprehensive theory (supported by 3DPTV experi-
ments) reveals that RIM ensues from perturbed periodic lines
(i.e., curves consisting of material points that systematically
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return to their initial position) via three possible scenarios:
truncation of tubes by (i) manifolds of isolated periodic
points emerging near elliptic lines or by either (ii) local or
(iii) global segmentation of periodic lines into elliptic and
hyperbolic parts. The RIM scenario for local segmentation
includes a perturbation-induced change from elliptic to hyper-
bolic dynamics near degenerate points on entirely elliptic lines
(denoted “virtual local segmentation”). This theory further-
more demonstrates that RIM indeed accomplishes tube-shell
merger by exposing the existence of invariant surfaces that
smoothly extend from the tubes into the chaotic shells. These
phenomena set the response to perturbation—and physical
topology—of flows with spheroidal invariant surfaces funda-
mentally apart from flows with toroidal invariant surfaces.

The comprehensive theory is entirely of a kinematic nature
and employs canonical representations of the Lagrangian dy-
namics that rely solely on continuity and solenoidality of the
underlying velocity field. This renders the theory and its find-
ings universal and generically applicable for (arbitrary per-
turbation of) basically any incompressible flow—in fact any
smooth solenoidal vector field—accommodating spheroidal
invariant surfaces. The consistent emergence of RIM in the
unsteady cylinder flow adopted in the current paper for a
variety of perturbations as well as occurrence of essentially
similar instances of RIM in other flows support this assertion.

Nontoroidal invariant surfaces of greater topological com-
plexity as well as quasi-2D representations of Lagrangian
transport in geophysical flows accommodate similar Hamil-
tonian dynamics as the spheroidal invariant surfaces. This
strongly suggests that the response to perturbation (including
formation of tube-and-shell structures) likely generalizes to a
broader class of systems involving restriction of Lagrangian
motion to (subregions of) nontoroidal invariant surfaces. Ef-
forts to address this matter are underway.
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APPENDIX A: UNPERTURBED CANONICAL MAP

The canonical map (7) leans on the spectral decomposition
of the linearized map F0 following (6), i.e.,

F0 = V�V −1, (A1)

with V = [v1 v2 v3] and � = diag(λ1, λ2, λ3) the eigenvector
and eigenvalue matrices, respectively. The eigenvalue spec-
trum is governed by the characteristic equation

|F0 − λI| = λ3 − J1λ
2 + J2λ − J3 = 0, (A2)

which is determined by the matrix invariants

J1 = tr(F0), J2 = 1
2

[
tr2(F0) − tr

(
F2

0

)]
, J3 = det(F0),

where J3 = 1 due to ∇ · u = 0. For periodic lines J1 = J2,
implying one unit eigenvalue, say

λ3 = 1, (A3)

and yielding two nondegenerate cases for (λ1, λ2), i.e.,

λ1 = λ−1
2 = λ = α/2 +

√
(α/2)2 − 1 (A4)

for |α| > 2 and

λ1 = λ∗
2 = α/2 + i

√
1 − (α/2)2 (A5)

for |α| < 2, with discriminant α given by

α = J1 − 1, (A6)

and i = √−1 (superscript “∗” indicates complex conjugate)
[23]. This gives

ζn+1 = �ζn, ζ = V −1ξ′, (A7)

as representation of the linearized map (6) in the eigenspace
ζ spanned by eigenvectors vk . Reformulating the complex
notation in the ζ1,2 direction for case |α| < 2 due to complex
λ1 = λ∗

2 (and corresponding v1 = v∗
2) following (A5) into

standard Cartesian form (x, y) admits translation of (A7) for
any α into a single canonical map (7) in eigenspace x =
(x, y, z) via (trivial) transformation

x = ζ, F0 = � =
⎡⎣λ 0 0

0 λ−1 0
0 0 1

⎤⎦, (A8)

for |α| > 2 and transformation

x =
(

ζ1 + ζ2

2
,
ζ1 − ζ2

2i
, ζ3

)
, F0 =

⎡⎣c −s 0
s c 0
0 0 1

⎤⎦, (A9)

for |α| < 2, with

c = cos μ = α/2, s = sin μ =
√

1 − c2 (A10)

the real and imaginary parts, respectively, of eigenvalue λ1

of magnitude |λ1| = 1 given in (A5). The periodic line in
canonical space x thus defined coincides with the z axis and
planes z = const represent the invariant surfaces.

APPENDIX B: PERTURBED CANONICAL MAP

The above unperturbed canonical map is nonlinear via the
dependence of discriminant (11) on the normal coordinate z
yet with a special structure in that the dynamics are linear
in the planar coordinates (x, y) within an invariant surface
z = const. Perturbations are assumed sufficiently small so
that (in accordance with conventional perturbation theory) the
perturbed system retains the piecewise linear structure of the
unperturbed system. Arbitrary perturbation under this premise
extends canonical map (7) to

xn+1 = Fxn + d, (B1)

with corresponding perturbed linear operator

F = F ′F0, F ′ =
⎡⎣A a2 a3

b1 B b3

c1 c2 C

⎤⎦, (B2)
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where (A, B,C) = (1 + a1, 1 + b2, 1 + c3), and background
drift d = (d1, d2, d3). Parameters ai, bi, ci ∼ O(ε1) and di ∼
O(ε2), with ε1,2 � 1, control the perturbation.

The perturbed map admits simplification without loss of
generality as follows. Characteristic equation (A2) for F0

following (A8) subject to perturbation (B2) becomes

|F − λ′I| = (C − λ′)[(Aλ − λ′)(B/λ − λ′) − a2b1]

− (c2/λ)[(Aλ − λ′)b3 − a3b1λ]

+ c1λ[a2b3/λ − a3(B/λ − λ′)]

= (C − λ′)(Aλ − λ′)(B/λ − λ′) + O
(
ε2

1

)
= 0, (B3)

where the trailing term in the bottom line collects all contri-
butions involving multiplication factors consisting of (triple)
products of ai, bi, ci. Omitting the latter yields

λ′
1 = Aλ, λ′

2 = B/λ, λ′
3 = C, (B4)

as leading-order approximation of the eigenvalue spectrum
of the perturbed operator F in regime |α| > 2. Similarly,
characteristic equation (A2) for F0 following (A9) subject to
perturbation (B2) becomes

|F − λ′I| = (C − λ′){λ′2 − γ λ′ + AB} + O(ε2
1 )

= 0, (B5)

with γ = (A + B)c + (a2 − b1)s and (c, s) according to
(A10), where again omitting the trailing term yields

λ′
1 = λ′

2
∗ =

√
AB(c′ + i

√
1 − c′2), λ′

3 = C, (B6)

with

c′ = γ

2
√

AB
= cos μ′ ≈ (A + B)c

2
√

AB
(B7)

as leading-order approximation of the eigenvalue spectrum
of the perturbed operator F in regime |α| < 2. The above
leading-order approximations of the characteristic equations
and corresponding eigenvalue spectra of the linearized per-
turbed system constitute, essentially similar to the study in
[6], the backbone of the present investigation of the perturbed
dynamics and admit simplification of canonical map (B1) as
described below.

Dependence of the leading-order approximations (B4) and
(B6) of the perturbed eigenvalues λ′ = (λ′

1, λ
′
2, λ

′
3) for |α| >

2 and |α| < 2, respectively, solely on coefficients (A, B,C)
implies that only the diagonal elements of the perturbation
matrix F ′ in (B2) are relevant and thus effectively simplifies
to F ′ = diag(A, B, C). This yields

F =
⎡⎣Aλ 0 0

0 B/λ 0
0 0 C

⎤⎦, F =
⎡⎣Ac −As 0

Bs Bc 0
0 0 C

⎤⎦, (B8)

as perturbed linear operator (B2) for |α| > 2 and |α| < 2,
respectively. The solenoidality condition det(F ) =
det(F ′)det(F0) = 1 leads to det(F ′) = 1 = ABC + O(ε2

1 )
and, by virtue of ε1,2 � 1, ABC = 1 for the leading-order
approximation (B8). Restriction of (without loss of generality)
the isolated periodic point

x∗ = (I − F )−1d, (B9)

of mapping (B1) to the z axis, i.e., x∗ = (0, 0, z∗), gives

d = (0, 0,−c3z∗) ≡ (0, 0, ε2), (B10)

as corresponding (purely z-wise) background drift.
Linear operator F in (B8) for case |α| > 2 adopts the

general structure of its unperturbed counterpart F0 following
(A8) and thus qualitative retains the (hyperbolic) nature of
the unperturbed dynamics. This qualitative retention of the
unperturbed dynamics, though less evident, also holds for
case |α| < 2. The corresponding operator F in (B8), namely,
satisfies characteristic equation (B5), implying an embedded
elliptic structure similar to (A9) yet based on eigenvalues (B6)
instead of (A5), i.e.,

F̃ =

⎡⎢⎢⎢⎢⎢⎣
c′

√
C

− s′
√

C
0

s′
√

C

c′
√

C
0

0 0 C

⎤⎥⎥⎥⎥⎥⎦, (B11)

using s′ =
√

1 − c′2 and C = 1/AB. Similarity transform

F = MF̃M−1, M =
⎡⎣ 1 0 0

m1 m2 0
0 0 1

⎤⎦ (B12)

relates operators F and F̃, with

m1 =
√

B(c′2 − c2)√
A(1 − c2)

, m2 =
√

B

A
− m2

1, (B13)

and admits expression of (B1) as

x̃n+1 = F̃x̃n + d̃, (B14)

where x = Mx̃ and d = Md̃ = d. Conditions |c| < 1 and
c′ ≈ c due to |α| < 2 and A, B ∼ O(1), respectively, imply a
nonzero and bounded determinant

det(M ) = m2 =
√

B(1 − c′2)√
A(1 − c2)

, (B15)

and thus render similarity transform (B12) nonsingular. Hence
representations (B1) and (B14) of the perturbed canonical
map are entirely equivalent and interchangeable; the present
paper adopts (B14) (upon dropping tildes for brevity) due
to the structure of the associated F̃ following (B11) being
identical to F0 in (A9).

APPENDIX C: PLANAR VERSUS NORMAL
DISPLACEMENT NEAR PERTURBED PERIODIC LINES

1. Hyperbolic lines

Consider regime α > αp bounded by parabolic limit αp =
2, yielding λ > λp, with λp = 1, and thus designating the x
axis as the unstable manifold in the unperturbed planar motion
(12). This results in x-wise exponential divergence following
xn+1 = Aλxn in the perturbed state (15) and zn+1 = Czn + ε2

as corresponding normal (i.e., z-wise) motion. Thus the ratio
planar-to-normal motion becomes

xn+1 − xn

zn+1 − zn
= (Aλ − 1)xn

(C − 1)zn + ε2
, (C1)
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which to good approximation simplifies to

xn+1 − xn

zn+1 − zn
≈ γhxn, γh = (λ − 1)

ε2
, (C2)

in the absence of isolated points (implying |C − 1| =
ε2/|z∗| � ε2 and, in consequence, zn+1 − zn ≈ ε2 due to
|z∗| � 1) and using A ≈ 1. Minute excursions α − αp �
O(10−2) into the hyperbolic regime already give rise to sub-
stantial departures λ − 1 = λ − λp � O(0.1) of coefficient λ

from its parabolic limit λp = 1. This, in conjunction with
condition ε2 � 1, yields

γh � 1, (C3)

and through (C2) implies a rapid x-wise divergence of La-
grangian trajectories from the periodic line before any ap-
preciable z-wise drift can develop. Hence tracers (at least in
the proximity of the original periodic line) remain close to
the associated unperturbed invariant surface as demonstrated
in Figs. 7(a) and 7(c) by the sudden deflection of the tracer
path upon reaching the hyperbolic segment of the periodic
line. Excursion into hyperbolic regime α < αp, with αp =
−2, similarly results in rapid y-wise divergence following
Figs. 7(b) and 7(d).

2. Elliptic lines

Radial motion is in the elliptic regime |α| < 2 of the
perturbed state (15) (using identity c′2 + s′2 = 1) described by

rn+1 =
√

x2
n+1 + y2

n+1 = rn/
√

C. Combination with relation

zn+1 = Czn + ε2 as before gives

rn+1 − rn

zn+1 − zn
= (1/

√
C − 1)rn

(C − 1)zn + ε2
, (C4)

for the ratio planar-to-normal motion. This, similar to (C1), to
good approximation simplifies to

rn+1 − rn

zn+1 − zn
≈ γern, γe = 1 − √

C√
Cε2

, (C5)

in the absence of isolated points. Condition |C − 1| � ε2 due
to absence of these points (Appendix C1) admits linearization
of (C5) around C = 1 and thus yields

|γe| = |C − 1|
2ε2

� 1, (C6)

implying a reversed situation compared to the above hyper-
bolic case in that planar motion is negligible. This causes
prolonged entrapment in the proximity of the original periodic
line and, in consequence, an appreciable z-wise drift away
from the unperturbed invariant surface. This is demonstrated
in Figs. 7(a)–7(d) by the spiralling tracer path centered on the
elliptic segment of the periodic line.

APPENDIX D: VIRTUAL LOCAL SEGMENTATION
OF ELLIPTIC LINES NEAR PARABOLIC POINTS

A fundamental departure from the generic response to
perturbation (Appendix B) relevant in the context of RIM
occurs near parabolic points (αp = ±2) on otherwise entirely
elliptic lines (|α| < 2). The perturbed dynamics near such

FIG. 14. Lower bound αmin of the range for discriminant α

according to (D5) resulting in qualitative change near the elliptic line
from elliptic to hyperbolic dynamics upon perturbation. (a) αmin for
a1 = −b2. (b) αmin for generic (a1, b2) [the dashed line indicates the
simplified case in panel (a)].

lines is governed by characteristic equation (B5) and its nature
is determined by the eigenvalue pair λ′

1,2 corresponding with
the characteristic equation

λ′2 − γ λ′ + AB = 0, γ = (A + B)c, (D1)

embedded in (B5). Standard algebra readily yields two solu-
tions depending on discriminant

D = γ 2 − 4AB = (A + B)2c2 − 4AB, (D2)

namely, λ′
1 = λ′

2
∗ following (B6) for D < 0 and

λ′
1,2 =

√
AB(c′ ±

√
c′2 − 1), c′ = (A + B)c

2
√

AB
, (D3)

for D > 0. Generically D < 0 and thus the former solution
holds, meaning that the perturbed dynamics indeed retains the
qualitative (elliptic) nature of the unperturbed dynamics as per
Appendix B. In the direct proximity of parabolic points, on
the other hand, any perturbation gives D > 0 and results in
a qualitative change in dynamics from elliptic to hyperbolic
behavior. Discriminant (D2) via c = α/2 = ±1, namely, be-
comes D = (A + B)2 − 4AB = (a1 − b2)2 at parabolic points
α = ±2, implying D > 0 for any nonzero a1 �= b2.

Expressing eigenvalue pair λ′
1,2 in (B4) for perturbed hy-

perbolic lines in the alternative form

λ′
1,2 =

√
AB(̃c ±

√
c̃2 − 1), c̃ = Aλ + B/λ

2
√

AB
(D4)

reveals that eigenvalue pair λ′
1,2 following (D3) adopts

the same form as its counterpart in (B4) upon substitu-
tion of c̃ = c′. This demonstrates that the perturbed be-
havior near parabolic points on an elliptic line (i.e., for
case D > 0) and a hyperbolic line is indeed essentially
equivalent. This implies a “virtual local segmentation” of
the elliptic line in that the corresponding perturbed dy-
namics, though predominantly retaining the elliptic nature,
near parabolic points is the same as for a hyperbolic
line.

Segments of elliptic lines at parabolic points undergoing
the above qualitative change in dynamics are demarcated by a
corresponding discriminant α in the range

αmin � |α| � 2, αmin = 4
√

AB

A + B
� 2, (D5)
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which readily follows from (D2) using c = α/2. Figure 14(a)
gives αmin for the simplified case a1 = −b2, i.e., αmin =
2
√

1 − a2
1 , exposing an only marginal widening of regime

(D5) with increasing perturbation a1 �= 0 (e.g., αmin ≈ 1.99

for |a1| ≈ 0.1). This regime remains very narrow for any
a1, b2 �= 0, as demonstrated in Fig. 14(b), and thus generically
confines line segments meeting (D5) to the direct proximity of
parabolic points.
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