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Effect of slip on the contact-line instability of a thin liquid film flowing down a cylinder
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Liquid coating films on solid surfaces exist widely in a plethora of industrial processes. In this study, we
focus on the falling of a liquid film on the side surface of a vertical cylinder, where the surface is viewed as
slippery, such as a liquid-infused surface. The evolution profiles and flow instability of the advancing contact
line are comprehensively analyzed. The governing equation of the thin film flow is derived according to the
lubrication model, and the traveling-wave solutions are numerically obtained. The results show that the wave
speed increases with the increase of a larger slippery length. A linear stability analysis (LSA) is carried out to
verify the traveling solutions and time responses. Although previous studies tell us that the wall slippage always
promotes the surface flow instability of the thin film flow, the linear stability analysis, numerical simulations, and
nonlinear traveling-wave solutions in the current study present a different conclusion. The analysis show that for
a thin film flow with a dynamic contact line the wall slippage in different directions plays much more complex
roles. The streamwise slippery effect always impedes the instability of the flow and suppresses the wave height
of traveling wave, while the transverse slippery effect has a dual effect on the surface instability. The transverse
slippery effect significantly improves the instability while the wave number of the perturbation is small, and
simultaneously it reduces the cutoff wave number. The transverse slippery effect will change its role if the wave
number of the perturbation exceeds a critical value, which can stabilize the contact line.
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I. INTRODUCTION

Gravity-driven flows and their wide applications in engi-
neering and biology have been hot topics for decades [1,2],
and have aroused the interest of both scientists and engineers.
When flowing down planes and cylinders, the interface of the
film is likely to break into fingers. This kind of phenomenon
is called the contact line fingering instability or capillary ridge
instability [3–6].

Plenty of studies on the dynamics and linear stability
analysis of the liquid coating films have been performed. For
example, Miyara [7] analyzed the interfacial wave behavior
of a liquid film flowing down a vertical wall and an inclined
wall, and proved that a low-frequency disturbance developed
to a solitary wave and the wave amplitude became small
while the frequency increased. Levy et al. [8] studied the
smooth traveling waves of a gravity-driven thin liquid film by
a parameterized nonlinear partial differential equation (PDE)
and analyzed the combination effect of the surface tension,
the surfactant diffusivity, and the gravity-driven diffusive
spreading of the fluid. Pascal and D’Alessio [9] analyzed the
instability in the gravity-driven flow over uneven permeable
surfaces, and a slip condition was applied, indicating that
the bottom permeability destabilized the flow. Takagi and
Huppert [10] investigated the dynamics of gravity-driven thin
films on the outer surface of a cylinder and sphere. It was
found that the thermocapillary forces or the Marangoni effect
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plays an important role in flow instability of thin films, and
the Marangoni effect always destabilized the thin film flow
[11–17]. Recently, liquid falling films on tubes attracted a lot
of interest [18–23]. In general, theses studies mainly concen-
trated on a thin film flow without a contact line; however, the
modeling method can be easily extended to fluid flow in the
presence of a contact line.

For the liquid film moving over a surface, the wettability
plays an important role, especially in the domain of a liquid-
vapor interface meeting a solid surface. The thin film flows
with contact lines have also been a popular topic for a long
time, and numerical methods were usually utilized in these
problems, such as finite volume method (ANSYS-FLUENT)
and finite difference method. Kondic [24,25] investigated the
pattern formation of thin films down an incline, and detailed
implicit calculation schemes were introduced. In the studies
by Warner et al. [26,27], direct numerical simulations were
given to analyze the linear and nonlinear stability of a thin liq-
uid film with insoluble surfactant and soluble surfactant. Lin
et al. [28,29] simulated thin films flowing down inverted sub-
strate, where the second-order Crank-Nicolson method in time
and second-order discretization in space were implemented
in two-dimensional simulations and three-dimensional sim-
ulations. Moya et al. [30] mainly studied fingering patterns
of gravity-driven flowing films flowing outside of a cylinder,
and numerical simulations were proposed by an alternat-
ing direction implicit scheme. Howell et al. [31] analyzed
the influence of the flexible substrate on the thin film flow
using numerical and perturbation methods. Hu and Sarah
[32] investigated the contact line instability of power-law
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fluids, and the dynamical evolution of the free interface was
simulated by the finite-element method. Zheng et al. [33]
studied the propagation of viscous gravity currents along a
thin permeable substrate, and the propagating front captured
from the experiments agreed well with the theoretical and
numerical predictions. Yu et al. [34] investigated the coupled
drainage mechanisms of a propagating viscous gravity current
that leaked fluid through a permeable substrate. The proposed
numerical methods provided practice-based reference for new
problems, such as the non-Newtonian liquid and multiphase
flows.

There are some general similarities in analyzing the dy-
namics of liquid film on porous substrates and slippery sub-
strates, and the porous substrate is usually considered by
slippery velocities. Münch and Wagner [35] investigated the
linear stability of dewetting thin films and discovered that the
magnitude of the contact line was larger in the slippage case
than that in no-slippage case. Samanta studied gravity-driven
falling film on a porous medium and a slippery inclined plane
[36,37], and found nonlinear traveling waves were amplified
by the presence of the slip and the slippery effect was desta-
bilizing close to the instability onset. Ding investigated the
falling films flowing down a porous vertical cylinder [38,39],
obtaining a conclusion similar to that of Samanta. Liu and
Ding [40] examined the effect of velocity slip on the temporal
stability of a viscous film, and the destabilizing effect of
velocity slip at the porous wall was concluded. Chao et al.
[41] studied linear stability and traveling wave of thin films
flowing down the nonisothermal cylinder with wall slippage,
and results showed wall slippage promoted the capillary insta-
bility. The above studies mainly focus on the two-dimensional
flow or isotropic slippery properties. Nowadays, inspired by
the microstructures of natural animals and plants, the artificial
slippery liquid-infused porous surface has been designed and
reported [42–44]. Zhang et al. [45] designed a directional
slippery liquid-infused surface in the light of immobilized
lubricant menisci. Gao et al. [46] manipulated slippery liquid-
infused porous surfaces with electric controlled reversible
wettability for droplet manipulation where the local properties
of the surface could be tuned by an electric field. Jiang et al.
[47] realized the function of anisotropic slippery property, and
the microdroplets could be transported directionally. Under-
standing the slippery effect on the thin film flow is important
for the engineering application of these artificial slippery
liquid-infused porous surface.

Altogether, it can be concluded from the previous studies
that the slippery effect plays a destabilizing role for a thin film
flowing down a plane or a cylinder. However, the influence of
the slippery effect on the thin film flow with contact lines has
not been investigated as yet. Therefore, the main goal of this
study is directed toward a deep understanding of the slippery
effect on the contact line instability of thin films flowing a
vertical cylinder. The outline of the paper is organized as
follows. In Sec. II, the mathematical model including the
governing equation and boundary conditions is given. Next,
based on the mathematical model, the time evolution of the
falling film is obtained by a numerical method in Sec. III.
Then in Sec. IV the traveling-wave solutions are analyzed, and
in Sec. V the linear stability analysis is carried out. Finally, the
paper is briefly summarized in Sec. VI.

FIG. 1. Thin film flowing down the side surface of a cylinder
with wall slippage, and the wall has an anisotropic slippery property.

II. GOVERNING EQUATIONS

A. Fundamental dynamic equations

In this study, we focus on the dynamic contact line of a
thin film flowing down the side surface of a vertical cylinder
with a slippery wall, as shown in Fig. 1. To relieve the
singularity at the triple-phase contact domain, both the slip
model and the precursor model are effective [5]. For the slip
model, normally slip only occurs very close to the contact line.
However, in this study, the slippery property is considered for
the total substrate surface, and only considering the slip length
close to the contact line is not enough. Hence the precursor
film model is adopted to analyze the slippery effect. Using
the precursor film model, it is assumed that the substrate
surface is totally prewetted by a very thin fluid layer. The
dynamics of the thin liquid film will be investigated, referring
to the cylindrical coordinate system (r, θ, z). The radius of the
cylinder is R, and the thickness of the falling film is h(z, θ, t ).
The fluid is considered as Newtonian and incompressible,
and the symbols (u, v,w) are used to denote the velocities
related to the coordinates (r, θ, z), respectively. The dynamic
viscosity and the density of the fluid are represented by μ and
ρ, respectively, and the gravitational acceleration is denoted
by g. The motion of the thin film flow is described by the
continuity equation and the Navier-Stokes equations in the
cylindrical coordinate:

1

r

∂ (ru)

∂r
+ 1

r

∂v

∂θ
+ ∂w

∂z
= 0, (1)

ρ

(
Du

Dt
− v2

r

)
= −∂ p

∂r
+ μ

(
�u − u

r2
− 2

r2

∂v

∂θ

)
, (2)

ρ

(
Du

Dt
+ uv

r

)
= −1

r

∂ p

∂θ
+ μ

(
�v − v

r2
+ 2

r2

∂u

∂θ

)
, (3)

ρ
Du

Dt
= −∂ p

∂z
+ μ�v + ρg, (4)

where p is the pressure and the operator D/Dt represents the
material derivative:
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The symbol � is a simple operator with the following
expression:
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To derive the equivalent model for the thin film flow, the
following scalings are to be applied [24]:
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where the symbols with primes represent nondimensional
parameters. Using a representative height scale h0 for the
thickness of the film and a representative length scale L in
the z and azimuthal directions, the characteristic velocity,
pressure, length, and timescales are rescaled as [24,30]
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) 1
3

, T = L

W
. (8)

Considering that the thickness of the liquid film is much
smaller compared to the wavelength of the interfacial waves,
a small parameter ε = h0/L is introduced to rescale the ra-
dial coordinate. The scaled radial coordinate is rewritten as
r′ = R′ + εx′, where R′ = R/L and x′ = x/h0. After rescaling
Eqs. (1)–(4) and dropping the primes for simplicity, the result-
ing nondimensional equations give
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where Re = ρW L/μ denotes the Reynolds number.
Using the scaling, the operators D/Dt and � become
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B. Boundary conditions

On the side of the cylinder r = R, the no-slip and no-
penetration conditions are applied in the r direction, while
the Navier slip boundary conditions are applied in θ and z
directions to describe the slippery property [39–41]:

u = 0, v = β1
∂v

∂r
, w = β2

∂w

∂r
. (15)

The Navier slip boundary condition is defined by a slip ve-
locity proportional to the shear stress, and parameters β1 and
β2 are used to characterize the slip length in θ direction and
z direction, respectively. For a standard no-slip condition, one
can let βi = 0. On the surface r = R + h, the normal stress

balance and tangential stress balance are satisfied [38,40]:

(T − T∞) · n = −∇sσ + σ (∇ · n)n, (16)

where T = μ[∇u + ∇uT ] is the deviatoric stress tensor, and
T∞ = (p − p∞)I is the pressure tensor. The symbol p∞ is the
pressure of the surrounding gas phase, and ∇s = ∇ − n(n ·
∇) stands for the surface gradient operator, and n is the unit
vector normal to the liquid surface.

The kinematic condition of the interface should be satisfied
at x = h (r = R + h), expressed by the mass conservative
condition
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Using the scalings introduced in Eq. (7), the boundary
conditions at x = 0 (r = R) become

u = 0, v = βθ

∂v

∂x
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. (18)

The coefficients which occur in the boundary condi-
tions are the scaled slippery lengths β ′

θ = ε−1βθ/h0 and
β ′

z = ε−1βz/h0 [41]. Here the primes are also dropped for
simplicity.

Neglecting the terms of O(ε) and higher orders, the normal
stress balance becomes [30]
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where the variables with subscript 0 represent the leading-
order components.

The boundary conditions for the tangential stress balance
on the free interface x = h (r = R + h) are reduced as [30]

∂v0

∂x
+ O(ε) = 0,

∂w0

∂x
+ O(ε) = 0. (20)

The kinematic condition of the interface is still of the same
form as Eq. (17):
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C. Governing equations

As ε � 1 and Re ∼ O(1) [40], the contributions of the
inertial terms are neglected. Ignoring the terms of the second
and higher orders of the small parameter ε, the continuity
equation (9) and Navier-Stokes equations (10)–(12) are given
as
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Solving Eqs. (24) and (25) and using the boundary condi-
tions in Eqs. (18) and (20), the velocities of the leading order
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are expressed as
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Substituting w0 and v0 into the kinematic condition (21),
and using the normal balance condition (19), the governing
equation for the thin film flowing on a cylinder with wall
slippage is derived as
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If we only consider the two-dimensional flow in the r-z
plane, Eq. (28) is identical with Eq. (30) derived by Chao [41].
For βθ = 0 and βz = 0, Eq. (28) degenerates into the equation
obtained by Moya [30]. Notably, the surface instability is
influenced by the coupling action of the slippery length, the
substrate curvature, and the initial condition consisting of a
randomly perturbed contact line. Therefore, in the following
sections, a systematic analysis of the interfacial characteristics
affected by the multiparameter is developed by numerical
simulations and linear stability analysis.

III. TIME EVOLUTIONS

To solve the high-order partial differential equation (PDE)
(28), the finite difference method (FDM) and finite element
method (FEM) are both efficient and accurate. Here the open-
source software FREEFEM++ is used to solve the governing
equation based on the FEM [48]. As the PDE (28) is spatial
fourth order, four boundary conditions should be prescribed
in the z as well as in the θ directions. In this problem, it is
assumed the thickness of the liquid film is constant both far
behind and far in front of the initial contact line. Therefore, the
following boundary conditions are applied in the z direction
[25,28,29]:

h(0, θ, t ) = 1, h(Lz, θ, t ) = b,

hz(0, θ, t ) = 0, hz(Lz, θ, t ) = 0, (30)

where Lz is the length of the calculation domain in the z
direction, and b is the thickness of the precursor layer. In the
θ direction, a periodic boundary condition (PBC) is applied.
Different initial conditions can be chosen for this problem
[6,25,29,32]. In fact, these functions are very similar; i.e., all
the profiles are two flat regions connected via a transitional
part. It has been illustrated that the influence of the initial
condition on the final results is insignificant. The following
initial condition is adopted in this paper for its brevity [29]:

ht0 = 1 + b

2
− 1 − b

2
tanh(x − xp), (31)

where xp marks the position of the front of the initial contact
line.

FIG. 2. Asymmetric flow profiles of thin liquid films on verti-
cal cylinders for (a) t = 20, R = [0.8, 1, 2], and (b) t = 40, R =
[0.8, 1, 2]. The used parameters are βz = 0.1, βθ = 0, and b = 0.05.

Using FREEFEM++ [14,49], the governing equation (28)
is numerically solved. A linearization of the system is first
proposed by the estimation ht+�t = ht + �h. Then the Crank-
Nicolson method is employed to average the results from
the current and future times, obtaining a better estimation of
the time evolution. In the simulation, asymmetric profiles are
obtained, which are plotted in a r-z plane.

First, the influence of the substrate curvature is investi-
gated. Three radii for the cylinder are used in the simulations,
including R = 0.8, R = 1, and R = 2. Figure 2 shows the
three-dimensional shapes of the liquid thin film at the instant
t = 20 and t = 40 for various substrate curvatures. While the
cylinder has a small radius, the interface becomes very com-
plex after a while. At t = 20, a wave train is found following
the capillary ridge. At t = 40, besides the capillary ridge and
a wave train, solitary-type waves appear at the middle of the
wave train and the capillary ridge. With a smaller radius, such
as the case for a fiber, the Rayleigh-Plateau instability occurs,
and a beading phenomenon will be observed. We can note that
the characteristic height of a hump is much smaller compared
to the distance between the two humps. For R = 1 and larger
value of R, the liquid-air interface keeps a dominant capillary
ridge, and the substrate curvature does not affect the traveling
velocity of the capillary bump. From the profiles, it is seen
that the capillary ridge for R = 0.8 goes longer than that for
R = 1 and R = 2. The reason is that the waves behind the
capillary ridge move faster than the front [28], and hence the
first wave will catch up, interact, and merge with the capillary
ridge, speeding up and raising the ridge.

In view of the characteristic lengths of the film thickness
and the largest slip length, βz,θ ∈ [0, 0.2] is reasonable [41],
and the slippery effect can be stronger for some biomaterials
and compliant substrates. Using different slippery lengths and
precursor layer thicknesses, the evolution profiles of liquid
films at t = 20 and t = 40 are displayed in Figs. 3 and 4,
respectively. The interfacial shapes show similar patterns and
traveling wave trends: A dominant capillary ridge travels more
quickly with a larger βz or b, and behind the main ridge is a
weak wave and a constant state. Measurement of the capillary
ridge shows that the height of the main ridge becomes lower
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FIG. 3. Asymmetric flow profiles of thin liquid films on vertical
cylinders for (a) t = 20, βz = [0, 0.1, 0.2], and (b) t = 40, βz =
[0, 0.1, 0.2]. The used parameters are b = 0.05, βθ = 0, and R = 1.

while the value of βz or b is larger. The evolution of small
disturbances applied on the steady traveling waves is very
crucial to understanding the hydrostability of thin liquid films.
Therefore, in next section, the behavior of steady traveling
waves is investigated.

IV. TRAVELING-WAVE SOLUTIONS

From the numerical simulation, the asymmetric traveling
wave profiles are obtained. The two-dimensional asymmetric
flows play important roles in understanding the flow insta-
bility. Here we neglect the fingering patterns in advance and
assume θ is independent of the evolution equation. Hence the
evolution equation (28) is simplified as

ht + ∂

∂z

[
(h3 + βzh

2)

(
1 + hzzz + hz

R2

)]
= 0. (32)

Equation (32) is solved by the FEM as well, and the profiles
for different cases are displayed in Figs. 5–7. Comparing

FIG. 4. Asymmetric flow profiles of thin liquid films on vertical
cylinders considering different precursor thickness: (a) t = 20, b =
[0.01, 0.05, 0.1], and (b) t = 40, b = [0.01, 0.05, 0.1]. The used
parameters are βz = 0.1, βθ = 0, and R = 1.

FIG. 5. The evolution profiles of the liquid-air interface for dif-
ferent substrate curvature at (a) t = 20 and (b) t = 40, including
R = 0.8 (solid line), R = 1 (dash-dotted line), and R = 2 (dashed
line).

the curves in Figs. 5–7 and those in Figs. 2–4, it is notable
that the two-dimensional profiles and the three-dimensional
profiles are exactly consistent. For the different radii of the
cylinder, the substrate curvature significantly affects the axial
waves along the free surface, especially when the cylinder has
a much smaller radius, as shown in Fig. 5. It is displayed
in Figs. 6 and 7 that with a bigger b and βz, the contact
lines move faster and have a lower capillary ridge. This
phenomenon is contrary to the results of Ding [38,39] and
Chao [41], as they found that the wall slippage amplified
the capillary ridge. The main reason is that for thin film
flows without contact lines, the slippery effect promotes the
propagation of the nonlinear waves and causes a steeper wave.

FIG. 6. The evolution profiles of the liquid-air interface con-
sidering different precursor thickness at (a) t = 20 and (b) t = 40,
including b = 0.01 (solid line), b = 0.05 (dash-dotted line), and
b = 0.1 (dashed line).

053108-5



MA, LIU, SHAO, LI, LI, AND XUE PHYSICAL REVIEW E 101, 053108 (2020)

FIG. 7. The evolution profiles of the liquid-air interface on the
cylinders with different slippery lengths at (a) t = 20 and (b) t = 40,
including βz = 0 (solid line), βz = 0.1 (dash-dotted line), and βz =
0.2 (dashed line).

While for thin film flows with dynamic contact lines, the
slippery effect increases the traveling speed of the front of the
contact lines, resulting in a significant drop of the capillary
ridge. From the curves in Fig. 7, the traveling wave speed can

FIG. 8. Traveling-wave profiles of the liquid-air interface for
βz = 0 (solid line), βz = 0.1 (dash-dotted line), and βz = 0.2 (dashed
line): (a) b = 0.1 corresponding to different βz, (b) b = 0.05
corresponding to different βz, and (c) b = 0.01 corresponding to
different βz.

FIG. 9. Traveling-wave profiles of the liquid-air interface
for βz = 0 (solid line), βz = 0.1 (dash-dotted line),
and βz = 0.2 (dashed line): (a) R = 0.8 corresponding to different
βz, (b) R = 1 corresponding to different βz, and (c) R = 2
corresponding to different βz.

be calculated by the distance between the two ridges, and for
βz = 0, βz = 0.1, and βz = 0.2, the speed is 1.315, 1.37, and
1.44, respectively.

It has been found from the numerical simulations that
the falling film exhibits a traveling-wave solution [24,25],
and hence a coordinate transformation ξ = z − ct is helpful
and effective to understand the nonlinear flow characteristics,
where c represents the traveling-wave speed. In this study, the
symbol H is used for the coordinate ξ while h is used for the
coordinate z. Using the transformation ξ = z − ct , Eq. (32)
changes to an ordinary differential equation of coordinate ξ :

cHξ = (H3 + 3βzH
2)ξ +

[
�(z)

(
Hξξξ + 1

R2
Hξ

)]
ξ

. (33)

Integrating Eq. (33) once, we can obtain the following
equation:

cH = H3 + 3βzH
2 + �(z)

(
Hξξξ + 1

R2
Hξ

)
+ d, (34)

where d is an integral constant.
Based on the boundary conditions [in Eq. (30)], the travel-

ing speed and the integral constant can be obtained as c =
(1 + b + b2) + 3βz(1 + b) and d = −b(1 + b) − 3βzb. The
traveling wave speed is related to the combined action of the
streamwise slippery length and the thickness of the precursor
layer. Both the streamwise slippery length and the thickness
of the precursor layer speed up the motion of the film front.
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(a)

Increasing βz

(b)

Increasing

(c)

Increasing

FIG. 10. Temporal growth rate σ (q) vs wave number q for βz =
0 (solid line), βz = 0.1 (dash-dotted line), and βz = 0.2 (dashed
line): (a) b = 0.1, (b) b = 0.05, and (c) b = 0.01. Red circle shows
the prediction in the previous study by Lin [29]. Arrow represents the
increase of the streamwise slippery effect.

(a)

(b)

FIG. 11. Temporal growth rate σ (q) versus wave number q for
(a) R = 1 and (b) R = 2. Arrow represents the increase of the
slippery effect.

Compared with the conclusion of Chao [41], the traveling
speed of the thin film flow with dynamic contact lines is equal
to that without dynamic contact lines. With b = 0.05, using
the function of c, the traveling speeds are 1.3131, 1.3675,
and 1.4400, respectively for βz = 0, βz = 0.1, and βz = 0.2,
showing good consistency with the numerical simulations.

Given c and d , traveling-wave shapes can be depicted by
solving Eq. (34). Here, Eq. (34) is numerically solved using
the Newton’s iteration method, with the central difference
formulas employed to discretize the spatial domain. The initial
condition is also given by a smooth curve of two flat regions
connected via a transitional part [28,29]:

Ho = 1 + b

2
− 1 − b

2
tanh(ξ − ξp), (35)

where ξp is also a parameter marking the position of the front
of the initial contact line.

Figure 8 gives traveling-wave profiles for different precur-
sor film thickness b and slippery length βz. It is noticed that
with a smaller value of b from Figs. 8(a) to 8(c), the height
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FIG. 12. Comparison of growth rates between LSA (q = 0.85 [solid lines] and q = 0.5 [dashed lines]) and numerical simulations (triangle
markers): (a) βz = βθ = 0, (b) βz = βθ = 0.1, and (c) βz = βθ = 0.2.

of the capillary ridge becomes steeper, demonstrating that
the thin film flow is opt to become unstable with a smaller
precursor film thickness. The main reason is that thinner
films experience much more resistance than thicker films,
resulting in a steeper fluid bump. The solid line shows that the
traveling-wave profile for βz = 0 has a steeper capillary
ridge. With a larger βz = 0.1 (dash-dotted line) and βz =
0.2 (dashed line), the height of the capillary ridge becomes
smaller, illustrating that the slippery length also plays a
stabilizing role. The conclusion is opposite to that obtained
in the study of falling films without dynamic contact lines
[38,39,41]. The main reason is that the slippery length pro-
motes the traveling wave while the volume flow rate is con-
stant, and therefore the height of the capillary ridge reduces.

Figure 9 displays the traveling-wave profiles for film flows
down cylinders of different radii. The numerical simulations
and the traveling-wave profiles illustrate that increasing sub-
strate curvature greatly increases the strength of fingering
instability at the contact lines, characterized by a higher
capillary ridge. For thin films flowing down a much longer
and slender cylinder, one can refer to the studies on thin films
flowing down a fiber [50,51]. In the following analysis, R � 1
will be employed, and linear stability analysis will be given
based on the traveling-wave solutions.

V. LINEAR STABILITY ANALYSIS

Experiments show that the contact line develops an undu-
latory pattern in θ direction that grows into a fingering pattern
[30]. Here the stability of the axisymmetric traveling waves
with the moving frame (ξ, θ ) = (z − ct, θ ) is investigated.
Using the moving frame, Eq. (28) changes to

Ht − cHξ + (H3 + 3βzH
2)ξ + ∇ ·

[
�∇

(
∇2H + H

R2

)]
= 0 .

(36)

To conduct a linear stability analysis (LSA), the traveling-
wave solutions obtained by Eq. (34) are used as basic
states. Giving a perturbation in the azimuthal direction to the
traveling-wave basic state, we have H = H̄ + H ′(t, ξ , θ ), and
then the linear stability analysis is performed by studying the

evolution of the perturbation. Substituting H into Eq. (36), a
linearized simplification of the governing equation is deduced
as

∂H ′

∂t
− c

∂H ′

∂ξ
+ ∂

∂ξ
(3H̄2H ′ + 6βzH̄H ′)

+ ∂

∂ξ

[
�(z)

∂

∂ξ

(
H ′

R2
+ ∇2H ′

)]

+ ∂

∂ξ

[
(3H̄2H ′ + 6βzH̄H ′)

∂

∂ξ

(
H̄

R2
+ ∇2H̄

)]

+ 1

R

∂

∂θ

[
�(θ )

1

R

∂

∂θ

(
H ′

R2
+ ∇2H ′

)]
= 0. (37)

For each wave number q, Eq. (37) can be formulated as a
standard eigenvalue equation:

σ Ĥ = −LĤ , (38)

where L is a linear operator. Equation (38) is solved numeri-
cally to obtain the values of σ (q) for different wave number
q, following the work by Kondic [25].

Figure 10 shows the temporal growth rate of disturbance
with different βz for given b, and the transverse slippery length
βθ is neglected. For b = 0.1 and βz = 0, no slippery effect
acts in the thin film flow, and the LSA result is consistent with
that in the previous study [29]. Seen from these three figures
that with a smaller thickness of precursor layer b, the value of
the growth rate for a given q becomes larger, demonstrating
that the thickness of the precursor stabilizes the thin film flow.
Based on the three cases for b, one can find that with a small
thickness of precursor layer b, the influence of the slippery
length is enhanced. From the comparison of the growth rate
curves with different slippery length βz, it can be concluded
that the slippery effect also plays a stabilizing role on the film
flow. The main reason is that the slippery speeds up the flow of
the contact line and reduces the height of the fluid bump, and
hence the instability of the flow is suppressed. But for the thin
film flowing without contact line, the slippery effect always
destabilizes the flow [38,39,41], and a larger slippery length
results in a steeper wave with a higher hump.

Figure 11 shows the temporal growth rate of disturbance
for two different R. The isotropic slippery property is taken
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FIG. 13. Three-dimensional illustrations of a single-mode per-
turbed fluid film flowing on the surface of a vertical cylinder: (a) q =
0.5, βz,θ = [0, 0.1, 0.2], and (b) q = 0.85, βz,θ = [0, 0.1, 0.2]. The
radius of the cylinder is R = 2.

into consideration, meaning that the transverse slippery length
βθ is equal to the streamwise slippery length. For R = 1,
the slippery length plays a destabilizing role or a stabilizing
role, owing to the value of the wave number. While the wave
number is small, the slippery length destabilizes the surface
flow, but if the wave number exceeds a special value, the role
of slippery length changes to stabilizing the flow. For R = 2, it
can be found that the slippery effect always plays a stabilizing
role in the contact line instability, implying that the substrate
curvature also affects the surface stability significantly.

Figure 12 shows the comparison of the growth rate of a
finger from numerical simulations and from LSA results. In
the figures, L represents the total length of a finger from the
top to the root, and L0 is the initial length. The numerical
results are a bit smaller than the numerical simulations, and
the difference may be caused by the inaccurate measurement
resulting from the coarse mesh grid. The linear growth is
found at the earlier times, and then the length of the fingers
grows at a smaller rate. This behavior appears to result from
the local action of the front domain, where the surface tension
affects the other part of the finger negligibly.

The three-dimensional illustrations of a single-mode per-
turbed film flow are displayed in Fig. 13. The dimensionless
radius of the cylinder is set to R = 2, and q = 0.5 and q =
0.85 are utilized, respectively plotted in Figs. 13(a) and 13(b).

FIG. 14. Time evolution of a single-mode perturbed fluid film
plotted in the Cartesian coordinate: (a) t = 40, βz,θ = 0.2, R = 2,
and (b) t = 80, βz,θ = 0.2, R = 2.

The total length of a finger is measured from the top to the
root. From the figures, it can be found for a larger slippery
length, the contact lines move faster. To show the results more
distinctly, one can replot the results in the Cartesian coordi-
nate, as displayed in Fig. 14, where βz = βθ = 0.2 and R = 2.
The time evolutions for t = 40 and t = 80 are both visualized.
The length displayed in the lower plots is much longer than
that shown in the upper plots, showing an agreement with the
linear stability analysis that the growth rate for q = 0.85 is
bigger than that for q = 0.5. From Fig. 14(b), it is also found
that the difference between the length for q = 0.5 and that
for q = 0.85 is little, consistent with the LSA that the growth
rates are close after a long time evolution.

In the above analysis, isotropic slippery property is taken
into account, as a result, it is hard to distinguish the direct in-
fluence of the two slippery lengths. Here anisotropic slippery
property is also considered, and different transverse slippery
lengths are examined while the streamwise slippery length is
given a specific value. Linear stability analysis is carried out,
and the temporal growth rates for different azimuthal slippery
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(a)

(b)

(c)

FIG. 15. Temporal growth rate σ (q) vs wave number q for
different azimuthal slippery lengths: (a) βz = 0, (b) βz = 0.1, and
(c) βz = 0.2. Arrow represents the increase of the azimuthal slippery
effect, βθ = [0, 0.05, 0.1, 0.15, 0.2].

(a)

(b)

(c)

FIG. 16. Temporal growth rate σ (q) vs wave number q for
different streamwise slippery lengths: (a) βθ = 0, (b) βθ = 0.1,
and (c) βθ = 0.2. Arrow represents the increase of the streamwise
slippery effect, βz = [0, 0.05, 0.1, 0.15, 0.2].
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length are shown in Fig. 15. Since the roles of small radius are
more complex, in the numerical calculations R = 1 is used.
Three values for the streamwise slippery length are given,
including βz = 0, βz = 0.1, and βz = 0.2. A similar variation
of σ (q) is displayed in the three figures. For a specified
value of βz, the transverse slippery effect has a dual effect
on the surface instability. While the perturbation has a small
value of wave number, the growth rate becomes larger with
the increase of the βθ , indicating that the transverse slippery
effect destabilizes the surface instability. However, for the
perturbation of a large wave number, the transverse slippery
length plays a stabilizing role. Based on the energy analysis of
Spaid and Homsy [5], it has been known that the flow in the θ

direction due to the θ curvature removed energy for q > 0.5,
and is partially responsible for determining the cutoff wave
number. From the plots, it can be observed that the cutoff wave
number indeed decreases with the increase of the transverse
slippery length. The energy of flow in the ξ direction due to
the θ curvature is a positive function of the slippery length,
and therefore for a small wave number, especially for q < 0.5,
the flow becomes more unstable while the transverse slippery
length is larger.

In Fig. 16, the influence of the streamwise slippery length
is shown for three different transverse slippery lengths βθ .
Comparing the three figures, it can be found that with a
larger βz, the growth rate is smaller for a given wave number,
demonstrating that the streamwise slippery length plays a
stabilizing role here, and the fingering spreading occurs in a
longer time evolution. The foundation is consistent with the
findings by Ma [49]. Comparing the three figures, one can
also note that the cutoff wave number is almost unaffected by
the streamwise slippery length, and the cutoff wave number
decreases with the increase of the transverse slippery length.

VI. DISCUSSION AND CONCLUSIONS

In conclusion, we have studied the dynamics of a thin
liquid film flowing down a slippery cylindrical surface. A
lubrication model was briefly introduced that considered the
wall slippage. The isotopic slippery effect and anisotopic
slippery effect were both taken into consideration. The contact

line instability of the falling film was investigated by numer-
ical simulations and linear stability analysis. The influence
of the slippery length, substrate curvature, and the thickness
of the precursor layer were analyzed and the linear stability
analysis had good agreement with the numerical simulations.

The traveling wave solutions provided insights into the
three-dimensional flows, accompanied with fruitful results:
First, the traveling speed of the flow is c = (1 + b + b2) +
3βz(1 + b), which is proportional to the streamwise slippery
length, and has no relationship with the transverse slippery
length. The velocities obtained from the theoretical analysis
were verified by numerical simulations. Second, the LSA
demonstrated that the precursor film thickness played a sta-
bilizing role in thin film flow, while the substrate curvature
destabilized the flow.

The most important conclusion in this paper came from the
investigation of the slippery effect. Unlike the destabilizing
action of the slippery effect in the motion of thin film flows
without dynamic contact lines [38,39,41], the effect of the
slippery effect in the motion of dynamic contact lines was
much more complex, especially for a cylinder of small radius
(R � 1). The streamwise slippery length played a stabilizing
role in the surface instability, and the effect became very
small while the wave number of the perturbation was large.
The transverse slippery length played a dual role in the
surface instability due to the value of the wave number of
the perturbation: The effect destabilized the surface instability
while the wave number was small, and the effect changed to a
stabilizing role while the wave number of the perturbation was
large. These analyses provide some inspiration in such areas
as petroleum engineering, mechanical engineering, coating
industry, etc.
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