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Numerical study of droplet impact on a flexible substrate
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Droplets interacting with deformable moving boundaries is ubiquitous. The flexible boundaries may dra-
matically affect the hydrodynamic behavior of droplets. A numerical method for simulating droplet impact on
flexible substrates is developed. The effect of flexibility is investigated. To reduce the contact time and increase
the remaining upward momentum in the flexible cases, the Weber number should be larger than a critical value.
Moreover, the ratio of the natural frequency of the plate to that of the droplet Fr should approximately equal to the
reciprocal of the contact time of droplets impact on the rigid surfaces (tctr) at the same We, e.g., Fr ≈ 1/tctr. Only
under this circumstance would the kinetic energy convert into the surface energy of the droplet and the elastic
energy of the plate simultaneously, and vice versa. Moreover, based on a double spring model, we proposed
scaling laws for the maximal deflection of the plate and spreading diameter of the drop. Finally, the droplet
impact under different wettability is qualitatively studied. We found that the flexibility may contribute to the
droplet bouncing at a smaller contact angle.
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I. INTRODUCTION

Droplet impacts on flexible surfaces are very common in
industrial and natural systems, such as rain-induced foliar dis-
ease transmission [1], anti-icing [2], and ink-jet printing [3].
Droplet impact plays an essential role in the process of mass,
momentum, and energy transmission. As a droplet impacts on
a rigid surface, its kinetic energy would be converted to sur-
face energy. Its momentum would be redirected to the lateral
direction, flattening the shape and spreading to its maximal
spreading diameter. Then, it would retract because the surface
energy may convert into kinetic energy. The droplet may
adhere, bounce off, or splash, which depends on parameters
of wettability, viscosity, impact velocity, and surface tension
[4,5]. Previous studies have focused mainly on drop-surface
contact time, maximal spreading diameter, and splashing.

Some experimental studies focused on the contact time
during drop-surface interaction. Richard et al. [6] studied the
contact time of a droplet impacting on a superhydrophobic
surface. They found that the contact time is proportional to
inertial-capillary timescale (ρH D3

0/σ )1/2, where ρH , D0, and
σ are density, initial diameter, and surface tension, respec-
tively, of the droplet. The range of the Weber number We
is 0.3 � We � 37 in their experiments. By using superhy-
drophobic surfaces with a morphology, Bird et al. [7] found
that it is possible to reduce the contact time by a factor of 1.6
compared to the time of impacting on the flat surface. Similar
studies on drop impact on superhydrophobic macrotextures
also have been conducted [8,9]. Moreover, Liu et al. [10]
found that pancake bouncing achieves a fourfold reduction
in contact time. By designing surfaces with tapered micro-
/nanotextures, the capillary energy could be stored in the
penetrated liquid. The stored energy would contribute to the
upward motion of the droplet.

*Corresponding author: huanghb@ustc.edu.cn

Some studies focused on the maximal spreading diameter
Dmax of the droplet. Two typical regimes for spreading were
found. One is the viscous regime, in which viscosity and
inertia are balanced. Under this circumstance, the normalized
maximum spreading diameter Dmax/D0 is proportional to
Re1/5 [11], i.e., Dmax/D0 ∼ Re1/5. The other is the capillary
regime, in which the capillary force and inertia are balanced.
According to the viewpoint of energy conservation, in this
regime Dmax/D0 ∼ We1/2 [11], while from the viewpoint of
momentum conservation, Dmax/D0 ∼ We1/4 [12]. It is noticed
that the viscous and capillary regimes are both extreme situa-
tions, and there is a regime in which the viscosity, capillary
force, and inertia are all comparable. By interpolating the
viscous and capillary regimes, researchers [13,14] have found
a universal scaling for drop impact on flat surfaces.

However, in the studies above, all the surfaces were rigid
and fixed. In natural and industrial systems, most of the
surfaces are flexible, and the effect of flexibility on drop
impact dynamics has never been thoroughly investigated. As
far as we know, only a few experimental studies for flexi-
ble surfaces have been conducted [15–21]. In the presence
of flexible surfaces, in addition to the conversion between
the kinetic energy and surface energy, there is a conversion
between the kinetic energy and substrate deformation energy.
According to the experimental study of Vasileiou et al. [18],
a rational tuning of flexibility can enhance liquid repellency
performance, characterized by the reduced contact time, and
the increased coefficient of restitution. They proposed the
concept of apparent Weber number, which can be used to
predict the maximal spreading diameter. They considered the
effect of the mass ratio of the plate to the droplet. However, the
effect of flexibility has never been investigated systematically.
In the experimental study of Weisensee et al. [19], the contact
time was reduced by a factor of 2 when a droplet is impacting
an elastic superhydrophobic surface. The possible reason is
that the substrate imparts vertical momentum back to the
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FIG. 1. Schematic diagram for a droplet impacting on the flexi-
ble plate. The droplet with diameter D0 is placed above the flexible
plate at a distance H = 0.2D0. The initial downward velocity is U .

droplet with a springboard effect. The phenomenon appears
only when We � 40, and us/(gDmax)1/2 � 1, where us is
the maximum substrate velocity during oscillation and g is
the gravitational acceleration. us/(gDmax)1/2 � 1 means the
balance between substrate inertia and gravitational force is
deduced. Similarly, Huang et al. [20] also investigated droplet
impact on soft elastic superhydrophobic cotton.

In the studies above, few numerical simulations were per-
formed about a drop impact on flexible surfaces. Compared
to the experimental studies, numerical simulations can pro-
vide more quantitative information. As far as we know, only
one relevant numerical study was carried out by Rosis [22].
However, the density ratio and the viscosity ratio between
the two fluids is small. Furthermore, the influence of the
contact angle is not considered. Hence, a further numerical
investigation of droplets impacting on flexible surfaces is
necessary. In the present study, we developed a numerical
method that can handle the fluid structure interaction with
wetting boundary condition. The purpose of this study is to
explore the effects of flexibility, wettability on droplet impact
dynamics numerically.

The paper is organized as follows. The physical problem
and mathematical formulation are presented in Sec. II. The
numerical method and validation are described in Sec. III.
Detailed results are discussed in Sec. IV, and concluding
remarks are presented in Sec. V.

II. PHYSICAL PROBLEM
AND MATHEMATICAL FORMULATION

In our study, the droplet is initially placed above the flexi-
ble plate with an initial velocity U (see Fig. 1). To simulate
the two-phase flow, we used the following conservative phase-
field equation to track the interface between different fluids
[23–26]:

∂φ

∂t
+ ∇ · (φu) = ∇ ·

[
M

(
∇φ − 4

W
φ(1 − φ)n̂

)]
, (1)

where φ is the component variable varying from 0 to 1,
corresponding to light fluid ρL and heavy fluid ρH , respec-
tively, t time, u macroscopic velocity vector, M mobility, and
W interfacial thickness. n̂ is the unit vector normal to the
interface, with its direction pointing into the heavy fluid, i.e.,
n̂ = ∇φ/|∇φ|. In diffuse-interface models, the equilibrium

phase-field profile is used to initialize the phase field:

φ(x) = 1

2

[
1 + tanh

( |x − x0|
W/2

)]
. (2)

To set a specified contact angle at a boundary, the following
contact angle model is used:

n̂w · ∇φ|w = �φw(1 − φw ), (3)

where n̂w is the unit vector normal to the solid wall, φw

is the phase-field value at the wall, and � is related to the
equilibrium contact angle θeq by

� = −
√

2β

κ
cos θeq, (4)

where β and κ are related to the surface tension σ and the
interfacial thickness W by β = 12σ/W and κ = 3σW/2.

The isothermal, incompressible Navier-Stokes equations
are used to simulate the multiphase flow,

∂ρ

∂t
+ ∇ · (ρu) = 0, (5)

ρ

[
∂u
∂t

+ u · ∇(u)

]
= −∇p + ∇ · {μ[∇u + (∇u)T ]} + f s,

(6)

where ρ is the local fluid density, μ the dynamic viscosity,
p the macroscopic pressure, and f s the surface tension force.
The surface tension takes the form of f s = μφ∇φ [27,28],
where μφ = 4βφ(φ − 1)(φ − 1/2) − κ∇2φ is the chemical
potential for binary fluids. It is noticed that in our simulations
there is no gravity.

The structural equation is employed to describe the defor-
mation and motion of the plate [29–31],

ρsh
∂2X
∂t2

− ∂

∂s

[
Eh

(
1 −

∣∣∣∣∂X
∂s

∣∣∣∣
−1

)
∂X
∂s

]
+ EI

∂4X
∂s4

= Fext,

(7)
where s is the Lagrangian coordinate along the plate,
X (s, t ) = [X (s, t ),Y (s, t )] the position vector of the plates,
Fext the external force exerted on the plates by the surrounding
fluid, ρs the structural density, ρsh the structural linear mass
density. Eh and EI denote the structural stretching rigidity and
bending rigidity, respectively. At both edges of the plate, the
simply-supported boundary condition is adopted, i.e.,

X = X 0,
∂2X
∂s2

= 0. (8)

Furthermore, X (s, 0) = (s − 0.5L, 0), ∂X/∂t (s, 0) = (0, 0)
is the initial condition of the plate. For simply-supported plate
on both sides, we can get its natural frequency according to
Euler-Bernoulli beam theory, i.e.,

ws = 2π fs = (βnL)2

(
EI

ρshL4

)1/2

, (9)

where βnL = nπ . Here, we focus on the first-order natural
frequency, corresponding to n = 1. The frequency ratio is

Fr = fs

fref
= πD0

2L

√
KB

M
, (10)
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where fref = 1/Tref, KB the bending stiffness, and M the mass
ratio.

The characteristic quantities ρH , D0, and Uref are chosen
to normalize the above equations. Here ρH is the density
of the droplet and Uref = √

σ/(ρH D0). The characteristic

time is Tref = D0/Uref =
√

ρH D3
0/σ , which is proportional

to the period of droplet vibration. The dimensionless gov-
erning parameters are listed as follows: the density ratio
between binary fluids ρr = ρH/ρL, the dynamic viscosity
ratio between binary fluids μr = μH/μL, the Weber num-
ber We = ρHU 2D0/σ = U 2/U 2

ref, the Reynolds number Re =
ρHUD0/μH , the initial length of the flexible plate Lr = L/D0,
the bending stiffness KB = EI/ρHU 2

refL
3, the stretching stiff-

ness KS = Eh/ρHU 2
refL, the mass ratio of the plate to the

droplet M = ρsh/ρH L, and the initial height of the drop above
the surface Hr = H/D0. It should be noted that we set t = 0
at the moment of the droplet impacting on the flexible plate.

III. NUMERICAL METHOD AND VALIDATION

A. Numerical method

In our simulations, the Navier-Stokes equations are solved
by the lattice Boltzmann method and the Euler-Bernoulli
equation is solved by a finite element method. The conserva-
tive phase-field lattice Boltzmann method (LBM) developed
by Geiger et al. [32] and Fakhari et al. [23] was adopted to
solve the interface tracking Eq. (1):

hα (x + eαδt, t + δt ) = hα (x, t ) − hα (x, t ) − heq
α (x, t )

τφ + 1/2
, (11)

where hα is the phase-field distribution function, τφ is the
phase-field relaxation time, and eα is the discrete velocity
set. Here the D2Q9 model [23] is adopted. The equilibrium
phase-field distribution function [32] is defined as

heq
α = φ�α + wα

M

c2
s

[
4

W
φ(1 − φ)

]
(eα · n̂), (12)

where

�α = wα

[
1 + eα · u

c2
s

+ (eα · u)2

2c4
s

− u · u
2c2

s

]
, (13)

and wα is the weight coefficient set, where w0 = 4/9, w1−4 =
1/9, and w5−8 = 1/36. The mobility M = τφc2

s δt , and the
speed of sound cs = 1/

√
3. The component variable φ is

recovered by

φ =
∑

α

hα, (14)

and the density can be calculated by ρ = ρL + φ(ρH − ρL ).
The hydrodynamic dynamic Eqs. (5) and (6) are numeri-

cally solved by

ḡα (x + eαδt, t + δt ) = ḡα (x, t ) + �α (x, t ) + Fα (x, t ), (15)

where ḡα is the hydrodynamic distribution function, �α is the
multiple-relaxation-time collision operator, taking the form of

�α = −�βα

(
ḡα − ḡeq

α

)
, (16)

where �βα is the collision matrix, and

Fα = δt
[
(�α − wα )(ρH − ρL )c2

s + �αμφ

]
(eα − u) · ∇φ

(17)
is the forcing term. The modified equilibrium distribution
function is defined by ḡeq

α = geq
α − Fα/2 and geq

α = pwα +
ρc2

s (�α − wα ). The macrovariables are calculated through

u = 1

ρc2
s

∑
α

ḡαeα + δt

2ρ
f s, (18)

p =
∑

α

ḡα + δt

2
(ρH − ρL )c2

s u · ∇φ. (19)

For more detailed information, please refer to Fakhari’s
study [23].

The structural Eq. (7) for the flexible substrate is solved
by a geometric nonlinear finite element method. Based on the
principle of virtual work and shape function approximation,
a semidiscrete form of the structural equation at time t + �t
can be obtained [33], i.e.,

M1ät+�t + Cȧt+�t + F int,t+�t − Fext,t+�t = 0, (20)

where a is the displacement vector, M1 is the mass matrix,
C is the damping matrix, F int is the internal force, and Fext

is the external force exerted on the beam. The nonlinear
term F int is solved through the Newton-Raphson method
[33]. A second-order unconditionally stable direct numerical
integration method, i.e., the Newmark-β method, is adopted.
The final iterative solution equation is as follows:[

c0M1 + c1C + K (i)
T,t+�t

]
�a(i+1)

= Fext,t+�t + F (i)
int,t+�t − M1

[
c0

(
a(i)

t+�t − at
)− c2ȧt − c3ät

]
−C

[
c1

(
a(i)

t+�t − at
) − c4ȧt − c5ät

]
, (21)

where KT is the tangent matrix which is solved by the
corotational scheme [33], c0–c5 are the coefficients associated
with the Newmark method, and the superscript denotes the
subiteration time of the beam solver. The update iteration of
the variable is

a(i+1)
t+�t = a(i)

t+�t + �a(i+1), K (i)
T,t+�t = KT

(
a(i)

t+�t

)
,

F (i)
int,t+�t = F int

(
a(i)

t+�t

)
, X (i+1)

t+�t = X 0 + a(i+1)
t+�t , (22)

where X 0 is the initial reference position of the beam. The
initial iteration is a(0)

t+�t = at . After the iteration is converged,
the displacement at new time at+�t can be obtained. The speed
and acceleration can be obtained by

ät+�t = c0(at+�t − at ) − c2ȧt − c3ät , (23)

ȧt+�t = c1(at+�t − at ) − c4ȧt − c5ät . (24)

The flexible substrate in the flow is a deformable moving
boundary. The schematic diagram for a moving deformable
boundary immersed in fluid is shown in Fig. 2. Here, the
fluid at the boundary should satisfy the nonslip boundary
condition, i.e., u = uw, where uw is the velocity at xw. In
the LBM, the the bounce-back method is adopted to ensure
the physical nonslip boundary condition. Specifically, in the
LBM the distribution functions hᾱ (x f , t + δt ) = h∗

ᾱ (xs, t ) and
ḡᾱ (x f , t + δt ) = ḡ∗

ᾱ (xs, t ) are unknown (see Fig. 2) because
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FIG. 2. A moving deformable boundary (solid red line) im-
mersed in fluid. Circles and squares represent fluid and solid points,
respectively. Filled black circles and squares are fluid and solid nodes
closest to the boundary. eᾱ represents the opposite direction of eα .
Filled red circles represent the Lagrangian points on the moving
deformable boundary. xw is the intersection of the link from x f to
xs and the boundary.

in the LBM, the evolution equation (the lattice Boltzmann
equation) is not performed on the solid nodes. So we have
to specify these unknowns. Here the unknown phase-field
distribution function h∗

ᾱ (xs, t ) is given by

h∗
ᾱ (xs) = h∗

α (x f ) + 2
φ(x f )

c2
s

wα (ub · eᾱ ), (25)

where ub is the velocity at xb, the middle of the link between
x f and xs [34]. It is noted that if ub = 0, Eq. (25) becomes
midway bounce back for a static wall. In the studies of
particles interacting with the fluid, the particle is rigid, so
ub can be calculated by the particle position and velocity.
However, here the boundary is deformable and ub is obtained
through interpolation

ub(xb) =
∑

X [u(X )/(X − xb)2]∑
X [1/(X − xb)2]

, (26)

where X and u(X ) are the position and velocity of the La-
grangian nodes [35–37], respectively.

The unknown hydrodynamic distribution function ḡ∗
ᾱ (xs, t )

can be obtained using the scheme of Mei et al. [23,38], i.e.,

ḡ∗
ᾱ (xs) = (1 − χ )ḡ∗

α (x f ) + χ g̃α (xb f ) + 2
ρ(x f )

c2
s

wα (uw · eᾱ ),

(27)
where χ is the weighting factor, and

g̃α (xb f ) = geq
α (x f ) + ρ(x f )wαeα · (ub f − u f ), (28)

where ub f is obtained by interpolation. Through the momen-
tum exchange method [34,39–41], the external force exerted

on the substrate can be obtained,

F(eα; xw ) = (eα − uw )ḡ∗
α (x f ) − (eᾱ − uw )ḡ∗

ᾱ (xs). (29)

Then, F(eα; xw ) is linearly distributed to two adjacent La-
grangian nodes. To investigate the effect of wettability, we
incorporated the contact angle model into our algorithm [see
Eq. (3)]. To enhance the numerical accuracy and stability, we
adopted a weighted least square method (LSM) [42–44] to
integrate the contact angle model. The details can be found
in the Appendix.

It is noticed that in the momentum exchange method, only
the hydrodynamic force is considered, but the surface tension
force exerted on the substrate is not included. There are two
ways to calculate the capillary force. One is the sharp interface
method, e.g., FST = σm, where m is a unit vector tangent
to the local interface, and points out from the boundary. The
other is the diffuse interface scheme [34]:

FST =
∫ 1

φ=0
w(φ)σm(φ)dφ ≈

N∑
i

w(φi)σ m̄(φi ) sin(θ ),

(30)
where N is the number of cells across the interface, w(φ) is the
weight function which satisfies

∫ 1
φ=0 w(φ)dφ = 1. m̄(φi) =

(− ∂φ

∂y ,
∂φ

∂x ) for ∂φ

∂x > 0; otherwise, m̄(φi ) = ( ∂φ

∂y ,− ∂φ

∂x ). In the
study of Connington et al. [34], the contact angle is 90◦,
so N is approximately equal to the interface thickness W .
However, for other contact angles, the number of cells across
the interface along the moving boundary is N = W/ sin(θ ).
Considering the influence of the contact angle, we have
Eq. (30).

Because the boundary is moving, some solid nodes in the
area swept by the boundary may become fluid nodes. Under
this circumstance, the density, velocity, pressure, and distribu-
tion functions are unknown at these new fluid nodes which are
marked as xs→ f . The density is specified as ρ(xs→ f , t + δt ) =
ρ̄(xs, t ), where ρ̄(xs, t ) is obtained by applying the wetting
boundary condition Eq. (3) at solid boundary nodes. Because
the new nodes are very close to the moving boundary, the
velocity on these nodes is approximately equal to that of the
wall, e.g., u(xs→ f , t + δt ) = u[X (xs), t + δt]. The pressure
is assumed to be p(xs→ f , t + δt ) = ∑

i p(x fi , t + δt )/Npre,
where Npre represents the number of old fluid nodes x fi

around xs→ f . Then, the distribution functions of the new
nodes are supposed to be the local equilibrium distribution
function [34,45,46], which are assumed to be a function of
the macrovariables.

To handle such a coupling problem, we use subiterations
between fluid (LBM) and beam (FEM) solvers [47]. Suppose
at time t , a Lagrange point located at X (t ) in the beam has
velocity u(t ). We take it as an example to illustrate the details.
The following sequential steps would be performed.

(1) Step A: The lattice Boltzmann equation is solved and
the bounce-back method [Eqs. (25) and (27)] for moving
boundaries is adopted to achieve the nonslip boundary con-
dition.

(2) Step B: The external force (load) Fext exerted on X is
obtained by the momentum exchange method [Eq. (29)] at the
same time.
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FIG. 3. (a) A droplet with contact angle θeq rests on a flat surface. The dash-dotted and solid lines (φ = 0.5) represent the drop’s initial and
equilibrium (t = 50Tref) shapes, respectively. (b) The ratio of height to initial diameter as a function of contact angle.

(3) Step C: Using the load Fext and the finite element
method, X and u are updated.

To get the correct X (t + �t ) and u(t + �t ) at time step t +
�t , we did use the following subiterations. First, after Steps A
and B are implemented, using the FEM and Fext(t ) (Step C)
we have velocity u(1)(t + �t ) and X (1)(t + �t ), where the su-
perscript denotes the subiteration time. Second, using u(1)(t +
�t ) and X (1)(t + �t ) and implementing Steps A and B, we
have F (1)

ext (t + �t ). Using F (1)
ext (t + �t ) and Step C we have

u(2)(t + �t ) and X (2)(t + �t ), which may be different from
u(1)(t + �t ) and X (1)(t + �t ), respectively. At the kth subit-
eration we check whether |u(k)(t + �t ) − u(k−1)(t + �t )| <

ε1 or |X (k)(t + �t ) − X (k−1)(t + �t )| < ε2 reaches, where ε1,
ε2 are specified small parameters. When the convergency is
reached, we set u(t + �t ) = u(k)(t + �t ) and X (t + �t ) =
X (k)(t + �t ) and continue the next-time-step simulation.

The above iterations between the beam and fluid solvers
do guarantee the flow speed along the interface is almost
identical. In this way, the interface condition is satisfied.

The computational domain is chosen as −3.5D � x �
3.5D and −1.0D � y � 6.0D. The domain is large enough
to eliminate the boundary effect. The boundary condition
u = 0 is applied on the left and right boundary. For the
top boundary, the outflow boundary conditions ∂hα/∂y = 0
and ∂ ḡα/∂y = 0 are used. The mesh spacing δx = 1 lu and
time step δt = 1 ts are lattice units used in the LBM. The
normalized grid spacings in the x and y direction is uniform
with �x = �y = δx/Lref = 0.015625. The normalized time
step is �t = δt/Tref = 1.171875 × 10−4.

B. validation

To validate the numerical method used in the present study,
we first simulated the cases of a droplet sitting on the solid flat
surface [see Fig. 3(a)]. A semicircular droplet is placed on a
flat surface with an initial contact angle of 90◦. The droplet
will evolve to its equilibrium state at imposed contact angle.
hmax is the height of the droplet above the flat surface. Accord-
ing to the conservation of mass, we get the analytical solution

hmax

D0
= 1 − cos θ

2

√
π

2θ − sin 2θ
. (31)

Figure 3(b) shows good agreement between numerical and
the analytical solutions for different contact angles.

To verify the numerical method, we considered the cases
of a droplet resting on a membrane. First, a half droplet is
place on a flat membrane. The membrane is mainly dominated
by tension and bending can be neglected. In our simulations,
the bending stiffness is very small, where KB = 1.0 × 10−4.
Because of the Laplace pressure, the droplet deforms the
membrane and a bulge appears (see Fig. 4). According to the
study of Schulman et al. [48], there are two angles to quantify
the droplet and membrane geometries: θd and θb. Analogous
to a Neumann construction, the forces at the triple point are
balanced, i.e.,

σ + T out + T in = 0, (32)

where

|T out| = |T in| + |σ| cos θeq. (33)

It is a fact that the membrane is flat outside the droplet. A
vertical force balance yields

|T in|
|σ| = sin θd

sin θb
. (34)

θd
θb

σ

Tin

Tout
bulge

droplet

FIG. 4. A droplet with contact angle θeq rests on a membrane at
t = 100Tref. The red, blue, and green solid lines represent membrane
profile, the fitted circle of the droplet profile, and the fitted circle of
the bulge, respectively.
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)b()a(

|σ|/|inT || σ|/|inT|

bθ

dθ

FIG. 5. (a) The droplet contact angle as a function of |T in|/|σ|. The red dash-dotted line represents the equilibrium contact angle θeq = 81◦.
(b) The bulge contact angle as a function of |T in|/|σ|.

Moreover, according to the cosine law, we have

cos θd = 1 + (|T out|/|σ|)2 − (|T in|/|σ|)2

2|T out|/|σ| , (35)

cos θb = (|T in|/|σ|)2 + (|T out|/|σ|)2 − 1

2|T in||T out|/|σ|2 . (36)

Combined with Eqs. (33), (35), and (36), angles θd and θb

can be measured as a function of Tin/σ , which can be easily
obtained through Eq. (34). Figure 5 shows good agreement
between our computational results and Schulman’s results.
Our numerical method can successfully solve the problems
of droplets interacting with flexible substrates.

IV. RESULTS AND DISCUSSION

To better understand how flexibility affects the droplet
impact dynamics, we investigated the droplet impact on the
superhydrophobic flexible plate. The equilibrium contact an-
gle is θeq = 170◦. Here we present some typical results. All
key governing parameters are listed in Table I.

The simulated results are shown in Fig. 6. It is seen that
the droplet impacting on the flexible substrate experienced
an early jump compared with that on a rigid substrate. Due
to symmetry, only half of the flow field was plotted. When
droplet impacts on a rigid substrate, the droplet deforms to

TABLE I. The parameters in the simulations.

Density ratio ρr 1000

Dynamic viscosity ratio μr 100
Weber number We [0.2,64]
Reynolds number Re 1000
Bending stiffness KB [0.02,10]
Stretching stiffness KS 100
Mass ratio M 0.1
Plate length Lr 5

be flat and the kinetic energy begins to convert to the surface
energy. After reaching its maximum spreading diameter at the
spreading time tspr = 0.47, the droplet begins to retract, and
takes off at the contact time tct = 1.54. While droplet impacts
on a flexible substrate, the kinetic energy would convert to
both the surface energy and the elastic energy of the flexible
substrate. It is seen that the spreading time in the flexible case
is tspr = 0.45, which is close to that of the rigid case. Due to
the existence of elastic energy of the plate, the surface energy
of the droplet is reduced, and Dmax is significantly smaller
compared to the rigid case. Then, the droplet begins to retract.
The surface energy and elastic energy simultaneously transfer
to kinetic energy of the droplet, leading to a more significant
upward speed and bouncing off at tct = 1.2. The contact time
is reduced by 22% compared to that of the rigid case.

A. Contact time

For further understanding of drop impact dynamics, we
have simulated a series of cases of different flexibilities and
Weber numbers. In these cases, the Weber number is changed
by specifying different impact velocity. Figure 7(a) shows tct

as a function of We. It is seen that tct on the rigid substrate
increases with We for We > 2. For the flexible cases, it seems
that only when We is higher than a critical value Wec ≈ 8, is
the contact time smaller than that in the rigid case. Hence,
when We > Wec, the flexibility contributes to contact time
reduction.

Figure 7(b) shows tct as a function of Fr for different We. It
is seen that for the cases with We = 2, tct ≈ 2 and 1 when
Fr < 0.3 and Fr > 1, respectively. Therefore the flexibility
increases tct when the substrate is very flexible at We = 2. The
reason is that at a small We, the kinetic energy of the droplet
is small and the droplet would easily adhere to the flexible
substrate due to the capillary and viscous forces. For the cases
with We = 8, the kinetic energy of the droplet becomes larger.
The contact time reaches a valley at Fr = 1. It seems that a
proper flexibility may reduce tct. For the cases with We =
16, the kinetic energy of the droplet becomes large. When
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(a)

(b) Dmax/2

Dmax/2

FIG. 6. Snapshots of the water droplet impact on (a) a rigid surface and (b) a flexible surface with KB = 1.0 (Fr = 0.99). In both cases
We = 16. The droplet profile is described by the contour line φ = 0.5. tspr is the spreading time at which the droplet reaches Dmax and tct is the
contact time at which the droplet leaves off the plate.

Fr < 1, the contact time tct becomes significantly smaller. For
example, tct = 1.15 at Fr = 0.77 (see the green circle) while
tct = 1.53 at Fr = 10 (see the black circle). Hence, under these
circumstances, the flexibility does contribute to the reduction
of tct.

From Fig. 7(b) it is also seen that for Fr � 2, tct is ap-
proximately a constant for each We because when Fr � 2, the
substrate is rigid and the elastic energy is almost negligible. In
our simulations, only the cases with We < 20 are considered.
At a larger We, maybe more kinetic energy of the droplet
would convert into the elastic energy of the plate, which would
accelerate the droplet in the upward direction. In this way,
a pan-cake bouncing may appear. It is a such bouncing that

the droplet leaves the plate only due to the elastic energy of
the plate instead of the kinetic energy converted from the
surface energy (see the experiments of Weisensee [19] for
more detail). We will discuss this kind of bouncing in our
future work.

For Fr < 0.4 and We = 16, the contact time is almost
constant. Because KS is fixed in our simulations, for the
cases with small KB, the stretching energy dominates the
elastic energy of the substrate. The frequency ratio in Eq. (10)
based on KB seems not appropriate to quantify the elastic
energy. In our following discussions, we would focus on
the first-order natural frequency of the plate, in which KB is
dominant.

)b()a(

FIG. 7. (a) Contact time tct as a function of We for different KB. (b) tct as a function of Fr for different We. Cases of Fr = 10 represent the
cases with rigid substrate. Black, blue, green, and red circles represent the cases at Fr = 10, 1.4, 0.77, 0.2, respectively.
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FIG. 8. (a) The coefficients of restitution My

M0
as a function of We for different KB. M0 is the initial momentum of the droplet for each We.

(b) Remaining upward momentum as a function of Fr for different We, and Fr = 10 represents the cases of droplets impacting on the rigid
substrate.

B. Transfer of momentum

In this section, the transfer of momentum during the impact
would be discussed. The remaining y-component momentum
of the droplet My at the time of taking off as functions of We
and Fr is shown in Fig. 8. For the rigid cases, a downward
impact force is exerted on the substrate, and the droplet
thus receives an upward reaction force. Moreover, due to
the conversion of the surface energy to the kinetic energy of
the droplet, the droplet will bounce off with the remaining
upward momentum. My can be normalized by the reference
momentum MdropUref, where Mdrop = 0.25πD2

0ρH . It is no-
ticed that the reference momentum is one of the physical
quantities relevant to droplet properties but independent of
impact velocities.

From Fig. 8(a), it is seen that for the rigid cases, the
coefficient of restitution My

M0
increases and then decreases as

We increases. My

M0
reaches its maximum value, 0.59, at We = 2.

When We is small, e.g., We < 2, the kinetic energy of the
droplet is small, and it becomes easier to adhere to the plate
due to capillary and viscous forces. Thus, My

M0
decreases as

We decreases. When We is large, e.g., We > 2, My

M0
decreases

with We. This means that energy dissipation is also significant
at larger We. For cases with KB = 2.0, My

M0
would decrease

compared to that in the rigid case for We > 2. Furthermore,
it is worth noting that when the flexibility is appropriate, e.g.,
KB � 1.0, My

M0
may increase substantially compared to its value

in the rigid case.
From Fig. 8(b), it is seen that My is significantly influenced

by Fr , especially at larger We. For the cases with We = 2,
My increased slightly compared to that in the rigid case for
different Fr . In addition, My reaches a peak at Fr = 1. It
seems that a proper flexibility may increase the remaining
momentum. For a large Weber number, e.g., We = 8, the peak
is more obvious. However, a valley also appears at Fr = 1.4,
where the momentum decreases. For cases with We = 16, as
Fr increases, the momentum first increases a little bit, then

dramatically decreases and later increases slightly. The reason
for the dramatic decrease will be discussed below. It is also
noted that for Fr = 10, My is the same as that in the case of
We = 8. This means that at We = 16, the dissipation is large.
It could be seen from Fig. 8(a) that My

M0
= 0.36 at We = 16,

and My

M0
= 0.51 at We = 8. So when the Weber number is large

enough, the plate with an appropriate flexibility would store
more elastic energy, and reduce the energy dissipation.

The energy, momentum and deformation evolutions of the
droplet are shown in Fig. 9 for the cases with We = 16. For
the rigid case (see the black lines), Fig. 9(a) shows that the
kinetic energy of the drop Ek decreases rapidly and then
it reaches a valley with Ek ≈ 0 at t ≈ 0.5. In the moment
Ek is almost completely converted into surface energy and
viscosity dissipation. From Fig. 9(b) it also seen that Dmax

reaches a peak at the moment. After that, the droplet recoils
and the surface energy is converted into the kinetic energy.
Figure 9(c) shows that there is a plateau in the curve of
the momentum at t ∈ (0.4, 1). In the period, the horizontal
momentum is important. When t ∈ (1, 1.5), due to the sym-
metry, the horizontal momentum collides with each other,
turns to the vertical momentum, and produces a strong jet.
Finally at tct ≈ 1.5 the droplet eventually bounces off from the
surface.

For the case of Fr = 1.4 (the blue lines in Fig. 9), tct ≈ 1.5,
which is identical to the rigid case but My is significantly
reduced by about 38% compared to that in the rigid case
[see Figs. 7(b) and 8(b)]. The kinetic energy evolution of
the droplet is similar to that in the rigid case [see Fig. 9(a)].
From Fig. 9(b), it is seen that tspr ≈ 0.5. It seems that the
flexibility does not affect tspr [19] but it may decrease Dmax

significantly. We can also see that before the droplet reaches
its Dmax, i.e., t < tspr, the plate begins to move upward (t ≈
0.3), which accelerate the droplet upward until My reaches
a peak [see Fig. 9(c)]. Nevertheless, the upward momentum
obtained by the droplet is not enough to make it bounce off
directly. Moreover, from Fig. 9(c), it is seen that the increase
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(a)

)d()c(

(b)

Emax

ΔE

FIG. 9. (a) The evolution of the kinetic energy of the droplet for different Fr . (b) The evolution of total energy of the flexible substrate,
including the kinetic energy, the bending energy, and the stretching energy. (c) The evolution of My. (d) The evolution of the displacement of
the center of the plate in the y direction (solid lines) and the evolution of Dmax (dash-dotted lines). The short vertical arrows on each line in (a,
b, c, d) represents t = tct. The shaded areas in (d) represent the “spread” and “retract” stages of a droplet when it impacts on a surface. In all
cases We = 16.

of My, i.e., dMy

dt is slower than that in the rigid case because
the flexible substrate also moves downward shortly after the
impact. Similar phenomena also exist in the other flexible
cases. The droplet converts its kinetic energy to the surface
energy and elastic energy simultaneously, and the elastic
energy of the plate is increasing shortly after the impact [see
Fig. 9(d)]. The flexible substrate vibrates for approximately
two cycles until the droplet completely bounces off. In this
situation, less deformation energy of the flexible substrate is
converted to the kinetic energy of the droplet. The bouncing is
mainly due to the conversion of surface energy to the kinetic
energy of the droplet. Moreover, multiple oscillations result
in more dissipation, and finally when the droplet bounces off,
My is reduced compared with that in the rigid case.

For the case of Fr = 0.77 (the green lines in Fig. 9), the
contact time is reduced by about 25%, and the remaining
upward momentum is increased by about 78% compared with
that in the rigid case [see Figs. 7(b) and 8(b)]. From Fig. 9(b),
we can see that when y reaches a valley at t ≈ 0.5, the diam-
eter of the droplet reaches Dmax. Then the droplet begins to
retract, and the substrate moves upward simultaneously. This
means that the surface to kinetic and elastic to kinetic energy

conversions are synchronous. From Fig. 9(c), It is seen that
My seems to increase at a constant speed, e.g., dMy

dt = const,
until the droplet detaches from the flexible plate. Figure 9(d)
shows that most of the energy stored in the elastic substrate
returns to the droplet again in one cycle of the vibration. The
elastic energy conversion efficiency can be quantified by

η = �E

Emax
, (37)

where Emax is the maximal energy absorbed by the substrate,
and �E is the energy that the plate returns to the droplet again.
η as a function of Fr is shown in Fig. 10(a). In this case η =
0.876, which is high although Emax is not so high. It is noted
that η reaches a valley at Fr = 1.18. The reason is similar to
that of the valley of My [see Fig. 8(b)]. In this situation, the
flexible substrate vibrates for multiple cycles until the droplet
bounces off. Less elastic energy is converted to kinetic energy
of the droplet. Moveover, the dissipation is large.

For the case of Fr = 0.20, tct and My are almost the
same as those in the case of Fr = 0.77. It is seen from
Fig. 10(b) that when KB is small, Es

Eb
is large. It seems that

the stretching energy is dominant over the bending energy. As
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(b)(a)

)d()c(

FIG. 10. (a) The elastic energy conversion efficiency η as a function of the Fr . (b) The ratio of the stretching energy to the bending energy
Es
Eb

as a function of Fr . (c) Definition of the phase according to the movement of the center of the substrate. (d) The bouncing-off phase φ, at
which the droplet leaves the surface, tcr and My as functions of Fr . In all cases We = 16.

mentioned above, for a small bending stiffness, Eq. (10) is not
appropriate. The actual frequency ratio of the plate vibration
now is mainly controlled by KS , which is fixed to be 100 in
all simulations. So for Fr < 0.77, the real frequency ratio is
almost constant and corresponding tct and My are constant.

The evolution of the center of the substrate is shown in
Fig. 10(c). The phase of the plate can be defined through the
curve. Suppose the phases at y = 0 are 0, π , 2π ,...... chrono-
logically. Then the phase when the droplet bounces off can
be obtained through a linear interpolation. The bouncing-off
phase as a function of Fr is shown in Fig. 10(d). It is seen that
to achieve a smaller tct and a larger My, the bouncing-off phase
should fall within the range of (π, 2π ). It is also found that
Fr ≈ 1/tctr when the bouncing-off is in the range of (π, 2π ),
where tctr is the contact time of droplets impact on the rigid
surface at the same We.

In summary, to reduce tct and increase My, first the Weber
number must be large enough to overcome the viscosity and
capillary force. In our simulations, the critical value of the
Weber number is about 8. Second the frequency ratio should
satisfy Fr ≈ 1/tctr. Under this circumstance, the bouncing
takes place in the phase range of (π, 2π ). In this range,
the kinetic-surface and kinetic-elastic energy conversions are
synchronous.

C. Scaling laws for βmax and δmax

To further study the role of flexibility on the dynamics of
droplet impact, we investigated the effect of flexibility on the
maximal spreading diameter, βmax = Dmax/D0, and maximal
deflection of the center of the substrate δmax = �max/D0.
First of all, we numerically studied the maximum spreading
diameter of a droplet impact on a rigid surface. In our 2D
simulations, analogous to the study of Chandra et al. [11],
according to energy conservation between the kinetic energy
and the surface energy of the droplet, we have

ρH D2
0U 2 ∼ σDmax, (38)

according to the definitions of βmax and We, it yields

βmax ∼ We. (39)

Analogous to the study of Clanet et al. [12], according
to volume conservation and equivalent gravitational acceler-
ation, we have

D2
0 ∼ Dmaxh, h ∼

√
σ/ρH g∗, g∗ ∼ U 2/D0, (40)

which is equivalent to

βmax ∼ We1/2. (41)
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FIG. 11. The maximal spreading diameter ratio as a function
of We. The solid black line represents the equivalent gravitational
acceleration scaling rate We1/2. In all cases, the surfaces are rigid.

It is seen from Fig. 11 that for We > 10, the scaling law of
We1/2 agrees well with the numerical results. More details
about Dmax of 3D droplets impact on rigid surfaces have been
discussed in the literature [13,14]. Here, we focus on the role
of flexibility in the spreading diameter of the droplet and
deflection of the plate.

The maximal deflection of the center of the flexible sub-
strate was investigated. Figure 12(a) shows that the maximal
deflection decreases as KB increases for all We. The deflection
is relevant to the oscillations of the plate and droplet. The
droplet-substrate interaction can be modeled as interaction
between two spring oscillators. The flexible substrate could be
modeled as a spring with stiffness ks and an equivalent mass
ms which satisfy [18,19,49]

fs = ωs

2π
= 1

2π

√
ks

ms
, (42)

where ks = 48EI/L3, corresponding to the simply supported
boundary condition on both sides of the plate. According
to Eq. (9), the equivalent mass ms = ks/ω

2
s = 48/π4ρshL 


0.5ρshL for the first-order mode n = 1. Similarly, the droplet

)b()a(

)d()c(

FIG. 12. (a) The maximal deflection of the center of the substrate as a function of KB for different We. (b) Normalized deflection as a
function of KB. (c) βmax as a function of KB for different We. (d) Normalized diameter ratio as a function of KB.
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can also be modeled as another spring [49]. We have

fd = ωd

2π
= 1

2π

√
kd

md
, (43)

where md is equal to the mass of the droplet, i.e., 0.25πD2
0ρH .

According to the study of Takaki et al. [50], the natural vibra-
tion frequency of a circular column droplet is proportional to
the reciprocal of its characteristic time

√
ρH D3

0/σ , which is the
reference frequency fref in our simulations. Here, we define
fd = fref. Then, we have kd = (2π fd )2md . The two-degree-
of-freedom system can be described by

ms
d2ys

dt2
= −ksxs + kd (yd − ys), (44)

md
d2yd

dt2
= −kd (yd − ys), (45)

where ys and yd are the displacements of the substrate and the
droplet, respectively. This system has two natural frequencies:

ω2 = (2π f )2 = 1
2

(
ω2

d + ω2
s + kd/ms

±
√(

ω2
d + ω2

s + kd/ms
)2 − 4ω2

dω
2
s

)
. (46)

The system would vibrate at the smaller frequency. If both
ends of Eq. (46) are divided by ω2

d , we have

f̄ 2 = 1
2

(
1 + F 2

r + 1/mr
)
(1 − √

1 − ε), (47)

where mr = ms/md , Fr = fs/ fd , and ε = 4F 2
r /(1 + F 2

r +
1/mr )2. For small KB, the substrate velocity just after impact,
Us, scales as the one for a completely inelastic collision [18]
(md + ms)Us = mdU . So the maximal deflection of the plate
can be yield as

�max f ∼ Us, (48)

according to the definition of Us, it yields

δmax(1 + mr ) f̄ ∼ We1/2. (49)

Figure 12(b) shows the normalized deflection as a function of
KB. It is seen that at moderate KB [KB ∈ (0.25, 1)], the curves
for different We almost collapse into a single horizontal line
(the dashed line). At a large KB, the deflection is smaller than
the theoretical one in Eq. (48), which is represented by the
dashed line. The reason is that under this circumstance, the
assumption of completely inelastic collision is not appropri-
ate. It is seen from Fig. 9(b) that for KB = 2.0, when the
substrate reaches its lowest point, the droplet is still moving
downwards. It is inconsistent with the system moving together
in one direction after a completely inelastic collision. That
may lead to a discrepancy. At a small KB, the actual frequency
of the substrate is larger due to the fixed KS , so the actual
deflection is less than that obtained from Eq. (48).

Then we studied the maximal spreading diameter. Fig-
ure 12(c) shows that βmax increases as KB increases for all
simulated We. Similar to Eq. (40), taking into account the
deflection of the substrate, we get

D2
0 ∼ Dmaxh, h ∼

√
σ/ρH g∗, g∗ ∼ U 2/(D0 + �max),

(50)

which is equivalent to

βmax ∼ We1/2/(1 + δmax)1/2. (51)

Figure 12(d) shows that curves agree well with different
horizontal lines for different We. Hence, Eq. (51) is able to
well predict the spreading diameter while taking into account
the effects of flexibility and mass ratio. It is also noted that the
data for different We do not collapse into one single horizontal
line. The reason is that for We < 10, the deformation of the
droplet is small, so the shape of the droplet is approximately
an ellipsoid. The assumption of Eq. (40) no longer holds.
Moreover, the scaling law for small We does not fit the law
of We1/2(see Fig. 11).

D. The effect of flexibility on droplet bouncing
for different wettability

The cases investigated above all describe droplets im-
pacting on superhydrophobic surfaces, where θeq = 170◦. We
found that if the substrate has appropriate flexibility, then
the droplet could get more upward momentum and shorter
contact time. We are also curious whether the flexibility
would promote the bouncing of the droplets impact on the
substrates with different wettability. Some cases with different
wettability were simulated and the results are presented in
Fig. 13. From Fig. 13(a) we can see that for superhydrophobic
surfaces, the droplets will bounce off for all simulated We. For
We = 1, and θeq � 130◦, the kinetic energy is too small to
overcome the capillary and viscous force, so it adheres to the
surface. Similar phenomena has been found in cases of θ �
110◦. However, Fig. 13(b) shows that the flexibility would
help the droplets to bounce off. For We > 4, the droplets could
bounce off at smaller contact angles due to the existence of
flexibility. Here, we only discuss it qualitatively and more
detailed discussions will be in our future work.

V. CONCLUSION

Droplets impact on the flexible substrate was investigated
numerically. We developed a numerical method that can
handle the fluid structure interaction with wetting boundary
condition. Our results show that to reduce the contact time
tct and increase the remaining upward momentum My, two
conditions should be satisfied. First, We should be higher
than Wec to overcome the viscosity and capillary forces. In
our simulations, Wec ≈ 8. Second, the frequency ratio should
satisfy Fr ≈ 1/tctr. Under this circumstance, the bouncing
takes place in the phase range of (π, 2π ). In addition, the
kinetic energy converts into the surface energy of the droplet
and the elastic energy of the plate simultaneously, and vice
versa. In this way, the droplet is able to obtain more kinetic
energy and larger upward acceleration before it bounces off
the plate compared to the case of the rigid plate.

The influences of flexibility on the δmax and βmax were
investigated. δmax and βmax are relevant to the oscillations of
the plate and droplet. The droplet-substrate interaction was
modeled as the interaction between two spring oscillators.
Through the model, a scaling law of δmax was proposed. It is
found that at moderate KB, the numerical results for different
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FIG. 13. “bounce off” and “adhere” phase diagram for different We and wettability, characterized by the contact angle θ . (a) Droplets
impact on a rigid surface. (b) Droplets impact on a flexible surface. In all cases of (b) KB = 0.6 (Fr = 0.77).

We agree well with the results obtained from that scaling law.
Moreover, a scaling law of βmax was also proposed.

Finally, the effect of flexibility on the droplet bouncing for
different wettability was qualitatively investigated. It is found
that the flexibility could effectively help the droplets bounce
off at the smaller contact angles.

In our study, the simulations were limited to 2D cases
to save computational resources. However, our 2D model
study is reasonable, and it may incorporate enough physics to
contribute to a better understanding of the interaction between
droplets and deformable moving boundaries.
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APPENDIX: CONTACT ANGLE MODEL

Suppose xs is one of the outside points which are most
close to the beam (suppose the droplet is inside). xBI is the
projection of xs on the beam (the red line) (see Fig. 14). At
each time step, we have to update φ at xs to ensure that φw,
i.e., φ(xBI) satisfies Eq. (3).

Here, the weighted least square method is adopted to
enforce Eq. (3) [43]. In the method, φ in the vicinity of xBI

can be approximated by N th-degree polynomial � as follows:

φ(ξ, η) ≈ �(ξ, η) =
N∑

i=0

N∑
j=0

ci jξ
iη j, i + j � N, (A1)

where ξ = x − xBI, η = y − yBI, and ci j is unknown coeffi-
cients. To determine the values of ci j , φ on the blue-circle
points (see Fig. 14) have to be used. Then the weighted square
error is defined as

ε =
M∑

m=1

w2
m[�(ξm, ηm) − φm]2, (A2)

where M is the number of the blue-circle points in Fig. 14),
φm is the mth point and wm is the weight function. Here,
for m = 1, φ1 denotes φ(xs), which has to be determined.
Besides, a cosine weight function is adopted, i.e., wm =
1
2 [1 + cos ( πdm

R )], where dm is the distance between the mth
data point and xBI. A linear relationship between ci j and φm

can be determined by minimizing the weighted square error,
i.e., we have c = Aφ. According to Taylor’s expansion, ci j is
also related to the local derivatives of xBI and we have

c00 = φ|BI, c10 = ∂φ

∂x

∣∣∣∣
BI

, c01 = ∂φ

∂y

∣∣∣∣
BI

. (A3)

xBI

xs

R

ξ

η

x

y

FIG. 14. Schematic of the least square method. xBI is the projec-
tion of xs on the beam (the red line). A local coordinates (ξ, η) is
established with origin at xBI. The large dotted circle denote a range
of |x − xBI| < R, where R is a specified radius. Blue circle points are
inside the range. Discs (•) denotes the fluid nodes inside the beam
(suppose the droplet is inside).
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Hence,

∂φ

∂n
= nx

∂φ

∂x

∣∣∣∣
BI

+ ny
∂φ

∂y

∣∣∣∣
BI

= nxc10(φm) + nyc01(φm). (A4)

Combining with the boundary condition, i.e., Eq. (3), the
unknown φ1, i.e., φ(xs), together with φw, could be obtained.
In this way, Eq. (3) is enforced.
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