
PHYSICAL REVIEW E 101, 053106 (2020)

Influence of dielectrical heating on convective flow in a radial force field
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We present results of numerical and experimental investigations of thermal convection induced by internal
heating in both a nonrotating and a rotating spherical gap filled with dielectric fluid. The inner and outer
surfaces are maintained at constant temperatures Tin and Tout, respectively. A radial force field is produced
due to the dielectrophoretic effect. The buoyancy force in the Navier-Stokes equation and the source term
in the energy equation depend on the imposed oscillating electric field according to V 2

rmsr
−5 and V 2

rmsr
−4,

respectively, where Vrms is the root mean squared value of the voltage between spherical surfaces and r is
the radial distance. Beginning with the nonrotating case, we perform linear instability analysis in the case of
purely internal heating, i.e., both surfaces are maintained at the same temperature �T = Tin − Tout = 0. Next,
we consider a situation in which there is not only internal heating but also a temperature difference �T > 0.
While the spherical gap rotated, the occurring two-dimensional steady basic flow was calculated numerically.
The stability of the basic flow was investigated by means of linear instability theory. The critical Rayleigh
numbers and the critical azimuthal wave numbers are presented in dependence on the Taylor number. We
calculate supercritical three-dimensional flows for comparison with experimentally obtained patterns in frames
of the GeoFlow experiment on the International Space Station.
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I. INTRODUCTION

Because of the geophysical relevance the exploration of the
convective flows in the spherical gap was the subject of inten-
sive theoretical and numerical studies. If the inner surface is
warmer than the outer one and a fluid is influenced by a central
force, then the situation occurs that can be compared with the
Rayleigh-Bénard convection. The flow patterns occurring in
such simplified configuration have been investigated by Busse
and his coworkers in both nonrotating and rotating cases.
Whereas the flow patterns in the rotating case are defined by
the Coriolis force and the critical azimuthal wave numbers
mc can be derived due to the linear instability theory [1,2],
we have completely other situation in the nonrotating case
because of the symmetry of the problem under considera-
tion. Patterns of the supercritical flow [3–5] and bifurcation
scenarios [6] have been formulated in terms of parameter
� (degree of corresponding Legendre polynomial) in this
case. The next important motivation for the implementation
of the numerical analysis of the convective flows under the
influence of the radial force field is the world-wide recognized
GeoFlow experiment [7] that takes place on the International
Space Station (ISS). The most important advantage of this
experiment is that the influence of the Earth’s gravity can
be eliminated. Hence, if the fluid is heated from within and
we find the possibility to produce the central force field, then
the Rayleigh-Bénard convection in the spherical geometry can
be realized under the microgravity conditions. To produce the
radial force field the electric field is imposed on a dielectrical
incompressible fluid of density ρ and permittivity ε(T ), where
T is the temperature. The force density, generated by electric

field E can be expressed as follows [8]:

fe = ρeE − 1

2
E2∇ε(T ) + ∇

[
1

2
ρ

(
∂ε

∂ρ

)
T

E2

]
, (1)

where the first term is the density of the Coulomb force
with a free charge ρe. The second term represents the di-
electrophoretic force density, fdep. The third term, correspond-
ing to the electrostriction force, can be combined with the
pressure gradient. The Coulomb force is negligible if the
frequency of the imposed electric field f is much higher than
all frequencies that are responsible for the fluid behavior, e.g.,
the inverse of the charge relaxation time τe = ε0εr/σe (ε0 is
the vacuum permittivity, εr is the dielectric constant σe is the
electrical conductivity), the inverse of the viscous relaxation
time tν = d2/ν, and the inverse of the thermal relaxation time
tκ = d2/κ , where ν is the kinematic viscosity, κ is the thermal
diffusivity, and d = R2 − R1 is the width of the spherical
gap. The next condition that must be satisfied to neglect
the Coulomb force is d � δD, where δD is the thickness of
the Debye layer on the electrodes [9,10]. Because all these
conditions fulfilled only the dielectrophoretic force influences
the flow and must be taken into account.

The behavior of the electric permittivity can be approxi-
mated by a linear function of the temperature T :

ε(T ) = ε0εr[1 − γ (T − Tout)]. (2)

The force fdep can be written after a little algebra as follows:

fdep = −γ (T − Tout)ge, ge = ε0εr

2ρ
∇E2, (3)
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where ge is due to the electric field-induced artificial gravity
field, and γ is the coefficient of thermal permittivity. Because
the dielectrophoretic force fdep and the induced artificial grav-
ity have opposite directions, the problem can be compared
with the classical Rayleigh-Bénard (RB) problem, with one
important difference. Whereas in RB convection the gravity
does not change and the flow is controlled due to the tem-
perature gradient, in our case �T = Tin − Tout is maintained
at constant value and the flow is triggered by varying the
voltage or artificial gravity. Furthermore, volumetric heating
is involved in the energy equation due to the source term
according to the relation

HE = 2π f ε0εrhdiss

ρCp
E2, (4)

where hdiss is the energy dissipation factor, and Cp is a specific
heat capacity. Therefore, we have electric-field-dependent (via
voltage) gravity ge ∼ V 2

rmsr
−5 in the Navier-Stokes equation

[11] and source HE ∼ V 2
rmsr

−4 in the energy equation. In other
words, the source term and the gravity are coupled parameters
(HE ∼ ge).

This situation completely differs from the situation in
which source and the gravity are independent. In our case the
gravity is a source. Hence, it is necessary to construct control
parameters such that only one depends on the voltage. These
specific parameters for the problem under consideration are
discussed in the next section.

The work presented is a numerical support for the well-
known GeoFlow experiment [12–14] on the ISS. Whereas the
GeoFlow I experiment was performed with fluid of constant
viscosity (silicon oil M5), a fluid with temperature-dependent
viscosity (1-nonanol) was used during the GeoFlow II experi-
ment. Although the temperature-sensitive viscosity plays an
important role, we found that the influence of the internal
heating is much more significant and becomes crucial if the
frequency of the imposed electric field increases from f =
50 Hz (GeoFlow I) to f = 10650 Hz (GeoFlow II). Thus, the
source term Eq. (4) must be involved in the energy equation.
This paper is a sequel to Ref. [15], where the problem under
investigation was solved numerically in framework of the
GeoFlow I experiment in which the effect of the internal
heating is negligible.

The paper is organized as follows. After the governing
equations are formulated in Sec. II, we present the numer-
ical method in Sec. III. The structure of the basic flow for
different Rayleigh numbers and Taylor numbers is discussed
in Sec. IV. Linear instability analysis is performed in Sec. V.
Nonlinear calculations of the supercritical three-dimensional
flows, analysis of the heat transfer and bifurcation analysis in
the nonrotating and rotating cases are presented in Secs. VI A
and VI B, correspondingly. Experimental results are discussed
in Sec. VI C.

II. EQUATIONS

We consider an incompressible viscous dielectric fluid
in the Boussinesq approximation in the spherical gap. In
the common form, the problem under consideration can be

described due to the Navier-Stokes equation for the velocity

∂U
∂t

+ (U∇)U = −∇peff − γ (T − Tout)ge + ν�U

− 2� × U − ρ(T )

ρ0
� × (� × r), (5)

where U is the velocity field, t is the time,

peff = p

ρ0
− γ ε0εr (T − Tout)E2

2ρ0
− 1

2

(
∂ε

∂ρ

)
T

E2, (6)

ρ0 = ρ(Tout), � is the rotation rate, the energy equation for
the temperature

∂T

∂t
+ (U · ∇)T = κ∇2T + HE , (7)

the continuity equation

∇ · U = 0, (8)

and the Gauss equation

∇ · (ε(T )∇υ ) = 0, (9)

where υ is the electric potential: E = −∇υ. Whereas no-slip
boundary conditions for the velocity field are used in the study
presented, we consider two kinds of boundary conditions for
the temperature. If both surfaces are maintained at the same
temperature Tin = Tout = Tb, then only the internal heating
due to the source HE is responsible for the heat transfer. The
situation changes if the inner surface is maintained at a higher
temperature than the outer one Tin > Tout. In this case the
heat transfer is produced not only because of internal heating
but also due to conduction. The boundary conditions for the
velocity, the temperature and electric potential are

U = 0, T = Tin, υ = Vrms (10)

on the inner surface r = R1,

U = 0, T = Tout, υ = 0. (11)

on the outer surface r = R2. Note that real-time-dependent
voltage V (t ) = V0 cos 2π f t was replaced by the root mean
squared value Vrms =

√
< V 2(t ) > = V0/

√
2 according to the

time-averaged relation over a period of the voltage varia-
tion Te = f −1 < V 2(t ) >= 1

Te

∫ Te

0 V 2(t )dt . Conditions of this
replacement were numerically derived in [16,17] and can
be briefly formulated as follows. First, the Prandtl number
of the working fluid must be large (Pr � 1). Furthermore,
the frequency f must obey two conditions: f � t−1

ν and
f � τ−1

e . Taking into account that f = 10650 Hz, Pr = 176,
ν = 1.3970 × 10−5 m2s−1, d = R2 − R1 = 135 mm, where
R1 and R2 are the inner and outer radii, correspondingly, all
these conditions are fulfilled (Table I).

Now we have to formulate the governing equations in
detail. The first case corresponds to a situation in which only
dielectrical heating without rotation (�T = 0 K, � = 0) is
considered. The second one describes not only the effect
of dielectrical heating but also a convective effect triggered
by the temperature difference between the spherical surfaces
and the rotation of the spherical system (�T > 0, � � 0).
Because we have different boundary conditions for the tem-
perature, it is useful to formulate two sets of equations to
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TABLE I. List of constants.

Nomenclature Tout = 293 K

Energy dissipation factor hdiss 6.2423 × 10−2

Volume expansion coefficient α(K−1) 8.2343 × 10−4

Coefficient of thermal permittivity γ (K−1) 0.010209
AC frequency f(Hz) 1.0650 × 104

Permittivity εr 9.05629
Density ρ (kgm−3) 828.16
Specific heat capacity Cp (JK−1) 2470
Kinematic viscosity ν (m2s−1) 1.3970 × 10−5

Thermal diffusivity κ (m2s−1) 7.94 × 10−8

be solved. Beginning with the purely dielectrical heating case
and writing the equation for ε(T ) in the form

ε(T ) = ε0εr[1 − γ (T − Tb)], (12)

We can introduce the dimensionless temperature T ∗ us-
ing T − Tb = TbT ∗. Introducing d for the length, κ/d for
the velocity and tκ = d2/κ for the time, E = E∗ Vrms

d for the
electric field the Navier-Stokes equation, the energy equation,
and the Gauss equation can be written, dropping stars, in the
dimensionless form:

Pr−1

[
∂U
∂t

+ (U∇)U
]

= −Pr−1∇p + �U − 1

4
RH · T · ∇[∇υ0(r)

+∇υ1(r, θ, φ)]2, (13)

∂T

∂t
+ (U · ∇)T = ∇2T + RH

RT
[∇υ0(r) + ∇υ1(r, θ, φ)]2,

(14)

∇2υ1(r, θ, φ) = γ Tb

1 − γ TbT
∇T · [∇υ0(r) + ∇υ1(r, θ, φ)],

(15)

where RH = 2ε0εrγ TbV 2
rms

ρνκ
is the Rayleigh-Roberts number, RT =

Cpγ T 2
b

πν f hdiss
. Note that it is useful to divide the electric field E into

two parts (θ is polar angle and φ is azimuthal angle)

E = E0(r) + E1(r, θ, φ), (16)

E0(r) = −∇υ0(r), (17)

E1(r, θ, φ) = −∇υ1(r, θ, φ). (18)

Whereas the field E0(r), which satisfies an expression ∇ ·
E0(r) = 0, can be calculated analytically,

E0(r) = η

(1 − η)2

1

r2
er, (19)

where η = R1
R2

is a radii ratio, the field E1(r, θ, φ) has a more
complex form because it generally depends on all three coor-
dinates and must be found numerically by solving Eq. (15).
The velocity field U, the temperature T , and the electric

potential υ1 obey

U = 0, T = 0, υ1 = 0 (20)

on the both surfaces r = η/(1 − η) and r = 1/(1 − η).
Substituting E0(r) in Eq. (3) we obtain the well-known

r−5 dependence [11]. It is clear that the second field occurs
because of the temperature-dependent function ε(T ). In the
second case, the equation for the permittivity Eq. (2) and the
equation of state

ρ(T ) = ρ0[1 − α(T − Tout)] (21)

have been substituted in the Navier-Stokes equation. The
dimensionless temperature T ∗ can be expressed in the form
T − Tout = �T T ∗, where �T = Tin − Tout. If the same scale
is retained for the length, for the velocity, for the time, and
for the electric field, then the governing equations can be
expressed as follows (omitting stars):

Pr−1

[
∂U
∂t

+ (U∇)U
]

= −Pr−1∇p + �U − 1

4
RaE · T · ∇[∇υ0(r)

+∇υ1(r, θ, φ)]2 −
√

Taez × U + A · Tr sin θs,

(22)

∂T

∂t
+ (U · ∇)T = ∇2T + RaE

RaT
[∇υ0(r) + ∇υ1(r, θ, φ)]2,

(23)

∇2υ1(r, θ, φ) = B

1 − B · T
∇T · [∇υ0(r) + ∇υ1(r, θ, φ)],

(24)

where ez = cos θer − sin θeθ , s = −(sin θer + cos θeθ ),

RaE = 2ε0εrγ

ρνκ
V 2

rms�T is the Rayleigh number, Ta = ( 2�d2

ν
)
2

is

the Taylor number, RaT = cpγ�T 2

πν f hdiss
, A = α�T

4 PrTa, B = γ�T .
The boundary conditions for the velocity field U, the
temperature T and the electric potential υ1 are

U = 0, T = 1, υ1 = 0 (25)

on the r = η/(1 − η) and

U = 0, T = 0, υ1 = 0 (26)

on the r = 1/(1 − η). Note that parameters RaT and B does
not change at fixed �T . The parameter A depends only on
the Taylor number (for fixed Prandtl number). Hence, we
can investigate convective flow that depends on the Rayleigh
number (or voltage Vrms) and the Taylor number (or rotation
rate �). We list the values of constants for the working fluid
1-Nonanol in this study used in Table I.

III. NUMERICAL METHOD

The fully three-dimensional pseudospectral numerical
code for the spherical geometry was developed by Hollerbach
[18]. The poloidal-toroidal representation of the velocity field

U = ∇ × ∇ × (�er ) + ∇ × (�er ) (27)
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FIG. 1. The base temperature (a) and the base electric field (b) for η = 0.5, �T = 0 K, RH = 1.605 × 106.

automatically obeys the continuity equation. Separated equa-
tions for poloidal � and toroidal � potentials can be ob-
tained applying operators ∇ × ∇× and ∇×, correspondingly.
After the mapping r = 1

2 [z + 1+η

1−η
] is performed, where z ∈

[−1,+1], each scalar function can be expanded in terms of the
Chebyshev polynomials in the radial direction and in terms of
spherical harmonics, Y m

� (θ, φ), according to

�(t, r, θ, φ) =
MU∑
m=0

LU∑
�=�′

KU+4∑
k=1

[ fck�m(t ) cos(mφ)

+ fsk�m(t ) sin(mφ)]Tk−1(z)Pm
� (cos θ ), (28)

�(t, r, θ, φ) =
MU∑
m=0

LU∑
�=�′

KU+2∑
k=1

[eck�m(t ) cos(mφ)

+ esk�m(t ) sin(mφ)]Tk−1(z)Pm
� (cos θ ), (29)

�′ = max(1, m). A similar expression is valid for the temper-
ature

T (t, r, θ, φ) =
MT∑

m=0

LT∑
�=m

KT+2∑
k=1

[tck�m(t ) cos(mφ)

+ tsk�m(t ) sin(mφ)]Tk−1(z)Pm
� (cos θ ). (30)

Twenty Chebyshev polynomials (KU = KT = 20) and 30
Legendre polynomials (LU = LT = 30) were enough to get
the grid-independent solution for the two-dimensional basic
flow and linear onset calculations for all Taylor numbers and
Rayleigh numbers considered. Whereas the same resolution
in the radial direction was used for the fully three-dimensional
calculations, a values of LU, LT vary between 30 and 40 and
MU and MT alter between 20 and 40. The time-dependent
spectral coefficients have been calculated by means of the
predictor-corrector method. Because we deal with the oscillat-
ing bifurcation the perturbed flow depends on time in contrast
to the steady two-dimensional basic flow. Therefore, we use
such a time step �t that for all smaller �t no changes in
critical Rayleigh number and drift velocity occur. This time
step depends on the Taylor number and varies between �t =
10−4 and �t = 2 × 10−5.

IV. BASIC FLOW

From Eqs. (12)–(19) and Eqs. (2), (21)–(24) it follows
that the electric field is coupled directly not only with the
velocity field due to the buoyancy term in the Navier-Stokes
equation but also with the temperature, due to the dielectrical
heating in the energy equation. This means that the model

under investigation differs from other cases in the literature
where the dielectrical heating or other kinds of heating are
negligible. This fact makes it slightly complicated to calculate
the basic state. In the case of pure heating (�T = 0 K),
the basic flow is zero in the nonrotating case. To find the
temperature, Eq. (14) must be solved numerically together
with the Gauss equation, Eq. (15). The base temperature T0(r)
and the base electric field E(r) = E0(r) + E1(r) have a radial
one-dimensional structure, see Figs. 1(a) and 1(b),

∇2T0(r) = −RH

RT
[∇υ0(r) + ∇υ1(r)]2, (31)

∇2υ1(r) = γ Tb

1 − γ TbT
∇T0(r) · [∇υ0(r) + ∇υ1(r)]. (32)

However, in the case of purely dielectrical heating, an
additional field E1(r) has such a small value [Fig. 1(b)] that
it does not influence the temperature. Therefore, the base
temperature can be calculated analytically,

T0I (r) = −1

2

RH

RT

η2

(1 − η)4

[
(1 − η)2

η
− (1 − η2)

η

1

r
+ 1

r2

]
.

(33)

The analytical form of the temperature is particularly
useful for calculating the Nusselt number of the basic state,
defined as follows:

Nuanalyt
in0 =

∫
Sin

dT0I (r)

dr
dSin, (34)

Nuanalyt
out0 = −

∫
Sout

dT0I (r)

dr
dSout, (35)

where dSin,out = r2
in,out sin θdθdφ. After a little algebra, we

obtain

Nuanalyt
in0 = Nuanalyt

out0 = 2πη

(1 − η)2

RH

RT
. (36)

The energy balance equation in terms of the Nusselt num-
ber reads

−Nuanalyt
in0 − Nuanalyt

out0 + RH

RT

∫
V

E2
0 dV = 0, (37)

i.e., the energy is produced due to the dielectrical heating and
leaves the domain under consideration through the inner and
outer surfaces.

In the second case (�T > 0) without rotation (Ta = 0) and
neglecting E1(r) the analytical solution for the temperature
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FIG. 2. The basic temperature (a) and the electric field (b) for η = 0.5.

is

T0II (r) = − η

1 − η
+ η

(1 − η)2

1

r

− 1

2

RaE

RaT

η

(1 − η)2
+ 1

2

RaE

RaT

η(1 + η)

(1 − η)3

1

r

− 1

2

RaE

RaT

η2

(1 − η)4

1

r2
. (38)

Note that the solution can be divided into two parts. The first
part occurs because the inner surface is warmer than the outer
and is responsible for the energy transport from the warmer
inner surface into the volume entirely due to conduction. The
second one is associated with dielectrical heating (∼RaE

RaT
). Two

examples of the base temperature are presented in Fig. 2(a).
Whereas the influence of the dielectrical heating is partic-
ularly significant for small �T (RaT = 138.28 for �T =
0.4K), conduction prevails for large �T (RaT = 78 000 for
�T = 9.5K). Both effects influence heat transfer, which can
be expressed in the following form in terms of the Nusselt
number:

Nuanalyt
in0 = −

∫
Sin

dT0II (r)

dr
dSin,

RaE

2RaT
� 1, (39a)

Nuanalyt
in0 =

∫
Sin

dT0II (r)

dr
dSin,

RaE

2RaT
� 1, (39b)

Nuanalyt
out0 = −

∫
Sout

dT0II (r)

dr
dSout. (39c)

Hence, whereas the energy flux through the outer surface
does not change its sign, the definition of Nuanalyt

in0 depends
upon which effect is stronger, the dielectrical heating, asso-
ciated with the imposed electrical field, or the energy transfer
because of the conduction. The Nusselt number can be calcu-
lated analytically, as in the case of purely dielectrical heating

Nuanalyt
in0 = 4πη

(1 − η)2

(
1 − 1

2

RaE

RaT

)
,

RaE

2RaT
< 1, (40a)

Nuanalyt
in0 = 4πη

(1 − η)2

(
1

2

RaE

RaT
− 1

)
,

RaE

2RaT
> 1, (40b)

Nuanalyt
out0 = 4πη

(1 − η)2

(
1 + 1

2

RaE

RaT

)
. (40c)

The energy balance equation in terms of the Nusselt num-
ber reads

Nuanalyt
in0 − Nuanalyt

out0 + RaE

RaT

∫
V

E2
0 dV = 0 (41)

RaE

2RaT
< 1,

−Nuanalyt
in0 − Nuanalyt

out0 + RaE

RaT

∫
V

E2
0 dV = 0 (42)

RaE

2RaT
> 1.

If RaE/2RaT < 1, then the heat flux caused by conduction
prevails and the system obtains more energy than it loses
because of the internal heating. This situation changes if
the Rayleigh number exceeds 2RaT (e.g., 2RaT = 276.55
if �T = 0.4 K). Therefore, the Nusselt number has the V-
shaped structure.

The influence of E1(r) becomes important for large values
of �T , e.g., �T = 9.5 K. The difference between E(r) and
E0(r) has a value of 5% at the vicinity of the inner surface
[Fig. 2(b)]. Taking E1(r) into account decreases the critical
Rayleigh number from RaEcL = 2487 (if the field E(r) =
E0(r) is considered) to RaEcL = 2353.29.

The situation becomes much more complex if the spherical
system is rotating (Ta > 0). The centrifugal force causes a
two-dimensional axisymmetrical and equatorially symmet-
rical steady basic flow [U0(r, θ )] that must be calculated
numerically. Some examples of the basic flow are presented
in Fig. 3 in terms of the stream function χ that is connected
with velocity components according to U0r (r, θ ) = 1

r2 sin θ

∂χ

∂θ
,

U0θ (r, θ ) = − 1
r sin θ

∂χ

∂r . The basic flow is presented for the ex-
perimentally relevant radii ratio η = 0.5, Prandtl number Pr =
176, �T = 0.4 K, �T = 1.7 K, �T = 3 K, and for Taylor
numbers Ta = 17 200 and Ta = 68 800; see Sec VI C. The
first row shows the meridional flow or the stream function, the
second one depicts the angular velocity and the third row is
the temperature. All flows are presented at the critical
Rayleigh number RaE = RaEcL.

If �T increases, then the centrifugal force becomes more
and more important and the meridional flow [Figs. 3(a)–3(f),
first row] concentrates in the vicinity of the inner surface. The
main part of the angular velocity field [Figs. 3(a)–3(f), second
row] concentrates near the inner surface, building the bound-
ary layer. The maximum temperature [Figs. 3(a)–3(f), third
row] is located within the gap, emphasizing the importance
of the internal heating. These features of the basic flow are
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FIG. 3. Basic flow (presented at the critical RaEcL): first row contours of the meridional circulation χ with (a) χmax = 0.36, (b) χmax = 0.9,
(c) χmax = 0.48, (d) χmax = 0.96, (e) χmax = 0.76, (f) χmax = 1.2. Second row contours of the angular velocity with maximal and minimal
values (a) +2.8, −1.2, (b) +12.6, −4.8, (c) 3.6, −2, (d) +14, −6.4, (e) + 5, −3.42, (f) +15, −8.0. Third row contours of the temperature
with (a) Tmax = 3.1, (b) Tmax = 6.4, (c) Tmax = 1.0, (d) Tmax = 1.6, (e) Tmax = 1.0, (f) Tmax = 1.05.

crucial for understanding of the origin of the instability as
discussed in the next section.

The Nusselt number can be calculated numerically only
in the rotating case because of the existence of the basic
flow. We present the Nusselt number as a function of RaE

(Fig. 4) for fixed Taylor number Ta = 17 200. The shape of
the Nuin0(RaE), corresponding to the heat transfer through
the inner surface in the case of the basic flow (for the fixed
�T = 0.4 K and �T = 1.7 K) is similar to the nonrotating
case. Interestingly, the zero-flux point, RaE0, in which Nuin0 =
0, i.e., heat fluxes produced due to the imposed electrical
field and applied �T are the same, almost coincides with
2RaT for �T = 0.4 K (RaE0 = 276.27, 2RaT = 276.55) and
differs only slightly within a range of 0.5% for �T = 1.7 K
(RaE0 = 5016, 2RaT = 4995.27). Whereas Nuout0(RaE) can
be approximated by means of linear law [Eq. (40c)] with
very good accuracy (less than 0.01%) for �T = 0.4 K and

�T = 1.7 K, Eqs. (40a) and (40b) can be used to calculate
the value Nuin0(RaE) only for �T = 0.4 K. Detailed analysis
shows that numerically obtained Nusselt number, Nuin0(RaE),
can be approximated by (Fig. 4, left)

Nuapprox
in0 = −0.005025RaE + 25.20,

RaE

RaE0
< 1, (43)

Nuapprox
in0 = 0.004989RaE − 25.03,

RaE

RaE0
> 1 (44)

for �T = 1.7 K.
If the �T increases, then the zero-flux point RaE0 does

not occur because the heat flux due to conduction through the
inner surface prevails over the heat flux caused by the source
HE . Therefore, the Nusselt number for �T = 3 K and Ta =
17 200 must be calculated numerically and the analytically
obtained expressions Eqs. (40a)–(40c) are no longer valid.

FIG. 4. Nusselt number vs. Rayleigh number for �T = 1.7 K (a) and �T = 3.0 K (b), η = 0.5 and Ta = 17 200. Numerically obtained
Nusselt number is presented in solid, the approximated Nusselt number Eqs. (44)–(47) is presented with stars.
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FIG. 5. Critical Rayleigh-Roberts numbers in the case of purely dielectrical heating (�T = 0 K).

Nevertheless, numerically obtained Nusselt number can be
approximated according to (Fig. 4, right).

Nuapprox
in0 = −0.001537RaE + 25.17, (45)

Nuapprox
out0 = 0.001694RaE + 25.17. (46)

V. LINEAR INSTABILITY ANALYSIS

Stability of the basic flow was investigated in frames of
linear theory. This is a useful tool to derive such critical
Rayleigh-Roberts, RHcL, or Rayleigh number, RaEcL, above
which the basic flow becomes unstable with respect to in-
finitesimal perturbations u for the velocity, � for the tem-
perature, p̃ for the pressure, and υ̃ for the electric potential.
Because of the continuity Eq. (8) the poloidal-toroidal decom-
position Eq. (27) can be used for the field u,

u = ∇ × ∇ × (�̃er ) + ∇ × (�̃er ), (47)

too. Furthermore, the expressions Eqs. (28)–(30) are valid
for the perturbations in which the spectral coefficients, e.g.,
fck�m have been replaced by f̃ck�m. The eigenvalue problem
was solved by means of direct numerical integration. Because
the basic flow is steady the temporal structure of the solution
of the linearized equation system has form of eσ t , where
σ = ζ + iω is the dominant eigenvalue, the real part of the
eigenvalue ζ is the growth rate, and ω is the frequency of the
perturbation. The goal of the linear analysis is to find such
value of the control parameter (RHcL and RaEcL) at which
ζ = 0. Frequency ω defines a kind of bifurcation. If ω = 0,
then the basic flow becomes unstable with respect to the
stationary perturbations. If ω > 0, then the instability sets in
as an oscillating bifurcation.

A. Nonrotating case

Note that the linearized equations, formulated in the spec-
tral space, do not depend on the azimuthal wave number m
in the nonrotating case. Furthermore, the linear instability
equations can be separated for each number �. Numerical

analysis shows that the basic flow becomes unstable with
respect to steady perturbations for all radius ratios considered,
i.e., ω = 0. This numerical result is in accordance with the
analytical results obtained for the case of the plane and
cylindrical geometries [19–21]. The growth rate is calculated
according to σ = 1

�t ln |gk�(t+�t )|
|gk�(t )| , where gk�(t ) is the arbitrary

spectral coefficient ( f̃c,s or t̃c,s) with fixed subscript k and
tested number �. Note that in the linear approach the toroidal
potential vanishes �̃ = 0 in the nonrotating case. The critical
Rayleigh-Roberts number and the critical Rayleigh number,
defined as

RHcL(η) = min
�

RH(�, η), RaEcL(η) = min
�

RaE(�, η),

(48)

obey σ = 0.
Critical Rayleigh-Roberts numbers for the case of purely

dielectric heating are presented in Fig. 5. We see that the
critical Rayleigh-Roberts number is RHcL = 1.6049 × 106,
which corresponds to the voltage Vrms,crit. = 1754 V. The
critical wave number is �c = 4. The influence of the imposed
�T is presented in Fig. 6. Although the critical Rayleigh
number increases from RaEcL = 1511.32 for �T = 0.4 K to
RaEcL = 2411.29 for �T = 3 K, the corresponding values of
the voltage decrease drastically from Vrms,crit. = 1456 V to
Vrms,crit. = 671 V. Hence, increasing �T destabilizes the basic
state: A lower voltage is needed for the transition into the
three-dimensional flow.

B. Rotating case

If the spherical system rotates with the rotation rate �, then
the Coriolis force and the centrifugal force must be taken into
account. Additionally to the Rayleigh number RaE, the flow
is characterized by the Taylor number, Ta, and the parameter
A = 1

4α�T PrTa. As in the nonrotating case, the linearized
Navier-Stokes equation, the energy equation and the Gauss
equation were solved directly to derive the critical Rayleigh
number. The basic feature of the equations, describing the
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FIG. 6. Critical Rayleigh numbers for the dielectrical heating and �T > 0.

stability problem, is that they can be formulated for each
azimuthal wave number m. In other words, we have to solve
M two-dimensional problems, where M is the maximum of
the all wave numbers under consideration. Furthermore, be-
cause of the equatorial symmetry of the basic flow, the linear
system of equations to be solved can be divided into two sets,
corresponding to the two symmetry classes. Perturbations of
the first class satisfy the relation

{ur, uθ , uφ,�}(r, θ, φ) = {ur,−uθ , uφ,�}(r, π − θ, φ),

(49)

which is symmetric with respect to the equator, and perturba-
tions of the second class,

{ur, uθ , uφ,�}(r, θ, φ) = {−ur, uθ ,−uφ,−�}(r, π − θ, φ),

(50)

are equatorially antisymmetric.
The first class is responsible for the instability of the

problem under consideration. The critical Rayleigh number
is calculated according to

RaEcL(Ta) = min
m

RaE(m, Ta) (51)

for the fixed Prandtl number and radii ratio η.
Unfortunately, far more numerical effort is needed to per-

form the stability analysis in the rotating case in contrast to
the nonrotating case considered above. Therefore, we limit
the stability investigations to cases with η = 0.5, Pr = 176,
�T = 0.4 K, �T = 1.7 K, and �T = 3 K, which are rel-
evant for the GeoFlow experiment. The critical Rayleigh
numbers as a function of the Taylor number are presented
in Fig. 7. The basic flow becomes unstable with respect to
the nonaxisymmetric perturbations with mc > 0: the critical

FIG. 7. Critical Rayleigh numbers vs. Taylor number for η = 0.5 and Pr = 176. The numbers in the vicinity of the stability curves are the
critical azimuthal wave numbers mc.
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FIG. 8. Drift velocity vs. Taylor number. The numbers in the vicinity of the drift velocity curves are the critical azimuthal wave numbers mc.

azimuthal wave number varies between mc = 4 for small
Taylor numbers and mc = 7, 8 for Taylor numbers in the order
of 104. Note that for Ta > 2.0 × 104 the critical Rayleigh
number can be be approximated according to linear law, i.e.,
RaEcL ∼ Ta. The instability sets in as an oscillating bifur-
cation. The perturbative flow drifts with a velocity (Fig. 8)
of ωdrift = ωc/mc, where ωc is the frequency of the dom-
inant perturbation, corresponding to the wave number mc.
An interesting feature of the drift can be detected for small
Taylor numbers. Whereas the spherical gap rotates counter-
clockwise, the perturbative flow drifts clockwise (Fig. 8). An
increase in Ta leads to the change of direction and the higher
magnitude of the drift velocity.

It is useful to express the nondimensional parameters such
as the Rayleigh number, Taylor number, and drift velocity,
ωdrift, in terms of the voltage, Vrms, rotation rate �, and
ωdim

drift (Table II). This makes it more convenient to compare
the results with the GeoFlow experiment. The rotation has a
strongly stabilizing effect: If the Taylor number rises, then
there is an increase in the critical voltage at which the tran-
sition from the basic flow into the three-dimensional flow
occurs. The drift velocity of the perturbation ωdim

drift is much
lower than the rotation rate �.

The next issue is to follow why and where the instability
occurs. Although the instability can be located by calculating

the eigenvectors, i.e., the velocity field, corresponding to
RaEcL, it can also be located using the azimuthally integrated
kinetic energy of the perturbation e(r, θ ) = 1

2

∫
u2r sin θdφ,

which is a more convenient tool for analyzing the origin of
the instability (Fig. 9). It is important to note that although
we deal with the oscillatory bifurcation, the kinetic energy
of the perturbative flow remains constant. Therefore, one
snapshot is sufficient to determine that there are two regions
where the instability concentrates. The first one is the shear
instability that appears within the meridional flow (Fig. 9). In
the next section we will see that the radial and the longitudinal
velocity components of the perturbation are responsible for
this instability. The second one occurs in the vicinity of
the equator and is associated with the azimuthal velocity
component. Although it is impossible to derive amplitudes of
the supercritical flow in frames of the linear stability analysis,
we are able to predict its patterns. An example of the critical
perturbation with mc = 5 is presented in Fig. 10.

VI. THREE-DIMENSIONAL ANALYSIS

Besides the linear instability analysis, we present also
simulations of the nonlinear three-dimensional flow. Because
the computational effort increases considerably with RaE, we
consider only slightly supercritical states.

TABLE II. Connection between nondimensional characteristics (RaEcL, ωdrift) of the instability and dimensional characteristics (Vrms, ωdim
drift).

mc indicate the critical azimuthal wave numbers.

�T (K) Ta � (s−1) RaEcL Vrms,crit. (V) mc ωdrift ωdim
drift (s−1)

0.4 17 200 0.8 2 800 1 982 5 0.2901 1.264 × 10−4

0.4 68 800 1.6 5 940 2 887 8 6.067 2.643 × 10−3

1.7 17 200 0.8 6 149 1 425 5 0.6670 2.905 × 10−4

1.7 68 800 1.6 18 006 2 438 8 7.868 3.428 × 10−3

3 17 200 0.8 7 513 1 186 5 1.394 6.073 × 10−4

3 68 800 1.6 19 773 1 923 7 9.104 9.325 × 10−3
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FIG. 9. As in Figs. 3(a)–3(f), the basic meridional circulation is shown. The gray shading indicates the location of the azimuthally integrated
kinetic energy e(r, θ ) of the perturbation. Both the basic meridional circulation and e(r, θ ) are shown at the critical Rayleigh number.

The goals of the three-dimensional investigation are as
follows. First, we check the results of the linear instability
analysis. If the Rayleigh number exceeds the critical value,
then the basic flow must become unstable and take on the 3D
structure according to the results predicted in the previous
section with the same characteristics: �c in the nonrotating
case and mc and ωc for Ta > 0. Second, we have to investi-
gate whether we are dealing with subcritical or supercritical
bifurcation by analyzing the behavior of the amplitude. The
third reason, why the nonlinear equilibration is essential, is
the possibility to follow how the internal heating influences
the heat transfer.

A. Three-dimensional analysis: Nonrotating case (Ta = 0)

Beginning with the purely dielectrical heating (�T = 0 K)
without rotation, we choice a total kinetic energy as a control
parameter of the supercritical flow. The amplitude a is defined
according to

a2 = E = 1

2

∫
V

U2dV =
LU∑
�=1

E� =
LU∑
�=1

�∑
m=0

ε�m. (52)

Introducing expressions

f̂c,s�m[t, r(z)] =
KU+4∑

k=1

fc,sk�m(t )Tk−1(z), (53)

êc,s�m[t, r(z)] =
KU+2∑

k=1

ec,sk�m(t )Tk−1(z), (54)

energies ε�m have been calculated analytically,

ε�m(t ) =
(

�2(� + 1)2
∫ 1/(1−η)

η/(1−η)

f̂ 2
�m(t, r)

r2
dr

+ �(� + 1)
∫ 1/(1−η)

η/(1−η)
ê2
�m(t, r)dr

+ �(� + 1)
∫ 1/(1−η)

η/(1−η)
f̂ ′2
�m(t, r)dr

)
C�m, (55)

where f̂ 2
�m(t, r) = f̂ 2

c�m(t, r) + f̂ 2
s�m(t, r) [the same relations

are valid for ê2
�m(t, r) and f̂ ′2

�m(t, r)], and C�0 = 2π
2�+1 for m =

0, C�m = π
2�+1

(�+m)!
(�−m)! for m > 0.

The behavior of the amplitude a2(RH) for η = 0.5 and
Pr = 176 is presented in Fig. 11 (left). According to the three-
dimensional calculations, the basic flow suddenly becomes
unstable with respect to the infinitesimal perturbations if the
Rayleigh number exceeds the critical value RH > RHcL in
agreement with the results given by linear instability theory.
If RHc < RH < RHcL, then the basic flow remains stable re-
garding small perturbations but becomes unstable with respect
to the perturbations with finite amplitude. The transition from
the convective branch on the branch, corresponding to the ba-
sic state a = 0, occurs at RHc = 1.566 × 106. The instability
sets in as subcritical bifurcation, which causes the hysteresis
effect.

Let us consider the bifurcation diagram in detail (Fig. 11,
left). The conducting state has been used as the initial con-
dition. Furthermore, the mode corresponding to the critical
one is perturbed to obtain the three-dimensional flow. If the
Rayleigh-Roberts number is less than RH < 1.7 × 106, then

FIG. 10. Velocity components of perturbation ur , uθ at r = 1.6 and uφ at the equator for RaEcL = 2800, Ta = 17200, �T = 0.4 K, and
mc = 5.

053106-10



INFLUENCE OF DIELECTRICAL HEATING ON … PHYSICAL REVIEW E 101, 053106 (2020)

FIG. 11. The bifurcation diagram for the purely dielectrical heating flow is shown left. Arrows detect the hysteresis loop and transition
between branches. The Nusselt number behavior is presented right.

we obtain the steady 3D flow in octahedral form (bifurcation
branch 1). Starting at RH > 1.7 × 106 we again obtain a
steady three-dimensional flow but with a pentagonal structure
(bifurcation branch 2). Moving along this branch and decreas-
ing RH, we jump on the first bifurcation branch at RH = 1.6 ×
106. This transition is shown with small arrow. Hence, an
important feature of the flow caused by the purely dielectrical
heating is the nonuniqueness of the solution. An example of
two different flows at RH = 1.75 × 106 is presented in Fig. 12.
Energies E� that make the greatest contribution are listed in
Table III.

Note that the mode with �c = 4 is dominantly in agreement
with linear stability theory. A similar result has been detected
in the case of convection (HE = 0) [6].

The heat transfer results are summarized in (Fig. 11, right).
Whereas the Nusselt number is the same for the basic flow
for both surfaces Nuin0 = Nuout0, in the three-dimensional
case the heat transfer is divided into two branches. Although

FIG. 12. Nonuniqueness of the solution: the temperature distri-
bution for RH = 1.75 × 106 at r = 1.5.

the Nusselt number, Nuin3D, increases with RaE, the energy
flux decreases considerably compared to the basic state. The
behavior of the Nuout3D completely differs from Nuout0. The
system loses the energy from the outer surface much faster if
the flow becomes a three-dimensional structure.

The subcritical bifurcation scenario is detected in the case
of convection, also influenced by the dielectrical heating with
the applied �T = 0.4 K between spherical surfaces (Fig. 13,
left). As in the case of the purely dielectrical heating, the
basic flow becomes abruptly unstable for RaE > RaEcL =
1 511.32 in accordance with lines stability theory. The three-
dimensional flow is stable with the interval 1 507 = RaEc <

RaE < RaEcL. The hysteresis effect is much weaker in contrast
to the purely dielectrical heating. Indeed, the difference � =
(RaEcL − RaEc)/RaEcL = 0.26% is much smaller than �H =
(RHcL − RHc)/RHcL = 2.1% In contrast to the purely dielec-
trical heating case, only one flow structure, the octahedral
structure, is found. The similar Nusselt number shape, cor-
responding to the three-dimensional flow, has been observed
in the convective case (Fig. 13, right).

B. Three-dimensional analysis: Rotating case (Ta > 0)

We shall now present the results in the rotating case,
comparing them with the results given by linear stability
theory. Some examples are shown in Figs. 14(a)–14(c). The
longitudinal velocity component of the three-dimensional
flow, Uθ , with the m = 8 structure is presented in Fig. 14
a for a slightly supercritical Rayleigh number (RaEcL =
5904). The flow drifts with ω3D

drift = 6.1511, which is in good
agreement with stability results (ωdrift = 6.0672). The kinetic
energy E (r, θ ) = 1

2

∫
U 2r sin θdφ [Fig. 15(b) mode m = 0,

corresponding to the axisymmetric basic flow and nonlinear
interactions because of the nonlinear term in the Navier-
Stokes equation, is substracted] is concentrated within the
meridional flow, confirming the spatial characteristics of the
stability analysis [Fig. 9(b)]. Interestingly, the distribution

TABLE III. Most dominant kinetic energies for η = 0.5, RH =
1.75 × 106, and Pr = 176 for the octahedral structure (left) and the
pentagonal structure (right).

� E� � E�

4 299.15 4 186.68
6 18.81 5 101.97
8 8.089 7 8.5822
10 0.1724 8 4.7228
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FIG. 13. Left-bifurcation diagram for the flow, caused by the dielectrical heating with convection, right-Nusselt numbers for η = 0.5 and
�T = 0.4 K.

of E (r, θ ) (Emax = 68) almost coincides with Erθ (r, θ ) =
1
2

∫
(U 2

r + U 2
θ )r sin θdφ (Erθmax = 66), emphasizing that the

radial and longitudinal velocity components make a most
essential contribution into the shear instability.

Two further examples of the supercritical flows are pre-
sented in Figs. 14(b) and 14(c). The m = 5 and m = 7 solu-
tions drift with ω3D

drift = 0.6561 (ωdrift = 0.6662) and ω3D
drift =

9.1776 (ωdrift = 9.1044), correspondingly (Fig. 8). The 3D su-
percritical solution is symmetrical with respect to the equator
and obeys Eq. (50) in accordance with stability results.

The maximum kinetic energy for the mc = 5 solution is
now located in the boundary layer in the vicinity of the equator
[Fig. 15(c)], which is in accordance with linear stability analy-
sis [Fig. 9(c)]. The instability is associated with the azimuthal
component Uφ and can be expressed in terms of Eφ (r, θ ) =
1
2

∫
U 2

φ r sin θdφ (Emax = 16.5, Eφmax = 14.5 at the equator).
The kinetic energy for the mc = 7 solution has two maxima

[Fig. 15(f)]. Hence, the instability locates in both places
described above as linear analysis predicts [Fig. 9(f)]. The
corresponding values of the energies are Emax = 37, Eφmax =
30.5 at the equator, Emax = 33.5, Erθmax = 32.5 within the
meridional flow.

The bifurcation scenario in the rotating case differs from
the scenario considered above. Introducing an amplitude ac-
cording to the expression

a2 = E = 1

2

∫
V

U2dV =
∑
m=1

E (m) =
∑
m=1

∑
�=m

ε�m (56)

and calculating the amplitude as a function of the supercriti-
cality δ = (RaE − RaEcL)/RaEcL, which is more useful as the
control parameter in the rotating case, we note that now we are

dealing with the supercritical bifurcation. The basic steady
flow loses its stability when δ > 0. The amplitude of the
supercritical flow can be expressed according to the Landau
equation

a2 = Cδ, (57)

with C(�T = 0.4K ) = 2420.64, C(�T = 1.7K ) = 1624.09,

and C(�T = 3K ) = 1892.25 [Fig. 16(a)].
The Nusselt number shape undergoes a break in the

RaEcL, confirming that the stability results are correct
[Figs. 16(b)–16(d)]. The numerically obtained Nusselt num-
bers Nuin3D(RaE) and Nuout3D(RaE) can be approximated for
the fixed Taylor number Ta = 17 200 and �T = 0.4 K, �T =
1.7 K, and �T = 3 K as follows:

Nuin3D = ain3DRaE + bin3D,

Nuout3D = aout3DRaE + bout3D. (58)

The constants are presented in Table IV.

C. Comparison with experiment

The critical voltages Vrms,crit are compared with outcomes
of the GeoFlow experiment (2008–2018). The experimental
setup is based on a spherical capacitor with a radius ra-
tio η = 0.5, where convective flows are investigated under
micro-gravity conditions on the ISS [7,22]. By reason of
design constraints, the outer radius of the fluid cell measures
0.027 m and the inner radius 0.0135 m. GeoFlow utilizes the
dielectrophoretic force to establish a radial force field with
voltages between the minimum value of Vrms = 1272 V and
the maximum value of Vrms = 4596 V. Figure 17 depicts a
vertical cut through the GeoFlow experiment. A numerical

FIG. 14. (a) Uθ at r = 1.67 for �T = 0.4 K, Ta = 68 000, RaE = 6 000; (b, c) Uφ at the equator for �T = 1.7 K, Ta = 17 200, RaE =
6 220 and �T = 3 K, Ta = 68 800, RaE = 20 050, correspondingly.
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FIG. 15. Azimuthally integrated kinetic energy E (r, θ ) of the three-dimensional flow: (a) �T = 0.4 K, Ta = 17 200, RaE = 2 830,
(b) �T = 0.4 K, Ta = 68 800, RaE = 6 000, (c) �T = 1.7 K, Ta = 17 200, RaE = 6 220, (d) �T = 1.7 K, Ta = 68 800, RaE = 18 200, (e)
�T = 3 K, Ta = 17 200, RaE = 7 620, (f) �T = 3 K, Ta = 68 800, RaE = 20 050.

simulation visualizes the fluid cell. Heating and cooling cir-
cuits thermalize the inner and outer shells, respectively.

The working fluid 1-Nonanol is strongly susceptible to di-
electric heating with rates up to 0.1 K/s. The temperature dif-
ference across the gap can be adjusted between 0.4K � �T �
10K. In total, 160 experimental points with five different volt-
ages (V0 = 1 800 V, 3 000 V, 4 200 V, 5 400 V, 6 500 V), two
reference temperatures (Tb = 293 K, 303.5 K) and eight tem-
perature differences (0.4 K < �T < 9.5 K) were conducted.
Each experimental point was repeated for three rotation sce-
narios. The rotation tray is capable of maintaining rotation
frequencies of f = 0.008 Hz (in the following denoted as the
“nonrotating case”), f = 0.8 Hz (medium rotation case) and
f = 1.6 Hz (high rotation case).

A separate set of experimental points were also conducted
without a temperature difference (�T = 0 K) across the gap.
In these cases RT ≈ 8.4 × 107 [cf. Eq. (14)] for both ref-
erence temperatures. The Rayleigh-Roberts number which
parametrizes internal heating ranges between 8.46 × 105 <

RH < 1.10 × 107.
In the case of �T > 0, the Rayleigh number RaE [cf.

Eq. (22)] ranges between 1.155 × 103 and 4.471 × 105. The

convective parameter RaT ranges between 1.427 × 102 and
4.962 × 104. We find 21 experimental points where convec-
tion is dominated by the temperature difference across the
gap (RaE/(2RaT) < 1) and 139 experimental points where
internal heating is dominant (RaE/(2RaT) > 1).

In the following, theoretical values of the onset of convec-
tion are compared with experimental data. Interferograms of
the GeoFlow experiment are used, which are able to highlight
even small deviations in the refractive index and hence in the
temperature field. A Wollaston shearing interferometry unit
is used to visualize flows. The field of view covers about 90
degrees from the north pole to the equator, cf. Fig. 17 (yellow
line and camera icon). Here, we refer to Ref. [23] for a detailed
description of the interferometry unit of GeoFlow. The inter-
ferograms show a base fringe pattern, cf. Figs. 18(a) and 18(d)
in the conductive case. Deviations in terms of distorted lines
(highlighted in yellow) indicate convection. Two prevailing
structures can be observed: (a) a butterfly pattern as result of
steep convective downdrafts and (b) narrow parallel structures
from sheetlike up- or downwelling. However, arbitrary combi-
nations of both are omnipresent, especially for high Rayleigh
numbers.

FIG. 16. (a) The amplitude of the supercritical flow and the Nusselt numbers for (b) �T = 0.4K, (c) �T = 1.7K, and (d) �T = 3K for
η = 0.5, Ta = 17 200.
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TABLE IV. Constants for the Nusselt numbers from Eq. (58).

�T (K ) ain3D bin3D aout3D bout3D

0.4 0.03905 119.80 0.1427 −119.80
1.7 −0.001760 16.46 0.01181 −16.41
3.0 0.003785 −14.77 0.007052 −15.06

Figure 18 shows interferograms of the nonrotating case
with �T = 0 K, �T = 0.4 K and increasing voltages. The
corresponding Rayleigh-Roberts numbers in the first case
are RH = 8.4 × 105 for Vrms = 1272 V, RH = 2.3 × 106 for
Vrms = 2121 V and RH = 4.6 × 106 for Vrms = 2969 V. The
critical value of RHcL = 1.6 × 106 takes place between
Figs. 18(a) and 18(b), occurring at Vrms,crit. = 1754 V. Fig-
ure 18(b) shows a clear distortion from the base pattern,
which changes to a convective plume for higher voltages, cf
Fig. 18(c). Accompanying numerical simulations [22] confirm
the existence of convective cells for Vrms = 2121 V.

In the case of �T = 0.4 K the onset is predicted at
RaEcL = 1511, which corresponds to Vrms,crit. = 1456 V. The
transition from the conductive state to the convective regime
is depicted in Figs. 18(d) and 18(e), which capture the onset
by experimental points with RaE = 1155 and RaE = 3208, re-
spectively. As in the case of pure internal heating, a convective
plume is found for higher voltages. The onset of convection in
the case of �T = 3 K at Vrms,crit = 671 V cannot be verified
as the lowest voltage available in the experiment is Vrms =
1272 V.

The theoretical onset of convection in the two rotating
cases is validated experimentally using the interferograms
presented in Fig. 19 for �T = 0.4 K, �T = 1.7 K, and
�T = 3 K.

FIG. 17. Sketch of the GeoFlow experiment. The working fluid
is thermalized through an inner and outer heating/cooling loop.
Interferometry is used to visualize fluid flows (yellow field of view).
High voltage is applied to enforce a dielectrophoretic force field,
which mimics a radial gravity field. The fluid cell is visualized with
a numerical simulation.

FIG. 18. Experimental interferograms for the nonrotating case
for �T = 0 K (left-hand column) and �T = 0.4 K (right-hand col-
umn). The onset of convection is found between (a, b) and (d, e),
respectively. While conductive cases show only a base fringe pattern
(a, b) the convectively unstable flows appear as butterfly patterns
(c, f) for Vrms = 2969 V and as distorted fringe lines (b, e) for
Vrms = 2121 V. Structures are highlighted in yellow to emphasize the
thermal structure.

Figure 19 depicts 12 cases, showing 11 interferograms. For
the case f = 0.8 Hz, �T = 3 K, no conductive experimental
point is present. Here, the onset voltage is below the mini-
mum voltage. Over the entire parameter range, the onset of
convection is located within the predicted limits. However,
the coarse grid of experimental points of GeoFlow makes it
difficult to make more accurate statements about the convec-
tive onset. This is based on voltage increments of 921 V and
temperature increments of 1.3 K. Hence, the onset cannot
be captured more precisely with this setup, but with a mean
deviation of 177 V. This is based on the investigation of the
42 interferograms used for this study.
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FIG. 19. Experimental interferograms for the rotating case for �T = 0.4 K, �T = 1.7 K, �T = 3 K, f = 0.8 Hz (Ta = 17 200), and
f = 1.6 Hz (Ta = 68 800); see Table II. The upper row depicts convectively unstable flows, the lower row depicts conductive cases. The onset
of convection is located in between the two rows.

VII. SUMMARY AND CONCLUSIONS

Our purpose in this paper has been to investigate the
influence of dielectrical heating on a convective flow under
a radial force field in a nonrotating and rotating spherical gap
numerically.

First, we consider the base state in the nonrotating spheri-
cal gap with �T = Tin − Tout � 0. As in the Rayleigh-Bénard
convection the basic flow is U0 = 0 and the temperature is
radially dependent. The heat transfer analysis has been per-
formed in terms of the Nusselt number. Whereas in the case of
the purely dielectrical heating, i.e., �T = 0, the Nusselt num-
bers or the energy fluxes that leave the domain under consider-
ation through the surfaces are same, the situation is more diffi-
cult if the inner surface is warmer than the outer one �T > 0.
The energy flux that comes from the warmer surface due to the
conduction and the energy flux, produced due to the source,
have opposite directions that influences the heat transfer.

If the spherical gap rotates (we consider �T > 0 only),
then the influence of the centrifugal force leads to the forma-
tion of a steady, axisymmetric and equatorially symmetrical
basic flow that must be calculated numerically. Linear stability
theory is used to derive the critical Rayleigh-Roberts number
(�T = 0 K) and critical Rayleigh number (�T > 0) at which
the transition from the basic flow into the three-dimensional
flow occurs. The first instability does not depend on the
Prandtl number in the nonrotating case, as it does in RB
convection, because the basic flow becomes unstable with
respect to the steady perturbations. In the rotating case, the
instability sets in as Hopf bifurcation. Moreover, the basic

flow, loses its stability with respect to the three-dimensional
perturbations with positive azimuthal wave numbers mc > 0.

Calculating the three-dimensional flows reveals the dif-
ferent behavior of the amplitude. Whereas the bifurcation is
subcritical in the nonrotating case, the supercritical one is
responsible for the transition if the system rotates.

The numerical results have been compared with outcomes
of the GeoFlow experiment. The critical Rayleigh numbers,
more precisely the critical voltages, coincide well with obser-
vational data within 177 V. Interferograms are analyzed for
convection, which are highlighted as distortions in base fringe
patterns.

Both numerical and experimental results show that the
internal heating plays a crucial role and must be taken into
account if the dielectrical fluid is subjected into the fast os-
cillated electric field. Further numerical investigations should
clarify how the high Taylor numbers Ta = 105 ÷ 107 influ-
ence the flow structure and the heat transfer. This issue has
relevance for the geophysical applications.
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