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Streaming potential mediated pressure driven electrokinetic transport of Phan-Thien–Tanner fluids in a slit
type parallel plate microchannel is studied analytically and semianalytically. Without adopting the traditional
considerations of Debye–Hückel linearization approximation for low surface potentials, exact analytical so-
lutions are obtained for the electrostatic potential distribution, velocity, and volumetric flow rates taking into
account the full Poisson-Boltzmann equation. The influences of interfacial electrokinetics and viscoelasticity
on the streaming potential development, polymeric stress components, shear viscosity, and the hydroelectric
energy conversion efficiency are incorporated concurrently. Major findings indicate that the magnitude of the
induced streaming potential, volumetric flow rates, and the energy conversion efficiency increases up to a
threshold limit of zeta potential of ζ � 6, however, it follows an asymptotic reduction at the other end of higher
zeta potentials 6 < ζ � 10. The polymeric stress components and shear viscosity follow a similar trend in the
regime of 1 � ζ � 10, which is primarily governed by the streaming potential field. In contrast, the transverse
averaged shear viscosity in the range 1 � ζ � 10 obeys an opposite trend by yielding an inverted parabolic
shape. Amplification in the Stern layer conductivity yields a progressive reduction in the streaming potential
magnitude and the hydroelectric energy conversion efficiency. The effect of the fluid viscoelasticity designated
by the Weissenberg number exhibits a linear enhancement in streaming potential, flow rates, and the energy
conversion efficiency. Moreover, we show that with the optimal combinations of surface charging and fluid
viscoelasticity, it is possible to accomplish a giant augmentation in the hydroelectric energy conversion efficiency
and flow rates. The analytical and semianalytical results presented in this investigation are believed to be worthy
not only to cater deeper understanding in micro- and nanofluidic transport characteristics but also will act as
functional design instrument for the future generation of energy efficient narrow fluidic devices.
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I. INTRODUCTION

Electrokinetic mediation evolves from a charged substrate
in contact with an ionic fluid. Subjected to an applied pressure
gradient, when an ionic solution is pushed through a mi-
crochannel, the excess counterions within the mobile part of
the electric double layer (EDL) dragged in tune with the flow
direction [1,2]. This essentially brings about the preferential
accumulation of the ions towards the downstream end of
the channel and thus generating an electric field, namely,
the streaming current [2,3]. The overall consequence may
induce an electric voltage gradient across the two ends of
the channel in order to balance the streaming current, termed
as the streaming potential. The streaming current holds the
competence to propel an extraneous electrical load resistor
and therefore harvesting electrical energy from such narrow
fluidic devices [4]. In this context, it may be noted here that the
formation of EDL enables this hydroelectrical energy conver-
sion mechanism. The EDL develops owing to the acquirement
of net charge distribution by the channel walls in contact
with the aqueous solution by the adsorption or dissociation
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chemical reactions [2,5]. This wall charge is equalized by
the free oppositely charged ions in the liquid, which get
disseminated in a layer of wall-cohering fluid thereby giving
rise to a net charge distribution in the vicinity of the bonding
substrate [6].

In consequence of the high surface to volume ratio of
micro- or nanofluidic devices, the faster developments in
micro- or nanochannel fabrication technologies bring addi-
tional thrust into the evergrowing possibilities of rendering the
physical concepts into real-life applications [7]. Such appli-
cations include recent developments in laboratory-on-a-chip
(LOC) devices, microelectromechanical systems (MEMS),
DNA hybridization [8,9], in situ drug delivery module, mi-
crototal analysis systems (μTAS), peristaltic micropumps
[10,11], mass flow controller [12], lab on a CD (LabCD),
to name a few [13–15]. Accordingly, several experimen-
tal, numerical, and theoretical research attempts have been
made by various research groups across the globe to under-
stand this intriguing phenomenon. Notably, the condition gets
extensively occupied with a probable mundane interaction
among flow rheology and fluid kinematics. In this perspec-
tive, it is recognized that biological fluids, such as blood,
protein solutions, saliva, DNA solutions, synovial fluid, or
various biofluids carrying long-chain molecular arrangements
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exhibit viscoelastic behaviors [16–24]. One group of many
researchers, Afonso et al. [25], carried out theoretical in-
vestigation on electro-osmotic flows (EOFs) employing var-
ious non-Newtonian fluid models, namely FENE-P (finitely
extensible nonlinear elastic model-Peterlin’s approximation)
and linear PTT (Phan-Thien–Tanner) [25–30]. Of late, Ferrás
et al. [31] presented closed-form analytical or semianalytical
solutions for EOFs with a simplified PTT model with linear,
quadratic, or exponential kernel for the stress coefficient func-
tion, the Giesekus model, and the Johnson-Segalman model
[31]. There have been few other reported works on EOFs
with non-Newtonian fluids, where the inelastic behavior is
characterized by the Ostwald–de Waele power-law model
[32–34].

While various types of interplay among EOFs and asso-
ciated electrohydrodynamic phenomena fall under the wide-
ranging arena of electrokinetics [35–43], in this study, we
primarily focus on the consequences of streaming poten-
tial followed by the electrohydrodynamic energy conversion
efficiency. Such electrokinetic flow of viscoelastic fluids,
incorporating the topics of streaming potential, streaming
current, and the concept of hydroelectrical energy conver-
sion, received much research attention over the recent past
[44–48]. A fundamental characteristic of such systems is the
occurrence of separate existence over microscales. Perhaps
the energy harnessed from a solo microchannel is minute;
however, one may achieve significantly higher in magnitude
by employing arrays of macroscopic nanoporous or nanopores
materials [49–51]. Nevertheless, by manipulating the inter-
actions between complicated rheology of viscoelastic fluids
and interfacial electrokinetics, one may achieve higher en-
ergy conversion efficiency [6]. It is worthy of mentioning
here that this energy-harvesting mechanism with viscoelastic
fluids holds the futuristic potential of constructing green-
energy recovery plants or energizing miniscule devices for
biomedical applications. For a linearized Maxwell fluid with
an oscillatory driving pressure gradient, a giant augmentation
in the energy conversion efficiency has been reported recently
[6]. On the other hand, for non-Newtonian power-law obeying
fluids, dramatic improvement in the streaming potential and
the energy transfer efficiency is observed with an additional
influence of steric (size effect of the ionic species) interac-
tions [5]. Likewise, wall substrate in the Cassie-Baxter state
occurs in superhydrophobic surfaces, revealed to induce a
considerable amplification in the streaming potential [52–56].
A comprehensive review of the electrokinetic transport of
viscoelastic fluids may be found elsewhere [57,58]. Albeit
a handful of research studies have been addressed in the
literature to highlight the consequences of non-Newtonian
fluid rheology on streaming potential and energy conversion
efficiency in a microchannel, hitherto, the corresponding body
of knowledge for PTT fluid has yet to emerge in the liter-
ature. Nevertheless, contemporary research exploiting non-
Newtonian fluids in a microchannel reveals that one may
enhance streaming potential and energy conversion efficiency
through high-frequency pressure pulsations [3]. A later study
on the implications of solvent rheology and confinement on
ionic conductivity in non-Newtonian fluids found that shear
thinning behavior promotes an improved magnitude of the
streaming potential at lower low ionic concentrations [59].

Recently, the streaming potential and electrokinetic energy
conversion efficiency of viscoelastic fluid has been analyzed
in a polyelectrolyte-grafted narrow fluidic channel [60]. The
reported results indicate higher energy conversion efficiency
of a soft narrow channel than those for a rigid channel as the
forcing frequency of the driving pressure gradient moves away
from the resonant frequency regime. The effect of asymmetric
wall zeta potentials for the streaming potential development
of the power-law obeying fluid in a slit type microchannel
has been studied of late [61]. The theoretical calculations
yield stronger dependency of the streaming potential on the
asymmetry of the zeta potential for shear-thinning fluids [61].

Although the influence of applied electric field on the
transport characteristics (EOFs) of PTT fluid is well studied
in the contemporary literature [41,62], the streaming poten-
tial mediated pressure-driven transport characteristics of PTT
fluids in a microchannel is not yet understood. From the view-
point of biotechnological applications, the knowledge of the
rheological behavior of biofluids is of prime importance. The
differential viscoelastic equations characterizing such biolog-
ical fluids encompassing their memory effects, rheological
characteristics, normal stress differences, and shear-thinning
viscosity may be accommodated in the PTT fluid constitutive
model equations [25–31]. Thus, the analytic solutions are
helpful not just to explain the physics at the ready but also
to advance the field of the existing body of knowledge in the
scientific community. Motivated from these interests, in this
work, we address a theoretical analysis of streaming potential
mediated pressure-driven flow of PTT fluids in a slit type
parallel plate microchannel. Without limiting the classical
considerations of thin EDLs and low surface potential, in
the present research, we employ the full scale analytical
solution of the Poisson-Boltzmann equation to attain potential
distribution inside the flow domain. We derived closed-form
analytical solutions for the electrostatic potential, velocity,
and volumetric flow rate. We also obtain an abridged solu-
tion based on the celebrated Debye–Hückel approximation
in an aim to aid numerical imminence of the influences of
this estimation on the flow attributes. Besides, the pertinent
research questions that we are trying to address in this study
are as follows: What is the mechanism by which the streaming
potential field induced during pressure-driven transport of
PTT fluid gets affected by the interfacial electrokinetics and
fluid rheological parameters? How does the hydrodynamic
field become affected by the interfacial electrokinetics? What
is the consequence of fluid rheological parameters on the flow
field? Do the interfacial electrokinetics and fluid rheological
parameters affect the polymeric stress components? What
about corresponding consequences on the shear viscosity?
What is the percentage of energy that can be harnessed by
utilizing this induced streaming potential field? How does
this hydroelectrical energy conversion efficiency get influ-
enced by the interfacial electrokinetics and fluid rheological
parameters? Finally, can we find an optimal parametric regime
for which the hydroelectrical energy conversion efficiency is
maximum?

The remainder of this paper is organized as follows: In
Sec. II, we describe the physical system and formulate the
problem mathematically. We next present the constitutive re-
lationships of the PTT fluids for the pressure-driven streaming
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FIG. 1. Schematic of the flow geometry under consideration.
Fluid motion is actuated by the applied pressure gradient along
the positive X direction, which causes the development of induced
streaming potential field EX . Is and Ic are the induced streaming and
conduction currents, respectively.

potential mediated flows and derived analytical solutions
for the velocity and volumetric flow rates. In Sec. III, we
demonstrate detailed implications of the interfacial electroki-
netics and the governing electrohydrodynamic parameters on
the streaming potential development, velocity, flow rate, and
hydroelectrical energy conversion efficiency. In the end, in
Sec. IV, we draw key concluding remarks from the study.

II. MODEL FORMULATION

We consider the pressure driven flow of a non-Newtonian
ionic fluid modeled as the PTT viscoelastic fluid through a
slit-type parallel plate microchannel of separation 2a. The
lateral width of the channel is W , and longitudinal length
L, where L, W � 2a. The origin is located at the centerline
of the channel, where the coordinate axis X runs along the
streamwise direction and Y sweeps vertically upwards. Fig-
ure 1 illustrates a schematic of the flow geometry under con-
sideration. The fluid motion is set towards the X direction of
the channel by the imposed pressure gradient along the same
direction. The fluid comprises a z : z symmetric electrolyte
with an electrical permittivity of the solution ε. In conse-
quence of the formation of EDL at the substrate walls, we
assume that the walls of the channel carry a uniform electrical
potential at the walls (wall zeta potential) ζ ∗ [1]. In spite of the
absence of applied electric field, in the crosswise direction of
the channel, a back-streaming potential field EX , known as the
streaming potential, is implicitly induced through a competing
advection-electromigration mechanism in the mobile part of
the EDL [56]. We further consider noninterference of EDLs
from the walls of the channel thereby invoking a situation of
thin EDL approximation. The flow is assumed to be steady,
unidirectional, and incompressible. In addition, in the present
study, we have assumed temperature independent constant
thermophysical properties of the fluid.

A. Electrostatic potential distribution

The development of the EDLs near charged surfaces brings
about an electrostatic potential (�) distribution inside the

EDL. This induced EDL potential � obeys the Poisson-
Boltzmann equation, and may be expressed as [1]

∇2� = −ρe

ε
. (1)

For fully developed, steady, unidirectional flow with thin
and nonoverlapped EDLs, as assumed in the present analysis,
Eq. (1) transforms into [1]

d2�

dY 2
= −ρe

ε
. (2)

In Eq. (2), ρe is the net charge density distribution. For
constant permittivity fluid and neglecting the steric effect
(point charges of ionic species), one may obtain the expression
for ρe by the Boltzmann distribution [1],

ρe = −2n0e z sinh

(
e z�

kBT

)
. (3)

Here, n0 is the bulk ionic concentration (n0 = CANA,
where, CA is the molar ionic concentration, NA being
Avogadro’s number, 6.023 × 1023), e is the protonic charge
(1.602 × 10−19 C), kB is the Boltzmann constant (1.381 ×
10−23 m2 kg s−2 K−1), T is the absolute temperature, and z is
the valence of the ionic species [2]. It is worth mentioning
that considerations of the finite size of the ionic species (steric
effect) and its implications on the electrokinetic transport
characteristics of the PTT fluids are discussed in Appendix A.

We employ Eqs. (2) and (3) to yield the celebrated Poisson-
Boltzmann equation,

d2�

dY 2
= κ̄2 sinh

(
e z�

kBT

)
, (4)

where 1/κ̄2 = εkBT/2n0e2 z2 is the Debye length, a charac-
teristic parameter for the EDL thickness [1]. Equation (4)
is subjected to the following set of boundary conditions:
[d�/dY ]Y =0 = 0 and [�]Y =a = ζ ∗ [4]. In an effort to obtain
an analytical solution governing EDL potential distribution,
we integrate Eq. (4) subjected to the boundary conditions, as
discussed, to yield the EDL potential distribution in dimen-
sionless form [4,56]:

ψ = 4 tanh−1[exp {−κ (1 − y)} tanh (ζ/4)]. (5)

In order to obtain the dimensionless form of EDL potential
distribution, as given in Eq. (5), we have introduced the fol-
lowing dimensionless quantities as relevant to the present in-
vestigation [4,56]: ψ = e z�/kBT , y = Y/a, ζ = e zζ ∗/kBT ,
and κ = a κ̄ .

Alternatively, for lower values of zeta potentials
(|ζ ∗| < 26 mV) one may invoke the Debye–Hückel
linearization approximation to obtain a simplified expression
for ψ , which reads [56]

ψ = ζ {cosh (κy)/ cosh (κ )}. (6)

B. Governing fluid flow equations

In the present investigation, the continuity and momentum
equations constitute governing transport equations for the
fluid motion. Accordingly, for the streaming potential medi-
ated pressure driven fully developed flow of incompressible
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viscoelastic fluid, the continuity and the Cauchy’s momen-
tum equations including the body force term are given by
[31,37,38,63–65]

∇ · �U = 0, (7a)

ρ
D �U
Dt

= −∇p + ∇ · τ + ηeff∇2 �U + �FE , (7b)

where �U is the velocity vector, ρ is the density of fluid, t
is the time, p is the pressure, τ is the extra-stress tensor as
attributable to the polymeric contribution, and ηeff is the New-
tonian solvent viscosity [37,38]. In the present research, we
assume that in comparison with the polymeric contribution,
the solvent viscosity is negligible, thus, ηeff = 0. A detailed
analysis of the streaming potential mediated hydrodynamic
characteristics of PTT fluids with the contribution of the sol-
vent viscosity (ηeff �= 0) is given in Appendix B. The source
term �FE appearing in the momentum equation, Eq. (7b), is the
body force term per unit volume stemming from electrokinetic
influences, in consequence of the development of the stream-
ing potential field. The expression for �FE is [1]

�FE = ρeE , (8)

where E is the streaming potential field.

C. Constitutive equations for the PTT model

As mentioned in the preceding discussion, in this work,
we have employed the simplified Phan-Thien–Tanner (sPTT)
model to describe the rheological behavior of the viscoelastic
fluid. Therefore, by adopting the sPTT constitutive relation-
ships, the polymeric extra-stress tensor τ can be expressed in
a compact generic equation as [25,31]

f (trτ )τ + λ
=
τ = 2ηD, (9)

where f (trτ) is the scalar function representing the trace of the
polymeric extra-stress tensor τ, λ is the fluid relaxation time, η

is the polymeric viscosity coefficient, D = (∇−→
U + ∇−→

U
T

)/2
is the tensor denoting rate of deformation, and τ designates the
Gordon-Schowalter convective derivative of the stress tensor
τ, which reads [25,31]

τ = Dτ

Dt
− (∇−→

U
T · τ + τ · ∇−→

U ) (10)

For the sPTT model, the stress coefficient function f (trτ)
takes the following form [25,31]:

f (trτ) = 1 + εsλ

η
τkk . (11)

In Eq. (11), εs is the extensibility parameter of the model
and is responsible for limiting the fluid extensional viscosity,
with τkk = τXX + τYY + τZZ being the trace of the extra-
stress tensor. It may be noted here that for dilute poly-
meric solutions, the Johnson-Segalman constitutive equation
[ f (τkk ) = 1] can be obtained by putting εs = 0 [25,31].

We now invoke the assumptions of fully developed, two
dimensional (τZZ = 0), unidirectional flow, for which

−→
U ≡

{U (Y ), 0, 0}. With these considerations, Eq. (9) can be re-
duced to the following form:

f (τXX + τYY )τXX = 2λ

(
dU

dY

)
τXY , (12)

f (τXX + τYY )τYY = 0, (13)

f (τXX + τYY )τXY = (η + λτYY )

(
dU

dY

)
. (14)

Therefore, from Eq. (13), we can write τYY = 0 and thus
τkk = τXX . We now divide Eq. (12) by Eq. (14) to obtain
the following relation among shear and normal stresses [31]:
τXX = 2(λ/η)τ 2

XY . After some simplifications of Eqs. (11)–
(14), we finally get the following equation for the shear stress:

τXY + 2εsλ
2

η2
(τXY )3 = η

(
dU

dY

)
. (15)

D. Closed form analytical solution for the velocity

In the present investigation, we invoked the assumptions
of steady, incompressible, fully developed microchannel flow.
Therefore, under these conditions, the Cauchy’s momentum
equations, Eq. (7), leads to [31]

dτXY

dY
= d p

dX
+ εEX

d2�

dY 2
, (16)

where d p/dX is the pressure gradient along the streamwise
direction and EX is the induced streaming potential field. We
employ a symmetric condition at the channel centerline and
for a nonoverlapping EDL, [τXY , �]Y =0 = 0, Eq. (16) can be
integrated once to obtain [31]

τXY =
(

d p

dX

)
Y + εEX

d�

dY
. (17)

Substituting Eq. (17) into Eq. (15), we get an explicit equa-
tion for the flow velocity gradient inside the microchannel as

dU

dY
= 1

η

[(
d p

dX

)
Y + εEX

d�

dY

]

+ 2εsλ
2

η3

[(
d p

dX

)
Y + εEX

d�

dY

]3

. (18)

To examine the dynamics further, we first nondimen-
sionalize the relevant equation, Eq. (18), in the following
way [45–47]: the dimensionless velocity, u = U/Uref , where
Uref = −(a2/η)(d p/dX ) is the reference velocity scale, E =
EX /Eref is the dimensionless streaming potential, and Eref =
−(a2/εζ ∗)(d p/dX ) being the scale for reference streaming
potential. With the above nondimensionalization scheme, we
can write the dimensionless form of Eq. (18) as

du

dy
=

(
E

ζ

dψ

dy
− y

)
+ 2εsWi2

k

κ2

(
E

ζ

dψ

dy
− y

)3

. (19)

In Eq. (19), Wik is the Weissenberg number based on ref-
erence velocity scale, is defined as Wik = λκUref = λκUref/a.

In an aim to obtain a closed-form analytical solution for
the velocity distribution u(y), we impose the following set of
dimensionless boundary conditions as pertinent to Eq. (19)
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[31]: we apply symmetry boundary conditions at the channel
centerline, whereas no-slip boundary condition for the ve-
locity is applied at the top (y = +1) and bottom (y = −1)

walls, u(y)|y=±1 = 0. Upon imposing the preceding boundary
conditions, Eq. (19) can be integrated to obtain an analytical
formula for velocity distribution of the form

u(y) = 24εsWi2
kE

ζ κ4
[Li3{peκ (y−1)} − Li3{−peκ (y−1)} + Li3(−p) − Li3(p)]

+ 24εsWi2
kE

ζ κ3
[yLi2{−peκ (y−1)} − yLi2{peκ (y−1)} + Li2(p) − Li2(−p)]

− 24εsWi2
kE2

ζ 2κ2

[
ln

(
e2κ − p2e2κy

e2κ − p2e2κ

)
− ζ y2

2E
ln

{
1 + peκ (y−1)

1 − peκ (y−1)

}
− ζ

2E
ln

(
1 − p

1 − p

)]
+ εsWi2

k

2κ2
(1 − y4)

+ 16εsWi2
k p

(
E

ζ

)3
[

eκ (y+1)

p2e2κy − e2κ
+ 2eκ (y+3)

(e2κ − p2e2κy)2 − 3y ζe2κ

pEκ
(
e2κ − p2e2κy

) + 3ζ

pEκ (1 − p2)

]

− 48εsWi2
kE2

ζ 2κ
(1 − y) − 16εsWi2

k pE3(1 + p2)

ζ 3(1 − p2)2 + 16εsWi2
kE3

ζ 3
[tanh−1(p) − tanh−1{peκ (y−1)}]

+ 4E

ζ
[tanh−1{peκ (y−1)} − tanh−1(p)] + 1

2
(1 − y2). (20)

Here, p = tanh(ζ/4). The Jonquière’s function or the polylogarithm Lis(β ) of order s and argument β is defined by a power
series, Lis(β ) = ∑∞

r=1
βr

rs .
On the other hand, invoking the assumptions for the Debye–Hückel linearization approximation, as given in Eq. (6) for the

dimensionless EDL potential distribution, we obtain the following velocity profile:

u(y) = 3

8κ4cosh2(κ )

[
εsWi2

k{4κ4E2(E + y2 − 1) − κ2(E2 + 12E + y4 − 1) − 24E} − κ4(2E + y2 − 1)
]

− cosh(3κ )

24κ4cosh3(κ )

[
εsWi2

k{4κ4E3 + 3κ2(3E2 + 12E + y4 − 1) + 72E} + 3κ4(2E + y2 − 1)
]

+ E

24κ4cosh3(κ )

[
4εsWi2

kκ
4E2 cosh(3κy)+18εsWi2

kκ
2E{cosh (2κy) − 2κy sinh (2κy)} cosh(κ )

+ 36εsWi2
kκ

2y2 cosh(κy + 2κ ) + 12
{
εsWi2

k

(−3κ4E2 + 6κ2y2 + 12
) + κ4} cosh (κy)

+ 6
{
6εsWi2

k (2 + κ2y2) + κ4
}

cosh(κy − 2κ )

− 144εsWi2
kκy cosh (2κ ) sinh (κy) − 144εsWi2

kκy sinh (κy) + 72εsWi2
k cosh (κy + 2κ )

+ 18εsWi2
kκ (4 + κ2E ){sinh(κ ) + sinh(3κ )} + 6κ4 cosh(κy + 2κ )

]
. (21)

At this juncture, it is important to note that the dimensionless streaming potential field E , appearing in Eqs. (20) and (21), is
an unknown parameter and can be evaluated by employing the condition of electroneutrality of current.

E. Streaming potential and the Hydroelectric energy conversion efficiency

The estimation of the streaming potential field is based on the concept of the electroneutrality principle. It states that at each
cross section of the channel, the pressure-driven flow induces a streaming current owing to the downstream motion of the ions
that must be counterpoised by the sum total of the conduction currents as a consequence of electromigration along the bulk and
the stern layer. The aforesaid physical statement can be expressed mathematically in a dimensional form as [1]

∫ a

−a
z e (n+ − n−)U (Y ) dY + z2e2EX

f

∫ a

−a
(n+ + n−) dY + 2 σstern EX = 0. (22)

The first term in Eq. (22) denotes the streaming current, the second term represents the conduction current flowing through
the “mobile” fluid layers, whereas the conduction current passing through the “immobilized” stern layer is represented by the
last term [56]. Here, f = 2 n0 e2z2/σB is the ionic friction factor, σstern is the stern layer conductivity, and σB is the bulk ionic
conductivity [1]. The number densities of the positive (n+) and negative (n−) ions are given by the Boltzmann distribution,
n± = n0 exp(∓ez�/kBT ) [1].
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In a dimensionless form, Eq. (22) can be written in the form∫ 1

0
u(y) sinh(ψ ) dy − α E

ζ

[∫ 1

0
cosh(ψ ) dy + Du

]
= 0, (23)

where Du = σstern/a σB is the Dukhin number and α = η σB/2ε n0 (kBT ) is a nondimensional conductivity parameter [1].
We see that Eq. (23) formally puts a closure on the intricacy of finding out the velocity distribution. Nevertheless, we notice

that Eq. (23) is an implicit equation in E , since the velocity u(y) has a functional dependence with E . Therefore, we employ
an iterative technique to obtain the solution for E and u(y). Towards this, we start by assuming a guess value of E to find out
the velocity profile as expressed in Eq. (20). We, then, use this velocity distribution to obtain an estimation of E from Eq. (23).
Using this current estimation of E , we again find out the corresponding velocity distribution by employing Eq. (20). We continue
this iteration step until convergence is attained on the solutions for E and u(y).

The development of streaming potential on account of electrokinetic interactions can be seen as a parameter on how effectively
one can harvest electrical energy from hydraulic energy. This is traditionally measured by the hydroelectric energy conversion
efficiency ηs. The supplied mechanical energy to the flow through applied pressure gradient is transformed into the electrical
energy by utilizing the streaming current and the streaming potential. Mathematically, the conversion efficiency can be expressed
as [4,6]

ηs = Is|Es|∣∣ d p
dX

∣∣Q . (24)

In Eq. (24), Is is the streaming current, Es is the streaming potential field, and Q is the volumetric flow rate.

F. Expressions for volumetric flow rate and stress distribution

We obtain an analytical expression for the dimensionless volumetric flow rate Q f . The general mathematical description of
Q f can be written as

Q f = Q

2aWUref
=

∫ 1

0
u(y) dy, (25)

where the dimensional volumetric flow rate Q = W
∫ a
−a UdY .

We perform the integration of Eq. (25) after substituting the analytical expression of u(y) from Eq. (20), to yield the analytical
expression

Q f = 72εsWi2
kE

ζ κ5

[
Li4(p) − Li4(−p) + 2

3
Li4(−e−κ p) + 1

3
Li4(−eκ p) − Li4(e−κ p)

]
+ 72εsWi2

kE

ζ κ4
[Li3(−p) − Li3(p)]

+ 72εsWi2
kE2

ζ 2κ3

[
Li2(p2) − 1

3
Li2(e−2κ p2) + ζ

36εsWi2
kE

Li2(−p)

{
2εsWi2

k

(
2κ2E2

ζ 2
− 9

)
− κ2

}

+ ζ

36εsWi2
kE

Li2(p)

(
−4εsWi2

kκ
2E2

ζ 2
+ 18εsWi2

k + κ2

)]
+ 24εsWi2

kE2

ζ 2κ2

[
ln

{
(1 − p2)3

(e2κ − p2)

}
− ζ

2E
ln

1 + p

1 − p

+ 2κ

1 − p2
+ ζ 2

60E2

]
+ 16εsWi2

kE3

κζ 3

[
p

1 − p2
− peκ

e2κ − p2
+ 1

2
Li2(pe−κ ) − 1

2
Li2(−pe−κ ) − κ p(1 + p2)

(1 − p2)2 − κ

2
ln

1 − p

1 + p

]

+ 2E

ζ κ
[Li2(−pe−κ ) − Li2(pe−κ )] + 2E

ζ
ln

1 − p

1 + p
+ 1

3
. (26)

Similarly under Debye–Hückel linearization approximation, we substitute the analytical expression for velocity distribution
from Eq. (21) into Eq. (25) and upon integration to obtain the corresponding closed form expression for Q f as follows:

Q f = 1

20κ4cosh2(κ )

[
εsWi2

k{10κ4E2(3E − 2) − 3κ2(5E2 + 30E − 2) − 540E} + 5κ4(1 − 3E )
]

− cosh(3κ )

60κ4cosh3(κ )

[
εsWi2

k{10κ4E3 + κ2(45E2 + 90E − 6) + 540E} + 5κ4(3E − 1)
]

+ E sinh(κ )

36κ5cosh3(κ )

[
εsWi2

k{2κ4E (27 − 26E ) + 27κ2(E + 12) + 648}

+[
εsWi2

k{2κ4E (2E + 27) + 27κ2(E + 12) + 648} + 18κ4
]

cosh(2κ ) + 18κ4
]
. (27)
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In order to obtain the expression for polymeric stress distribution, we begin by writing the pertinent relationships between
shear (τXY ) and normal (τXX ) stresses. From simple manipulations between Eqs. (12)–(14), we can write this interrelationship
as

τ 2
XY = η

2λ
τXX . (28)

We now substitute Eq. (17) into Eq. (28) and to obtain the following expression for dimensionless normal stress τxx of the
form

τxx = τXX

ηUrefκ
= 2

Wik
κ2

[
E

ζ

(
dψ

dy

)
− y

]2

. (29)

We, may, perhaps, obtain the following equations for shear and normal stress components in dimensionless form [25,31]:

τxy = y − 4Eκ p eκ (y−1)

ζ {1 − p2e2κ (y−1)} , (30a)

τxx = 2
Wik
κ2

[
y − 4Eκ p eκ (y−1)

ζ
{
1 − p2e2κ (y−1)

}
]2

. (30b)

Then again, the nondimensional equation for shear rate can be written as

ϒ̄ = χ̄

(−Uref/a)
=

[
y − 4Eκ p eκ (y−1)

ζ
{
1 − p2e2κ (y−1)

}
]

×
⎡
⎣1 + 2εsWi2

k

κ2

{
y − 4Eκ p eκ (y−1)

ζ
{
1 − p2e2κ (y−1)

}
}2

⎤
⎦, (31)

where χ̄ is the dimensional shear rate.
Finally, the dimensionless shear viscosity profile, μs =

τxy/ϒ̄ , is given by

μs =
⎡
⎣1 + 2εsWi2

k

κ2

{
y − 4Eκ p eκ (y−1)

ζ
{
1 − p2e2κ (y−1)

}
}2

⎤
⎦

−1

. (32)

An obvious thing that can be noted from Eq. (32) is that one
may calculate the dimensionless transverse averaged shear
viscosity μav , defined as

μav =
∫ 1

0
μs dy. (33)

We further note that for the Newtonian fluid, εsWi2
k =

0, and thereby set the maximum limit for viscosity, μs = μav

= 1.

III. RESULTS AND DISCUSSIONS

In the preceding section, we have derived analytical
expressions for velocity profile, streaming potential, and
flow rate for the transporting PTT fluid under the combined
influences of pressure gradient and electrokinetics over
low to large surface potentials. In this section, we shall
try to shed light on the resulting hydrodynamics for the
aforementioned situations. Now, before going into the
detailed analysis, we first attempt to validate the present
analytical formulation with the comparable data available
in the literature. Accordingly, in Fig. 2(a), we plot the
dimensionless velocity distributions across the channel width
for the condition of εsWi2

k = 1, κ = 20, and compare it
between the current analytical solution with the analytical
results reported by Afonso et al. [25]. Note that while
validating the present model, we have obtained in Eq. (29)
an analytical solution for the velocity distribution as given

in the literature by imitating the physical considerations
used in Afonso et al. [25]. Furthermore, for streaming
potential mediated pressure driven flows in a microchannel,
we validate our analytic solutions as given by Eqs. (20) and
(21) with the previously reported analytical result of the
limiting linear case, εsWi2

k → 0. Therefore, as a limiting
case of our analytical solution, the dimensionless velocity
distribution across the microchannel cross section pertaining
to Eq. (20) can be analytically expressed in the following
form: u(y) = 4E

ζ
[tanh−1{peκ (y−1)} − tanh−1(p)] + 1

2 (1 − y2).
On the other hand, the corresponding analytic expression
for Eq. (21) is obtained as u(y) = 1

8cosh3(κ )
[cosh{κ (y + 2)} +

2E cosh{κ (y − 2)} − (2E + y2 − 1){cosh(3κ ) + 3 cosh(k)} +
2 cosh(κy)]. We have verified these nondimensional velocity
distributions with the previously published data by Yang and
Kwok [66]. The comparison results are shown in Fig. 2(b)
for κ = 10, ζ = 1, and Du = 0, which matches closely
with those of Yang and Kwok [66]. The agreement between
the results obtained by the present analytical formalism
and that of the literature in Fig. 2 serves as a testament
towards the accuracy of the analytical method invoked
in this research. In this context, it may be important
to discuss the range of physical parameter spaces for
generating numerical results. Towards this, we assume
a typical non-Newtonian biofluid sample (take blood)
at a reference temperature T = 300 K [5,23,67,68], for
which ρ ∼ 103 kg/m3, η ∼ 10−3−10−2 Pa s, a ∼ 10−4 m,
and ε ∼ 702.24 × 10−12 C2/J m. For a z : z symmetric
electrolyte, the electrochemical constants may be taken as
[67] f ≈ 10−12 N s/m, σB ≈ 10 nS/cm. Furthermore, with a
bulk ionic concentration (n0) ranging from millimolarity to
molarity [68], the range of dimensional zeta potential may
vary in the tune of ∼ 10 −50 mV, whereas, the typical Stern
layer conductivity value varies in the range 0−72 nS/cm
[5,68], and the dimensionless conductivity parameter may
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FIG. 2. (a) Dimensionless velocity distributions across the channel width at εsWi2
k = 1, κ = 20. A comparison on the velocity data has

been made between the current analytical solution and the analytical results reported by Afonso et al. [25]. (b) Nondimensional velocity profiles
with y for κ = 10, ζ = 1, Du = 0, and εsWi2

k → 0. The solid lines demonstrate the results from our analytical solution, whereas the markers
represent the published data by Yang and Kwok [66].

take the value of |α| ∼ 10. We note that the width and
longitudinal length of the channel usually ranges in the
order of W ∼ L ∼ O(103 μm), whereas the half height
of the channel is a ∼ O(10 μm) [67,69]. Therefore, the
corresponding dimensionless parameters may fall within
the following range of parametric spaces: κ ∼ 10−40,
ζ ∼ 1−10, εsWi2

k ∼ 0−2, and the Dukhin number varying
from 0 to 25. In the subsequent discussions, we highlight
the implications of variations in these parameters on the
overall electrohydrodynamic characteristics of PTT fluid in
the microchannel.

A. Development of streaming potential and velocity distribution

We start by presenting the nature of the streaming potential
development with Fig. 3(a), where we plot the magnitude of
nondimensional streaming potential field (E ) as a function of
the dimensionless zeta potential (ζ ) for different values of
κ (the other pertinent parameters have been indicated in the
caption). The general course of the figure [Fig. 3(a)] is that as
the zeta potential is increased, the induced streaming potential
field develops in such a way that the overall distribution
obeys a bell-shaped curve followed by an asymptotic drift
at the higher values of ζ [56]. This trend of variation can
be explained by the fact that the degree of surface charging
is continuously enhanced by increasing ζ . This, in turn, en-
hances the mobile counterion concentration in the EDL region
therefore triggering the development of forward streaming
current towards pressure gradient driven flow. On the other
hand, the magnitude of the streaming potential is augmented
owing to the increasing strength of the flow opposing back
electrokinetic motion. The conflicting analogy of these two
contrasting mechanisms leads to an instantaneous value of
ζ for which the streaming potential field attains its peak
value. Nevertheless, away from this threshold vicinity of ζ ,

predominant strength of the forward streaming current causes
continuous reduction in the induced streaming potential in
order to maintain the electroneutrality constraint. Moreover,
in the diffuse zone of EDL, the effective pre-exponentiation
factor is higher at the larger values of ζ thereby yielding a
rapid decrement in the streaming potential magnitude [56].
It is definitely worth mentioning here that at each cross
section of the microchannel, the nonlinear coupling between
electrokinetic effects and non-Newtonian fluid rheology at
the higher zeta potential regime cannot be superimposed for
maintaining a consistent description of the electroneutrality.
We further observe that as the dimensionless parameter κ

increases, the streaming potential field has a decreasing trend
and the lowest value corresponds to the situation at κ = 40.
This is attributed to the fact that higher values of κ indicates
thinner EDL, in which the Debye length is significantly lower
than the characteristics dimension of the channel. The result-
ing consequence increases the ionic resistance thereby reduc-
ing the bulk ionic conductivity of the flow. At the situation
of reduced bulk ionic conductivity, to balance the equivalent
streaming current, a lower magnitude of streaming electric
field may be induced in order to have a subsequent conduc-
tion current to satisfy electroneutrality constraint. The overall
effect culminates in a feeble induced streaming potential field.

Figure 3(b) depicts the variation of the magnitude of
dimensionless streaming potential E with the dimensionless
viscoelastic set εsWi2

k for different κ , while the other relevant
parameters have been indicated in the caption. As evident
from this figure and also seen from the inset, each E − εsWi2

k
curve is a straight line passing through the origin at εsWi2

k =
0, indicating that starting from the Newtonian regime E in-
creases linearly with εsWi2

k . This can be explained by the fact
that increasing εsWi2

k , pointing to a deviation from the New-
tonian behavior, causes a concurrent amplification in the bulk
fluid velocity (as will be shown shortly, also, Wik = λκUref ).
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(a)

(b)

(c)

Wi

Du

Wi

FIG. 3. Variation of the dimensionless induced streaming poten-
tial (E ) with (a) dimensionless zeta potential for Du = 0, εsWi2

k =
1; (b) εsWi2

k for ζ = 6, Du = 0; (c) Du for ζ = 6, εsWi2
k = 1, at

different values of κ .

An increase in bulk fluid velocity triggers the advective mo-
tions of mobile ions within the EDL. This, in turn, generates
the larger ion flux in the EDL region thus resulting in the

generation of additional streaming current. The overall effect
finally culminates in augmenting the streaming potential mag-
nitude. Using the least square curve fit for (E , εsWi2

k ) data, the
streaming potential at κ = 10 and 40 may be expressed by the
following empirical relationships: Eκ=10 = 4 × 10−4εsWi2

k +
0.0134, Eκ=40 = 10−6εsWi2

k + 0.0014, with R-squared (R2)
values of R2

κ=10 = 0.98 and R2
κ=40 = 0.99, respectively. Nev-

ertheless, irrespective of the fluid rheological characteristics,
the parameter κ primarily emerges as the deciding factor to
mitigate the streaming potential magnitude.

To describe the impact of the stern layer conductivity on
the streaming potential magnitude, in Fig. 3(c), we plot the
variation of E as a function of Du for different values κ;
other relevant dimensionless parameters are mentioned in the
caption. It can be found from Fig. 3(c) that as the value of
Du increases, all the curves portray a decreasing trend in
E . Intuitively, an increase in the Dukhin number leads to
the increase in Stern layer conductivity. As a consequence
of this, the component of conduction current though the
Stern layer also increases that along the bulk liquid. Larger
Stern layer conductivity leads to the formation of an alternate
less-resistive path for the conduction current to flow [46].
Therefore, ignoring the contribution of the conduction current
through the bulk fluid, the streaming current equilibrates
with the corresponding conduction current through the Stern
layer. This implies that a lower magnitude of the electric
potential is sufficient enough to stabilize the streaming current
for satisfying the electroneutrality. This in turn leads to a
lower magnitude of the induced streaming potential field. An
obvious thing to note from Fig. 3(c) is that a larger value of κ

leads to a lower magnitude of E . The explanation behind such
a trend has already been briefed in Fig. 3(a).

In Fig. 4(a) we plot the dimensionless velocity profiles for
different values of nondimensional surface zeta potential ζ

(other pertinent parameters have been given in the caption).
It may be noted that owing to the combined consequences of
applied pressure gradient and induced electrokinetic forcing,
the velocity profile exhibits a parabolic distribution. A general
trend in this plot is that when the effects of surface charging is
considered, increasing the degree of ζ results in corresponding
amplifications in the velocity magnitude in the microchan-
nel. Interestingly, this augmentation in velocity distribution
is palpable at the lower to moderate regimes of wall zeta
potential, namely, in the range of 1 � ζ � 6. In contrast, for
higher values of zeta potentials (ζ > 6), further increase in
ζ causes a gradual reduction in the velocity magnitude. This
trend of velocity distribution can be explained as follows. As ζ

increases, concentration of the ions in the EDL becomes more
and causes an enhancement in the advective transport of the
bulk fluid. This leads to a higher amplification of the flow ve-
locity. On the other hand, as the advective strength of the ionic
species increases, the back electrokinetic strength becomes
more. The consequential influence is perceived by increasing
the effective electroviscous retardation thus causing a gradual
drop in the flow velocity. The competing mechanisms of these
two contrasting influences lead to a threshold magnitude of
ζ ∼ 6 after which velocity profiles show its steady decrement.
It is worth mentioning here that the peak point of both velocity
and streaming potential curves share a common magnitude of
surface charging at ζ ∼ 6 [see Fig. 3(a)].
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(a) (b)
Wi
Wi
Wi
Wi
Wi
Wi

FIG. 4. Variation of the dimensionless velocity (u) along the cross section of the confinement (y) for (a) different ζ at Du = 0, κ =
10, εsWi2

k = 1; (b) different εsWi2
k at ζ = 6, Du = 0, κ = 10.

We next analyze the influences of the dimensionless vis-
coelastic set εsWi2

k on the nondimensional velocity distribu-
tion. Towards this, in Fig. 4(b), the variation of nondimen-
sional velocity (u) along the cross section of the confinement
has been plotted as a function of y for various values of εsWi2

k
and κ , while in the caption other relevant parameters have
been referred to. From Fig. 4(b), it is seen that there is an
augmentation of the velocity distribution as the dimensionless
parameter εsWi2

k increases. The same behavior is noticed
both at κ = 10 and κ = 20, respectively. Irrespective of the
values of κ , it is observed that velocity gradients within the
EDL increase for larger magnitudes of εsWi2

k . Increase in
the fluid velocity with increasing εsWi2

k is attributed to an
amplified shear thinning characteristic of the fluid [70]. We
further observe that although the overall velocity distribution
is parabolic, in the channel centerline the velocity profiles
flatten with increasing values of εsWi2

k . Similar behavior is
also noticed for non-Newtonian power-law fluids obeying
pseudoplastic rheology. In addition, again it can be seen that
velocity loses its strength when the dimensionless parameter
κ is enhanced. This is due to the fact that an increase in κ

demonstrates a corresponding reduction in E (see Fig. 3),
which results in the shear rate (ϒ ) to decrease synchronously,
since ϒ ∝ E3 [see Eq. (31)]. As a consequence, there is a
considerable enhancement in the shear viscosity (μs), since
μs ∝ 1/ϒ [see Eq. (32)]. Accordingly, the effective resistance
to the flow increases, culminating in lower magnitudes of fluid
velocities with higher values of κ .

B. Electrohydrodynamic characteristics

In this section, to analyze the electrohydrodynamic char-
acteristics, we begin by characterizing the consequences of
physicochemical condition and fluid rheology on the dimen-
sionless volumetric follow rate Q f . In Fig. 5(a) we depict the
variation of Q f as a function of ζ for different values of κ;
the other chosen parameters have been given in the caption. It

can be seen that as the magnitude of surface charging ζ is in-
creased, there is an exponential growth in Q f before reaching
its maxima at ζ ∼ 6 followed by an asymptotic decrease in Q f

for further augmenting the values of ζ . These two contrary
paradigms of the hydrodynamic scenario at different values
of ζ are attributed to the corresponding corroboration with
the streaming potential development, which also follows an
analogous trend [see Fig. 3(a)]. It has already been discussed
in Fig. 4(a) that gradual development in flow velocities up
to a typical threshold value of dimensionless zeta potential
(ζ � 6) leads to an equivalent behavior in volumetric flow
rates. In contrast, the regime beyond ζ > 6 results in a corre-
sponding decrement in flow velocities and therefore ensuing
reduction in the dimensionless volumetric flow rate magnitude
Q f . We see that as the parameter κ is increased, there is a
steady drop in the volumetric flow rate.

Figure 5(b) displays the variation of Q f with εsWi2
k for

varying magnitudes of κ (other relevant parameters are given
in the caption). It is found that as the value of εsWi2

k
increases, all the curves of dimensionless volumetric flow
rates follow a linear growth. The dependence of Q f on
εsWi2

k at κ = 10 and 40 can be approximated by the follow-
ing empirical relationships: [Q f ]κ=10 = 5.2 × 10−3εsWi2

k +
0.3458, [Q f ]κ=40 = 0.3 × 10−3εsWi2

k + 0.3347. The corre-
sponding R2 values for these correlations are R2

κ=10 = 0.99
and R2

κ=40 = 0.98. It has already been briefly presented in
the preceding section that increasing the nondimensional
viscoelastic set εsWi2

k brings about a shear thinning effect
in the flow rheology. This, in effect, augments the fluid
velocity within the microchannel thereby leading to a gradual
enhancement in the flow rate. Another point to observe from
Fig. 5(b) is that for higher values of κ , the gradient of the
volumetric flow rate curve [∂Q f /∂ (εsWi2

k )] becomes smaller
and the least value is attained at κ = 40. In an effort to
obtain a relationship between the maximum and minimum
gradients, we employ the empirical relationships of Q f to
yield [∂Q f /∂ (εsWi2

k )]κ=10 = 17.33[∂Q f /∂ (εsWi2
k )]κ=40.
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(a)

(b)

(c)

Wi

Du

FIG. 5. Variation of the dimensionless volumetric flow rate (Qf )
with (a) dimensionless zeta potential for Du = 0, εsWi2

k = 1; (b)
εsWi2

k for ζ = 6, Du = 0; (c) Du for ζ = 6, εsWi2
k = 1, at different

values of κ .

In Fig. 5(c), we portray the distribution of Q f as a function
of stern layer conductivity Du. The other selected parame-
ter values are given in the caption. From the figure, it can

be seen that as Du is increased, the volumetric flow rate
follows a similar trend to that obtained for the Fig. 3(c).
Such a trend of decrement in flow rates with increasing Stern
layer conductivity can again be explained on similar lines
of reduction in the induced streaming potential E with a
consequent increase in Du. As already mentioned briefly, in
the perspective of Fig. 3(c) the Stern layer conductivity plays
an opposing role for the establishment of E . Therefore, the
contribution of the electrokinetic inertia force to the bulk flow
field reduces for increasing Du. Eventually, the flow velocity
decreases; this in turn leads to decay in the volumetric flow
rates. It is seen that the magnitude of reduction in Q f over
the ranges of κ is maximum at κ = 10, whereas the slope of
the curve ∂Q f /∂ (Du) decreases with augmenting values of the
parameter κ .

In Figs. 6(a) and 6(b), we show the variation of the di-
mensionless normal stress, τxx [Fig. 6(a)], and shear stress,
τxy [Fig. 6(b)], components across the microchannel (y) for
different values of ζ , while the other appropriate parameters
have been indicated in the caption. In general, it is observed
from Fig. 6 that at the channel centerline, both of the stress
components are closer to zero. Proceeding towards the chan-
nel wall, the stress components progressively increase and
start to diverge from its linear trend at the transit point T .
This follows a sudden jump in stress distribution nearer the
vicinity of the confining walls. The characteristic of stress
distribution is a result of the alternation in velocity gradients in
a more dominant fashion owing to the combined presence of
the interfacial electrokinetic forcing and the applied pressure
gradient inside the EDL region [31,71]. On the other hand,
to balance the mass conservation within the flow domain,
towards the core of the channel, there will be a corresponding
decrement in the velocity gradient for increasing ζ . This, in
turn, brings about an emergence of the transit point T on
the τ−y curve, as shown in Figs. 6(a) and 6(b). The overall
consequences culminate in reducing the stress components
until τxx, τxy → 0 at the channel core. We see from panels
(a) and (b) that both τxx and τxy increase as the surface zeta
potential increases. Interestingly, we observe from the insets
that even though τxx, τxy increases with increasing ζ , beyond
a threshold magnitude of ζ > 6, there is a steady drop in
both the normal and shear stress components. Therefore, for
higher zeta potentials, the magnitudes of τxx, τxy are lower
than that of the case with lower ζ , which is exactly the same
trend as predicted for other situations noted previously. It
is worth mentioning here that the development of induced
streaming potential field for increasing the degree of surface
charging primarily dominates all of the associated electrohy-
drodynamic phenomena inside the microchannel. Therefore,
the stress components are no exceptions, since from Eqs. (30a)
and (30b) one may write τxx ∝ E2 and τxy ∝ E . Thus, τxx,
τxy are also implicitly adhering to the analogous trend on
the development of the induced streaming potential field at
the lower, moderate to higher zeta potential magnitudes [see
Fig. 3(a)]. Comparing panels (a) and (b), it is seen that in
the near wall region, there is an acute variation in the normal
stress component when compared to that of the shear stress as
because τxx ∝ τ 2

xy [refer Eq. (30)].
To analyze the impact of viscoelastic influence on the

normal and shear stress components, in Figs. 7(a) and 7(b), we
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(a) (b)

FIG. 6. Variation of the dimensionless (a) normal stress τxx and (b) shear stress τxy components across the microchannel (y) for different
values of ζ at Du = 0, κ = 10, εsWi2

k = 1.

depict the variation of τxx [Fig. 7(a)], and τxy [Fig. 7(b)], with
y for different values of εsWi2

k (the other pertinent parameters
have been mentioned in the caption). It is apparent from these
figures that increasing εsWi2

k causes an enhancement in stress
components. An enhancement in εsWi2

k implies a paradigm
shift in fluid rheology tending towards an intensified shear
thinning regime. Thus, for higher values of εsWi2

k there is a
continuous gain in the flow velocity. This consequently leads
to significant alternation in the velocity gradients, which, in
effect, results in a concomitant augmentation in the stress
components. An important aspect of the stress curve can be
noticed that for Newtonian fluids at εsWi2

k = 0, the normal
stress component has zero value; in stark contrast, the shear

stress component has a nonzero linear variation with y. More-
over, the magnification of stress components with increasing
εsWi2

k is found to be more pronounced for τxx, whereas a very
weak influence is witnessed on τxy. This can be explained
from Eq. (30) where the τxx is found to be directly proportional
to Wik , whereas τxy has an indirect relationship with Wik
through the induced streaming potential field E , which is a
function of εsWi2

k [see Eq. (23)].
To investigate the effect of surface charging on the di-

mensionless shear viscosity μs, we plot the variation of the
dimensionless shear viscosity across the microchannel (y) for
different ζ in Fig. 8(a). In the caption, we have mentioned
the other related parameters. Figure 8(a) shows that across

(a) (b)

Wi

Wi
Wi
Wi
Wi
Wi
Wi

Wi
Wi
Wi
Wi
Wi

FIG. 7. Variation of the dimensionless (a) normal stress τxx and (b) shear stress τxy components across the microchannel (y) for different
values of εsWi2

k at Du = 0, κ = 10, ζ = 6.
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(a) (b)
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FIG. 8. Variation of the dimensionless shear viscosity (μs ) along the cross section of the confinement (y) for (a) different ζ at Du = 0, κ =
10, εsWi2

k = 1; (b) different εsWi2
k at ζ = 6, Du = 0, κ = 10.

the microchannel, μs progressively decays to its minimum
value at the near wall region. We offer a physical explanation
of this behavior as follows. At the core of the channel, the
lower magnitude of the velocity gradient sets the viscosity
value to a higher side, notably, at the centerline (y = 0); the
dimensionless viscosity yields its peak magnitude of μs ≈ 1.
In contrast, continuing enhancements in velocity gradients
approaching towards the channel walls lead to a sharp drop
in μs. Increasing the zeta potential significantly modulates the
dimensionless shear viscosity at the near wall region thereby
causing the μs−ζ curve to bifurcate at the transit point T .
This explains the fact that in the EDL region, increasing
the magnitude of surface charging triggers the strength of
the ionic advective transport, which, in turn, enhances the
fluid velocity gradient and thereby proportionate alternation
in the dimensionless viscosity. An important thing to note
from this figure is that μs is lower for higher ζ , nevertheless,
beyond a threshold value of ζ = 6 (see inset), μs increases
with increasing ζ . This is due to the fact that μs ∝ 1/E2 [see
Eq. (32)] thereby corroborating the functional dependence of
E with ζ , as shown in Fig. 3(a).

We plot the variation of the μs with y in Fig. 8(b) for
different εsWi2

k (other constant parameters values have been
mentioned in the caption). It emerges from this figure that
increasing εsWi2

k causes a striking drop in the dimensionless
viscosity. This decrease in μs is attributed to the fact that
a higher magnitude of εsWi2

k severely augments the shear
thinning characteristics of the PTT fluid, which causes an
amplification in the flow velocity gradients. This adequately
reduces the resistance to flow and thus lessens the shear
viscosity. A point to mention from Fig. 8(b) is that the
viscosity profile is spatially invariant for the Newtonian fluid
at εsWi2

k = 0 and yields a constant value of μs = 1. A closer
look into Fig. 8(b) tells that the viscosity curve does not
follow a monotonic drop from the core of the channel, rather
showing a sudden dip in the EDL region, nearer the channel
wall. This is as attributable to the rapid changes in flow

velocity gradients primarily taking place in the near wall
region.

Now, we examine the influence of various electrohydro-
dynamic parameters on the dimensionless transverse aver-
aged shear viscosity μav . Towards this, in Figs. 9(a)–9(c),
we show the functional dependence of μav with different
electrohydrodynamic parameters ζ [in Fig. 9(a)], εsWi2

k [in
Fig. 9(b)], and Du [in Fig. 9(c)], respectively (in the caption,
we have indicated the other representative parameter values).
The results are shown for different κ values. Several appealing
features are immediately evident from Fig. 9. It is seen from
Fig. 9(a) that as the zeta potential increases, the averaged shear
viscosity sharply drops to its minimum value around ζ ∼ 6;
afterward, there is a steady growth of μav until it becomes
asymptotically invariant for larger values of ζ . Intuitively, an
enhancement in ζ leads to the reduction in μs thereby yielding
a corresponding decrement in μav . On the other hand, beyond
the point of minima at ζ ∼ 6, the shear viscosity increases
therefore causing an equivalent increase in the average vis-
cosity. Interestingly, the μav−ζ curve is an inverted version
of the E−ζ distribution [refer to Fig. 3(a)], because their
mutual dependence follows an inverse relationship, μav ∝
1/E for constant ζ . The parameter κ has a noteworthy impact
on augmenting the values of μav as portrayed in Fig. 9(a).
Figure 9(b) shows that with an increase in εsWi2

k , there is
an exponential decrease in the average shear viscosity. The
physical explanation behind such a trend has already been
discussed in Fig. 8(b). We have seen from Fig. 8(b) that there
is a dramatic reduction in μs with increasing εsWi2

k ; this essen-
tially culminates in an overall drop of μav for higher values of
εsWi2

k. A least square curve fit on (μav, εsWi2
k ) data yields an

empirical relationship for the prediction of μav as a function of
εsWi2

k at κ = 10 (with R2 = 0.97):μav = −0.012(εsWi2
k )3 +

0.0892(εsWi2
k )2 − 0.2915(εsWi2

k ) + 0.9922. A very marginal
variation in μav is seen for increasing κ; nevertheless, from
the insets it is found that the least value of μav is always
at κ = 10. The effect of the Stern layer conductivity plays a
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(a)

(b)

(c)

Wi

Wi

Du

FIG. 9. Variation of the dimensionless transverse averaged shear
viscosity (μav ) with (a) dimensionless zeta potential for Du =
0, εsWi2

k = 1; (b) εsWi2
k for ζ = 6, Du = 0; (c) Du for ζ =

6, εsWi2
k = 1, at different values of κ .

significant role in amplifying the average viscosity magnitude,
as emerging from Fig. 9(c). It can be found that there is
an exponential rise of μav with an increase in the Dukhin

number Du. As the Stern layer conductivity is increased, we
note from Fig. 3(c) that there is a steady drop in the induced
streaming potential field. This, in turn, brings about a lower
flow velocity magnitude by exerting more resistance to the
fluid motion, thus resulting in an intensification of μav values
(also, μav ∝ 1/E ). The inverse proportionality between μav

and E yields the μav−Du curve shown in Fig. 9(c) to be
an inverted description of E−Du distribution displayed in
Fig. 3(c). Enhancement in κ yields a significant increase in
μav . On the contrary, we notice that the slope of the μav−Du
curve reduces with increasing values of the parameter κ .

C. Hydroelectrical energy conversion efficiency

Towards examining the influence of interfacial electroki-
netics and viscoelasticity on the hydroelectrical energy con-
version efficiency ηs, we first consider the situation in which
the degree of surface charging is varied by means of low to
high zeta potentials. We plot the variation of ηs in Fig. 10(a)
as a function of the ζ , for illustrative values of κ = 10, 20,
30, and 40, respectively. The other parameters are mentioned
in the figure caption. It is evident from the figure that with
increasing the values of ζ , a giant augmentation in the energy
conversion efficiency may be achieved until the peak satura-
tion limit in the neighborhood of ζ ∼ 6 is reached. This in-
crease in conversion efficiency with increase in ζ is attributed
to the concurrent enhancements in ionic advection and thereby
rapid amplification in the induced streaming potential field.
In contrast, for the remaining higher zeta potential regime,
6 < ζ � 10, the conversion efficiency drops with further in-
creasing the values of ζ . This can again be explained by the
fact that at large zeta potentials, ζ > 6, the formation of a
reverse streaming potential strengthens the back electrokinetic
transport and therefore calls for a reduced streaming current
for satisfying the electroneutrality. Furthermore, the conflux
of conduction and streaming currents adjusts itself such that
beyond a critical magnitude of ζ there is a gradual drop in
the streaming potential field and thus a consequent decrement
in the energy conversion efficiency. It may be mentioned here
that the trend of variation of ηs−ζ curve is in line with that
displayed in Fig. 3(a).

Figure 10(b) depicts the variation of ηs with εsWi2
k for dif-

ferent values κ (other related parameters are mentioned in the
caption). It is apparent from this figure and also from the inset
that as the value of εsWi2

k increases, the characteristic trend
of the energy conversion efficiency displays a perfectly linear
relationship. This suggests that deviating from the classical
Newtonian paradigm at εsWi2

k = 0, there is a continuous aug-
mentation in the energy conversion efficiency. Again, an em-
pirical equation of ηs as a function of εsWi2

k via least square fit
of the (ηs, εsWi2

k ) data at two representative values of κ = 10,

40, may be obtained as [ηs]κ=10 = 6 × 10−4εsWi2
k + 0.0128,

[ηs]κ=40 = 2 × 10−7εsWi2
k + 8 × 10−5, where, R2

κ=10 = 0.98
and R2

κ=40 = 0.99, respectively. The physical reason behind
this augmentation of ηs with increasing values of εsWi2

k can be
explained by looking into the nature of the variations in the in-
duced streaming potential and velocity fields in Figs. 3(b) and
4(b), where we found that both of them increase profoundly
with enhancing magnitudes of εsWi2

k . Thus increasing magni-
tudes of εsWi2

k leads to increased energy conversion efficiency.
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(a)

(b)

(c)

Wi

Wi

Du

Du

FIG. 10. Variation of the hydroelectrical energy conversion
efficiency (ηs ) with (a) dimensionless zeta potential for Du =
0, εsWi2

k = 1; (b) εsWi2
k for ζ = 6, Du = 0; (c) Du for ζ =

6, εsWi2
k = 1, at different values of κ .

In an attempt to illustrate the implications of the Stern layer
conductivity on the energy conversion efficiency, in Fig. 10(c),
we depict the variation of ηs as a function of Du for various

values of κ . The supplementary pertinent parameters are given
in the caption. Figure 10(c) reveals that the distribution of
the energy conversion efficiency curve follows an exponen-
tial decay with increasing the Stern layer conductivity (Du).
This is owing to the fact that there is an exponential drop
in the induced streaming potential field with increasing the
magnitudes of Du [see Fig. 3(c)]. As a consequence, a higher
value of the Stern layer conductivity is always associated
with a lower magnitude of the energy conversion efficiency.
A general point to note from Fig. 10 is that an enhancement
in the relative sizes of the microchannel, as guided by larger κ

values, leads to a drastic reduction in the energy conversion
efficiency. The physical reason behind such a trend is due
to the fact that higher values of κ contribute in reducing the
strength of the induced streaming potential field; this, in turn,
results in lowering the magnitudes of ηs.

Towards highlighting the typical results on the combined
electrohydrodynamic consequences, we finally show two rep-
resentative cases of flow rate and energy conversion efficiency
in Figs. 11(a) and 11(b). We plot Q f [Fig. 11(a)] and ηs

[Fig. 11(b)] as a function of ζ and εsWi2
k for constant values

of the parameters, κ = 10, Du = 0. This figure essentially
corroborates the situations as portrayed in Figs. 5 and 10,
respectively. A general inspection of Fig. 11 concedes that
for specific combinations of ζ and εsWi2

k one may achieve a
maximization in flow rates and hydroelectric energy conver-
sion efficiency. The optimal regime for the energy conversion
efficiency, as recognized from the figure, falls within the
narrow band of zeta potentials. Nevertheless, the correspond-
ing regime for flow rates is always lying at a distinctive
axial location of ζ ∼ 6, εsWi2

k ∼ 2, respectively. Therefore,
from these plots, one may conclude that it is possible to
modulate both hydroelectrical conversion efficiency and flow
rates by the combined consequences of rheology and inter-
facial electrokinetics. This result may perhaps be useful for
the microfluidic experiments and design of advanced smart
sensors within the cognizance of electrohydrodynamics.

It is essential to mention that another phenomenon that
takes place in this range of geometric scales is the formation
of a polymer-depleted layer (PDL), because of the migration
of polymer chains from the wall region to the centerline of
the channel [62,72]. The mechanism that drives the flow does
not affect the generation of this PDL and therefore it is in-
herent to both electrokinetic and pressure-driven flow of non-
Newtonian fluid in a microchannel. This issue was explicitly
addressed recently by Moschopoulos et al. [62]. They have
performed a theoretical investigation on the electro-osmotic
flow of polyethylene oxide (PEO) chains dissolved in a NaCl
aquatic solvent in a microchannel. Their [62] study revealed
that for the solution of 0.1% PEO, the theoretical results of the
mean velocity on the applied electric field, taking into account
the viscous contribution of the solvent in the solution phase,
matches well with the experiments of Huang et al. [73]. In
contrast, neglecting the viscous solvent causes overestimation
in the mean velocity. Furthermore, the thickness of this PDL
for the 0.1% PEO solution is 5 nm, and it is independent of
the applied electrical field [62]. Perhaps it is also dependent
on the elastic nature of the fluid. With an increase in PEO
percentages, the increase in the PDL thickness is small for
lower values of the imposed electric field (Exx ), whereas for
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Wi
Wi

(a) (b)

FIG. 11. Variation of the (a) dimensionless volumetric flow rate (Qf ); (b) hydroelectric energy conversion efficiency (ηs ), as a function of
ζ and εsWi2

k for constant values of the parameters κ = 10, Du = 0.

other higher ranges of the applied electric field, Moschopoulos
et al. [62] proposed an empirical correlation of the optimal
PDL thickness based nonlinear regression as δPDL = kEB

xx,
where k, B, are the constant parameters. Now, in the present
study, we have not considered the formation of PDL in the
proposed model, making it less realistic and robust. More
importantly, the hydroelectrical energy conversion efficiency,
as obtained from the current theatrical model calculations
without considering the formation of PDL, will overestimate
the results as compared to the actual cases. Furthermore, an
increase in the PDL leads to a corresponding increase in the
mean velocity of the flow [62]. One may alternatively appeal
to this PDL induced enhancement in mean velocity directly
to the corresponding alternation in the induced streaming
potential field, which will eventually be reflected in the hy-
droelectrical energy conversion efficiency.

IV. CONCLUDING REMARKS

In this study, we have explored the streaming potential me-
diated pressure driven electrohydrodynamic transport mech-
anism of Phan-Thien–Tanner fluids in a microchannel em-
ploying both analytical and semianalytical approaches. With-
out resorting to the conventional Debye–Hückel linearization
approximation for low surface potentials (|ζ ∗| < 26 mV),
we obtain closed form analytical solutions for the dimen-
sionless electrostatic potential distribution, velocity profile,
and volumetric flow rates by utilizing full scale solution
for the Poisson-Boltzmann equation. Corresponding sets of
analytical formulas are also derived with the Debye–Hückel
approximation. With detailed examinations of the influences
of various governing electrokinetic and fluid rheological pa-
rameters, the following important conclusions are obtained
from the present research:

(i) An intensification of the degree of surface charging
yields the induced streaming potential field to obey a bell-

shaped distribution afterward, an asymptotic drift beyond the
values of ζ > 6.

(ii) The enhanced shear thinning characteristics of the
fluid cause the induced streaming potential field to augment
linearly with increasing viscoelastic set εsWi2

k , and at κ = 10,

40, are expressed by the following relationships: Eκ=10 =
4 × 10−4εsWi2

k + 0.0134, Eκ=40 = 10−6εsWi2
k + 0.0014. On

the other hand, enhancing the Stern layer conductivity shows
a dramatic reduction in E .

(iii) The flow field is amplified by increasing the degree
of surface charging. A similar trend is followed when the
dimensionless viscoelastic parameter set εsWi2

k is augmented.
Furthermore, the flow velocity losses its strength when the
dimensionless parameter κ is increased.

(iv) The dependence of polymeric normal and shear stress
components with ζ is affirmed to govern by the corresponding
variation in the induced streaming potential field with dimen-
sionless surface charging. Revealing both τxx and τxy increases
with increasing ζ . We further found that increasing εsWi2

k
leads to significant enhancement in normal stress components.
In contrast, a very weak influence is witnessed on the shear
stress component.

(v) The dimensionless shear viscosity drops with aug-
menting ζ up to a threshold limit of ζ = 6, beyond ζ > 6,
μs increases with incrementing ζ , whereas the average shear
viscosity follows an opposing trend with modulating electro-
hydrodynamic parameters and follows an inverted parabolic
shape with increasing ζ .

(vi) Until the peak saturation limit in the neighborhood
of ζ ∼ 6, a giant augmentation in the hydroelectric energy
conversion efficiency is achievable. On the other hand, in the
range of 6 < ζ � 10, the energy conversion efficiency decays
with increasing ζ . The hydroelectric energy conversion effi-
ciency linearly amplifies with augmenting εsWi2

k . The depen-
dence of ηs with εsWi2

k at κ = 10, 40, are expressed by the
following relationships: [ηs]κ=10 = 6 × 10−4εsWi2

k + 0.0128,
[ηs]κ=40 = 2 × 10−7εsWi2

k + 8 × 10−5.
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(vii) For particular optimal combinations of (ζ , εsWi2
k ),

maximization in flow rates and hydroelectric energy conver-
sion efficiency is achievable. The optimal regime for maximal
flow rate falls at specific combinations of ζ ∼ 6, εsWi2

k ∼ 2,
whereas the corresponding regime for the energy conversion
efficiency falls within the narrow band of zeta potentials.

The analytical and semianalytical results presented in this
research are anticipated to provide a profound insight on the
employability of viscoelastic fluids in microfluidic devices.
We believe that the present study will act as a predecessor
for the design and syntheses of modern generation biomedi-
cal lab-on-a-cell and lab-on-a-chip devices, micromechanical
smart sensors, actuators, etc. On the other hand, the analytical
solutions may be used as a basis of benchmark for validation
of experimental, numerical data on the electrohydrodynamic
transport of the PTT fluids in a microchannel for a wide range
of zeta potentials.

APPENDIX A: INFLUENCE OF STERIC EFFECT

Here we investigate the implications of the steric effect
on the streaming potential mediated flow of PTT fluids in a
microchannel. It is essential to mention in this context that
although the Poisson-Boltzmann equation provides a more
realistic representation of the electrochemical potential than
the Debye-Hückel model, it also assumes ions as pointlike
particles thus enabling the local ion volume fractions to ex-
ceed by orders of magnitude the maximum allowed coverage
of the charged surface [74]. To remedy this inconsistency, one
should include excluded-volume (or steric) effects [62,75].
The modified space-charge model by incorporating the ionic
flux density in the transport of species equation forms the
theoretical model describing volume (or steric) effects of the
ions, expressed as [49,76]

−→
Ji = −→

U ni − Dini
−→∇

(
ln ai + zie�

kBT

)
, (A1)

where ni is the number density, Di is the diffusivity, and
zi is the valency of the ith ionic species, respectively. The
activity ai of ith ionic species is expressed as ai = ni/nref

1−γ
∑

i ni/nref

[49]. Here, nref is the reference ionic number density and is
treated as n0 in the current study. The parameter γ is the steric
factor or the partial molal volume fraction of the ions, which
is mainly included within the ionic flux density through the
activity coefficient ai. Now, the ionic species conservation
equation describes the transport characteristics of individual
ions through the microchannel under steady-state condition,
written as [49,76]

−→∇ · −→
Ji = 0. (A2)

Without the presence of the ionic advective transport, Eq. (A2)
yields [49,76]

ln ai + zie�

kBT
= const. (A3)

Now, for a z : z symmetric electrolyte, an equilibrium
condition prevails between the microchannel and its linking
reservoir, which allows us to write n+ = n− = n0. Therefore

the ionic number density takes the following form:

n± = n0

exp
(∓ ez�

kBT

)
1 + 2γ

{
cosh

(
ez�
kBT

) − 1
} . (A4)

Accordingly, the net charge density per unit fluid volume
is given by

ρe = e (z+n+ − z−n−) = e z(n+ − n−) (A5)

Next, if we substitute Eq. (A4) in Eq. (A5) and use Eq. (2),
we obtain the Poisson-Boltzmann equation considering the
steric effect, in dimensionless form, as [76]

d2ψ

dy2
= κ2 sinh (ψ )

1 + 4γ sinh2(ψ/2)
. (A6)

The dimensionless set of boundary conditions, as supple-
mented with Eq. (A6), is [76] [ψ]y=±1 = ζ and [dψ/dy]y=0 =
0. Now, for obtaining the dimensionless velocity distribution,
we have employed the nondimensional form of governing
momentum equation, Eq. (19), with the pertinent boundary
conditions as detailed in Sec. IID. In this context, it is essential
to mention here that the term dψ/dy in Eq. (19) should be
obtained from the solution to Eq. (A6). Finally, the closure
relationship for the unknown nondimensional streaming po-
tential field E in Eq. (19) can be found by the following crite-
ria for the dimensionless form of electroneutrality considering
the steric effect:∫ 1

0

sinh (ψ )

1 + 4γ sinh2(ψ/2)
u(y) dy

− α E

ζ

[∫ 1

0

cosh (ψ )

1 + 4γ sinh2(ψ/2)
dy + Du

]
= 0. (A7)

One important thing to note here is that we have used
the same set of scaling parameters as given in Sec. II for
casting the governing equations, Eqs. (A6), (A7), and (19),
in dimensionless form. Now, for obtaining a solution to the
velocity and induced streaming potential field corresponding
to the present physical situation, we have used the finite
volume based numerical method [77]. The solution strategy
adopted for the nonlinear sets of Eqs. (A6), (A7), and (19),
are as follows: We start by solving Eq. (A6) along with
the prescribed boundary conditions by employing the TDMA
method [77]. With the known values of EDL potential, we
then assume a guess value of E and solve Eq. (19) with
the pertinent boundary conditions. Next, we check for the
electroneutrality as prescribed by Eq. (A7) and update the
value of E and rerun this iteration steps until convergence.

To bring out the effect of the steric factor on the induced
streaming potential field, we plot the variations in E with γ

in Fig. 12(a) for κ = 10, 20, 30, for the relevant parameters
given in the figure caption. From Fig. 12(a) it is evident
that the induced streaming potential field progressively in-
creases with increasing γ . We explain the apparent reason
for this enhancement in E by looking into the nature of γ on
the electrokinetic characteristics. Increasing the steric factor
increases the finite size of the ion and thereby imposes a
constraint on the ionic packing nearer to the channel walls.
As a consequence, lower numbers of counterions are attached
to the charged substrate within the EDL region. Therefore,
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(a) (b)

FIG. 12. (a) Variation of the dimensionless induced streaming potential (E ) with γ for different κ at ζ = 10, Du = 0, εsWi2
k = 1.

(b) Variation of the dimensionless velocity (u) along the cross section of the confinement (y) for different γ at ζ = 10,
Du = 0, κ = 10, εsWi2

k = 1.

the zone of the net electric charge stretched to the higher
bulk velocity locations and thus increasing numbers of free
counterions in the flow. Subsequently, there is a correspond-
ing intensification in the accumulation of the counterions at
the channel exit, and this finally leads to higher streaming
potential magnitude [76,78]. We also note that higher values
of κ yield a corresponding decay in E magnitudes, which is as
noted previously with the observations discussed concerning
Fig. 3.

In Fig. 12(b), we plot the variation of dimensionless veloc-
ity across the microchannel as a function of the steric factor
for the parameters given in the figure caption. Figure 12(b)
shows that as the steric factor is increased, there is a contin-
uous enhancement in the fluid velocity. This increase in fluid
velocity is attributed to the simultaneous enhancement in the
induced streaming potential field (E ), which concomitantly
increases the shear rate (ϒ ), as from Eq. (31) it can be
deduced that ϒ ∝ E3. The resulting consequence yields a
continuous reduction in the shear viscosity (μs), as Eq. (32)
allows us to write μs ∝ 1/ϒ , which explains the gradual re-
duction in the effective flow resistance thereby increasing the
fluid velocity magnitude at higher γ values. On the other hand,
in the EDL region, we observe an opposite trend in velocity
distribution away from the channel wall for increasing γ .
This near-wall velocity distribution essentially brings about
an emergence of the intersectional point I towards the channel
core. The physical explanation behind this observation is as
follows. At higher γ factors, the counterion concentration
nearer the vicinity of the wall encompassing the EDL re-
gion reduces, leading to the decrement in the flow velocity
due to reduced electrokinetic forcing. Perhaps, to satisfy the
conservation of mass in the flow, it further increases towards
the channel core thereby originating the intersectional point
I. It is worth mentioning that consideration of ionic species as
point charges (γ = 0) instead of being finite sized, we recover
the analytical solution for the velocity distribution given by

Eq. (20). The agreement between the velocity profiles ob-
tained by our numerical result to that of an analytical solution
establishes the validity of the numerical method employed.

To elucidate the influence of the steric parameter on poly-
meric stress components, we plot the dimensionless normal
(τxx ) and shear stress (τxy) components [given by Eq. (30)]
across the microchannel (y) in Fig. 13 for the parameters
given in the caption. From the figure, we observe that as the
value of γ increases, the magnitude of the stress components
increases. An increase in the stress components is associated
with the corresponding enhancement in the streaming poten-
tial magnitudes with augmenting γ , because τxx ∝ E2 and
τxy ∝ E [see Eq. (30)]. However, nearer the channel walls,
increasing γ yields a reverse trend in the magnitude of the
stress components. As a result, there is an emergence of the
intersectional point I on the variations of τxx, τxy, with y. We
explain this phenomenon by the fact that increasing γ brings
about a progressive reduction in the velocity gradient at the
near-wall region (see Fig. 12). Accordingly, there is a con-
sequent decrement in the stress component magnitudes with
incrementing γ . We further note that the assumption of ionic
species as the point charges (γ = 0) recovers the analytical
solutions of the stress components given by Eq. (30).

In Fig. 14(a), we plot the variation of the dimension-
less shear viscosity μs [expressed by Eq. (32)] across the
microchannel (y) as a function of the steric factor γ for
parameters given in the figure caption. Figure 14(a) indicates
that for increasing the steric parameter, the magnitude of μs

is progressively smaller than that of the case with γ = 0,
which corresponds to the point charge situation. This reduc-
tion in μs is attributed to the corresponding enhancement in
the induced streaming potential magnitude with increasing
γ since the functional dependence between them obeys an
inverse relationship, which can be expressed from Eq. (32)
as μs ∝ 1/E2. However, this trend reverses in the EDL region
nearer the channel wall, because of considerable proportional
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(a) (b)

FIG. 13. Variation of the dimensionless (a) normal stress (τxx ) and (b) shear stress (τxy ) components along the cross section of the
confinement (y) for different γ at ζ = 10, Du = 0, κ = 10, εsWi2

k = 1.

reduction in the velocity gradients. In effect, appearances of
the intersectional point I on the variations of the μs−y curve.
Again, we recover the analytical solution of μs given by
Eq. (32) from the numerical results at γ = 0.

In Fig. 14(b), we show the variations in energy conversion
efficiency, ηs, with γ , corresponding to the cases displayed
in Fig. 12(a). A closer inspection of Fig. 14(b) reveals that
the energy conversion efficiency increases with increasing the
steric parameter γ , which essentially follows the trend in the
induced streaming potential field [Fig. 12(a)]. This increase
in the hydroelectrical energy conversion efficiency with in-
crements in the steric parameter is due to the proportionate
enhancement of the induced streaming potential field. Thus,

we see that by incorporation of finite size effects of ions, the
actual energy conversion efficiency is higher than that of cases
when the ionic species are considered to be as point charge.
Furthermore, we again observe that increasing values of κ

leads to a gradual reduction in energy conversion efficiency.

APPENDIX B: EFFECT OF THE SOLVENT VISCOSITY
CONTRIBUTION

In general, for the flow of biofluids, zero-shear-rate vis-
cosity is of the order of O(10−3 − 10−2), where the viscosity
of an aquatic solvent is approximately ∼10−3 [41,62]. In that
situation, apparently, the solvent viscosity contribution is not

(a) (b)

FIG. 14. (a) Variation of the dimensionless shear viscosity (μs ) along the cross section of the confinement (y) for different γ at ζ = 10,
Du = 0, κ = 10, εsWi2

k = 1. (b) Variation of the hydroelectrical energy conversion efficiency (ηs ) with γ for different κ at, ζ = 10, Du =
0, εsWi2

k = 1.
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(a) (b)

FIG. 15. (a) Variation of the dimensionless velocity (u) along the cross section of the confinement (y) for different β at ζ = 6, Du = 0, κ =
10, εsWi2

k = 1. (b) Variation of the dimensionless induced streaming potential (E ) with ζ for different β at κ = 10, Du = 0, εsWi2
k = 1.

negligible. When the contribution of the solvent viscosity is
considered, the term ηeff∇2−→U appearing in the governing
equation Eq. (7b) is taken into consideration. In this case,
by employing the same set of scaling parameters for length
(a), velocity (Uref ), and streaming potential (Eref ) as given in
Sec. II, we can recast the corresponding dimensionless form of
the governing equation for the flow inside the microchannel as

du

dy
=

{
E

ζ

dψ

dy
− y −

(
β

1 − β

)
du

dy

}

+ 2εsWi2
k

κ2

{
E

ζ

dψ

dy
− y −

(
β

1 − β

)
du

dy

}3

, (B1)

where β = ηeff/(η + ηeff ) represents the viscosity ratio
[41]. The pertinent boundary conditions for Eq. (B1) are
symmetry at the channel centerline and no-slip at the walls,
u(y)|y=±1 = 0. As evident in Eq. (B1), the dimensionless
streaming potential E is an unknown parameter. That can

again be obtained by using the electroneutrality constraint
expressed in the dimensionless form by Eq. (23); perhaps
the dimensionless velocity u(y) obtained from Eq. (B1)
also has a functional relationship with E . Furthermore,
Eq. (B1) necessitates the information of EDL potential
distribution, which is obtained by the full analytic solution
to the Poisson-Boltzmann equation given by Eq. (5). We
have used a numerical technique to obtain the velocity and
streaming potential distributions for the physical situation
described above. Towards this, we employ the following
numerical formalism: By assuming a guess value of E , we
solve Eq. (B1) along with the appropriate boundary conditions
iteratively by the finite volume method [77]. We then check
for the electroneutrality as given by Eq. (23) and update the
value of E . We repeat these iteration steps until convergence.

Employing similar procedures as described in the previous
section, we can write the expressions for dimensionless com-
ponents of normal and shear stress as

τxx = τXX

ηUrefκ
= 2

W ik
κ2

[
y − 4Eκ p eκ (y−1)

ζ {1 − p2e2κ (y−1)} +
(

β

1 − β

)
du

dy

]2

, (B2)

τxy = y − 4Eκ p eκ (y−1)

ζ
{
1 − p2e2κ (y−1)

} +
(

β

1 − β

)
du

dy
. (B3)

Furthermore, the dimensionless expression for the shear rate becomes

ϒ = χ

(−Uref/a)
=

[
y − 4Eκ p eκ (y−1)

ζ
{
1 − p2e2κ (y−1)

} +
(

β

1 − β

)
du

dy

]
×

⎡
⎣1 + 2εsWi2

k

κ2

{
y − 4Eκ p eκ (y−1)

ζ
{
1 − p2e2κ (y−1)

} +
(

β

1 − β

)
du

dy

}2
⎤
⎦.

(B4)

Finally, the nondimensional form of shear viscosity profile, μs = τxy/ϒ , can be expressed as

μs =
⎡
⎣1 + 2εsWi2

k

κ2

{
y − 4Eκ p eκ (y−1)

ζ
{
1 − p2e2κ (y−1)

} +
(

β

1 − β

)
du

dy

}2
⎤
⎦

−1

. (B5)
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(a) (b)

FIG. 16. Variation of the dimensionless (a) normal stress (τxx ) and (b) shear stress (τxy ) components along the cross section of the
confinement (y) for different β at ζ = 6, Du = 0, κ = 10, εsWi2

k = 1.

To investigate the influence of β on the dimensionless
velocity profile, we plot the variation of u(y) along the cross
section of the microchannel (y) in Fig. 15(a) for the parame-
ters given in the figure caption. Figure 15(a) depicts that as the
viscosity ratio (β ) is increased or, in other words, a reduction
in polymeric contribution, there is a gradual suppression in
the dimensionless velocity profiles. The trend of variation of
u(y) with β is similar to the one reported by Cruz et al. [79]
for fully developed pressure-driven laminar pipe flow of the
PTT fluids, where an increase in the concentration of the
viscoelastic polymer (reduction in the values of β) was re-
ported, defined by C0 = η/ηeff = (1 − β )/β, in consequence
of triggering shear-thinning influences increasing the fluid
velocity. A slightly different type of behavior of fluid velocity
with β was reported for the PTT fluids by Ferrás et al. [41]
for pure electro-osmotic flow in a microchannel, where they
[41] adopted different normalization methods. However, in
the present research, in order to maintain consistency with
the results obtained in the analytical calculations, we have
used the same normalization technique for velocity, which
is solely normalized based on polymeric viscosity (η) and
pressure drop, u = U/Uref , and Uref = −(a2/η)(d p/dX ). An
interesting point to observe from Fig. 15(a) is that for β → 0,
the analytical solution, as given by Eq. (20), is recovered,
indicated by blue circular markers. This result also supports
the validity of the present numerical model with the analytical
solutions in a good agreement.

In Fig. 15(b), we show the variation of the dimensionless
induced streaming potential (E ) field with ζ for different val-
ues of β and the other parameters indicated in the caption. As
observed from this figure, higher values of β induces a lower
magnitude of E . This is attributed to the fact that for a given
value of ζ , a higher β leads to a lower magnitude of velocity
distribution across the channel [Fig. 15(a)]. As a consequence,
for a given ionic concentration in the EDL (fixed by the value
of ζ ), there is a reduction in the advective strength of the

ionic species. That, in turn, lowers the back electrokinetic
strength. Thus, a lesser magnitude of the electric potential
is adequate to balance the streaming current for satisfying
electroneutrality. The overall effects culminate in lowering the
induced streaming potential field.

Now, we examine the influence of β on the stress
components, for which we plot the dimensionless normal (τxx )
and shear stress (τxy) components across the microchannel (y)
in Fig. 16 for the parameters indicated in the figure caption.
The general observation from Fig. 16 is that both the normal
and shear stress components decay with an augmentation in
the viscosity ratio, signifying lower polymeric concentration.
The reason behind this trend is a progressive decrement in the
streaming potential magnitude with increasing β, since τxx ∝
E2 and τxy ∝ E . It is worth mentioning here that the functional
dependence of stress components with β is in line with the
observations reported by Cruz et al. [79]. In the limit of
β → 0, variations in the normal and shear stress components
depicted in Fig. 16 recover the analytical solutions given by
Eqs. (30b) and (30a), respectively, illustrated by blue circular
markers.

Next, we investigate how the nonzero values of the sol-
vent viscosity influence the shear viscosity function of the
PTT model given by Eq. (B5). Accordingly, in Fig. 17(a)
we plot the variation of the nondimensional shear viscosity
μs across the microchannel (y) for parametric variations
in β. The other physical parameters are mentioned in the
figure caption. An important thing to mention here is that
in a region of more significant shear rates, μs turns into
restricted from below by ηeff for nonzero values of β [79].
Thus, the functional distribution of μs will tend to uniformity
across the microchannel at higher β values. Such depen-
dencies are very much visible from Fig. 17(a), where we
see that μs intensifies with increasing the magnitudes of
β and finally tends towards uniformity at higher β values.
This observation is in line with the trend reported in Cruz
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(a) (b)

FIG. 17. (a) Variation of the dimensionless shear viscosity (μs ) along the cross section of the confinement (y) for different β at ζ = 6,
Du = 0, κ = 10, εsWi2

k = 1. (b) Variation of the hydroelectrical energy conversion efficiency (ηs ) with ζ for different β at κ = 10, Du =
0, εsWi2

k = 1.

et al. [79]. Again, we notice that the analytical solution for
shear viscosity given by Eq. (32) recovered in the limit of
β → 0.

We now demonstrate the effect of β on the hydroelectrical
energy conversion efficiency ηs. To portray this, in Fig. 17(b),
we plot the variation of ηs as a function of ζ for various
β. The other relevant parameters are mentioned in the figure
caption. It is evident from Fig. 17(b) that for higher values of

β, there occurs a gradual decrement in ηs. The reduction in the
induced streaming potential field with increasing β is a plau-
sible reason for the steady decrement in the hydroelectrical
energy conversion efficiency. Thus, we can proclaim that the
incorporation of solvent viscosity has substantial conse-
quences in regulating actual hydroelectric energy conversion
efficiency for such streaming potential mediated flows of PTT
fluids in a microchannel.
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