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Logarithmic and nonlogarithmic scaling laws of two-point statistics in wall turbulence
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Wall turbulence has a sublayer where one-point statistics, e.g., the mean velocity and the variances of some
velocity fluctuations, vary logarithmically with the distance from the wall. This logarithmic scaling is found here
for two-point statistics or specifically two-point cumulants of those fluctuations by means of experiments in a
wind tunnel. As for corresponding statistics of the rate of the energy dissipation, the scaling is found to be not
logarithmic. We reproduce these scaling laws with some mathematics and also with a model of energy-containing
eddies that are attached to the wall.
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I. INTRODUCTION

Within a sublayer of wall turbulence of an incompressible
fluid, one-point statistics such as the mean velocity and the
variances of some velocity fluctuations vary logarithmically
with the distance from the wall. This logarithmic scaling is
unusual, contrasting with power laws and exponential laws
found in many other systems. Hence, in wall turbulence, we
study scaling laws of two-point statistics.

The configuration is as follows. We take the x-y plane at the
wall. The x direction is that of the mean stream. While U (z)
denotes the mean velocity at a distance z from the wall, u(z)
and w(z) denote velocity fluctuations in the streamwise and
the wall-normal directions. Turbulence is homogeneous in the
streamwise direction. Its thickness δ is a constant. The two
points considered here are those separated by a streamwise
distance r.

Asymptotically in the limit of high Reynolds number,
there is a sublayer at z/δ → 0 such that the momentum flux
ρ〈−uw(z)〉 is constant at a value of ρu2

τ [1]. Here ρ is the mass
density, uτ is the friction velocity, and 〈·〉 denotes an average.
Even in an actual case over a smooth or rough wall at a high
but yet finite Reynolds number, this constant-flux sublayer is
still a good approximation for a range of distances z.

Throughout the constant-flux sublayer, the friction velocity
uτ serves as a characteristic velocity. Since there is no constant
in units of length, the mean velocity U obeys a relation
∂U/∂z ∝ uτ /z [1–3]. Then,

U (z)

uτ

= cU + dU ln

(
δ

z

)
with dU = − 1

κ
. (1a)

Here cU is an integration constant. The von Kármán constant κ
appears to be universal. Its estimate of 0.39 ± 0.02 is common
among various configurations of wall turbulence, e.g., pipe
flows, channel flows, and boundary layers [4].

The same scaling exists for the variance of streamwise
velocity fluctuations 〈u2(z)〉. According to the attached-eddy
hypothesis of Townsend [5], i.e., a model of a random su-
perposition of energy-containing eddies that are attached to

the wall,

〈u2(z)〉
u2

τ

= cu2 + du2 ln

(
δ

z

)
. (1b)

This law has been confirmed recently by means of laboratory
experiments and field observations [4,6]. As for its constants,
while cu2 � 1.4–1.8 in pipe flows is distinct from cu2 �
2.0–2.5 in channel flows and boundary layers, du2 � 1.2–1.3
is common among them [4,6–10].

Other scaling laws are also known. An example is the local
rate per unit mass of the energy dissipation ε(z). By equating
its average 〈ε〉 to the mean rate of the energy production
〈−uw〉∂U/∂z = u3

τ /κz at each distance z in the constant-flux
sublayer [3],

〈ε(z)〉
u3

τ /z
= cε with cε = 1

κ
. (1c)

This is in accordance with the attached-eddy hypothesis [11],
albeit possibly not exact with a discrepancy of ±10% in the
actual flow [12].

Being analogous to such one-point statistics, two-point
statistics would exhibit some scaling laws. These are expected
to offer much more information about the wall turbulence.

We use cumulants 〈αnβm〉c of random variables α and β

at n and m = 0, 1, 2, . . . [1,13]. They are related to usual
moments 〈αlβk〉 at l and k = 0, 1, 2, . . . . For example [14],

〈α〉c = 〈α〉, (2a)

〈αβ〉c = 〈αβ〉 − 〈α〉〈β〉, (2b)

〈α2β2〉c = 〈α2β2〉 − 〈α2〉〈β2〉 − 2〈αβ〉2

−2〈α2β〉〈β〉 − 2〈α〉〈αβ2〉 + 8〈α〉〈αβ〉〈β〉
−6〈α〉2〈β〉2 + 2〈α2〉〈β〉2 + 2〈α〉2〈β2〉. (2c)

At n + m � 2, each moment 〈αnβm〉 is contaminated nonlin-
early with lower order moments. If all of such contamination
is removed, the result is the cumulant 〈αnβm〉c. It is also iden-
tical to 〈(α − 〈α〉)n(β − 〈β〉)m〉c. For a sum of independent
random variables α1 and α2, each cumulant is identical to
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the sum of cumulants of the variables, i.e., 〈(α1 + α2)nβm〉c =
〈αn

1β
m〉c + 〈αn

2β
m〉c.

This linear character of cumulants would lead to simple
scaling laws in the constant-flux sublayer. Actually, from the
attached-eddy hypothesis [11],

〈un(x, z)um(x + r, z)〉c

un+m
τ

= Cunum

(
r

z

)
+ Dunum

(
r

z

)
ln

(
δ

z

)

(3a)

and

〈εn(x, z)εm(x + r, z)〉c(
u3

τ /z
)n+m = Cεnεm

(
r

z

)
. (3b)

Here x has become a dummy parameter because the tur-
bulence is homogeneous in the streamwise direction. The
functions Cunum , Dunum , and Cεnεm are not yet determined but are
related to constants of the one-point statistics. For example,
cu2 in Eq. (1b) is identical to Cuu(0) as well as to Cu2 (0) =
Cu2u0 (0), while cε in Eq. (1c) is identical to Cε(0) = Cεε0 (0).

We note that Eq. (3a) has been derived without adding
any assumption to the original hypothesis of Townsend [5].
Although previous studies added assumptions [15–18], they
are not consistent with that hypothesis if their results do
not satisfy Eq. (3a), aside from whether or not they appear
reasonable [11,19].

The scaling laws of such two-point statistics are studied
here. With some mathematics (Sec. II), Eq. (3) is reproduced
as an extension of Eq. (1a) for the mean velocity U . Then,
by using data obtained from our experiments of boundary
layers (Sec. III), we confirm Eq. (3) in Sec. IV. Since its func-
tions Cunum , Dunum , and Cεnεm are not dependent on the above
mathematics, they are discussed in terms of the attached-eddy
hypothesis (Sec. V). Finally, we conclude with remarks in
Sec. VI.

II. THEORY

Our theory is to extend the scaling law of Eq. (1a) for
the mean velocity U . Within the constant-flux sublayer at
z/δ → 0, the local gradient ∂U/∂z depends only on the local
parameters z and uτ [1–3]. Thus, we have used ∂U/∂z ∝ uτ /z
to obtain Eq. (1a). Although γ �= 1 for ∂U γ /∂z ∝ uγ

τ /z might
appear equally plausible, this is not invariant under a Galilean
transformation to add a constant to all of U [20].

The scaling law for any other statistics is required to be
consistent with that for the mean velocity U . We rely on this
requirement to constrain the former scaling via cumulants of
the total streamwise velocity U + u. Another basis of our
theory is that any nondimensional function is required to be
described by nondimensional parameters alone.

With use of the friction velocity uτ , the total streamwise
velocity U + u is nondimensionalized as

α = U (z) + u(x, z)

uτ

and β = U (z) + u(x + r, z)

uτ

. (4)

The distribution of α is described completely by its char-
acteristic function 〈eisα〉 with a nondimensional parameter s

ranging from −∞ to +∞. By definition [1,13], the cumulants
〈αn〉c are obtained from

ln〈eisα〉 =
∞∑

n=1

〈αn〉c
(is)n

n!
(5a)

or from

〈αn〉c = ∂n

∂ (is)n
ln〈eisα〉

∣∣∣∣
s=0

. (5b)

For consistency with ∂U/∂z ∝ uτ /z, we impose

∂

∂z
ln〈eisα〉 = −φ(s)

z
. (5c)

This relation is still invariant under the aforementioned
Galilean transformation, which affects only a linear term
of 〈α〉c = 〈α〉 = U/uτ at n = 1 in Eq. (5a). Since φ is a
nondimensional function, it does not depend on z that is not
nondimensional. From Eqs. (5b) and (5c),

∂

∂z
〈αn〉c = − 1

z

∂nφ(s)

∂ (is)n

∣∣∣∣
s=0

= −φ(n)(0)

inz
. (5d)

We replace φ(n)(0)/in with a constant d(U+u)n . Because of
〈αn〉c = 〈(U + u)n〉c/un

τ ,

∂

∂z

〈[U (z) + u(z)]n〉c

un
τ

= −d(U+u)n

z
. (6)

The integration of Eq. (6) leads to the logarithmic laws of
Eq. (1a) for 〈U + u〉c = U via dU+u = dU = −1/κ and of
Eq. (1b) for 〈(U + u)2〉c = 〈u2〉c = 〈u2〉 via d(U+u)2 = du2 .
Such a law is obtained also for 〈(U + u)4〉c = 〈u4〉c = 〈u4〉 −
3〈u2〉2 and so on. However, the corresponding law for a mo-
ment 〈ul〉 is usually not simple because 〈ul〉 is contaminated
nonlinearly with cumulants 〈un〉c of orders n < l as inferred
from Eq. (2).

To extend our theory into two-point cumulants, we use α

and β from Eq. (4). For their joint distribution [1,13], the
characteristic function is 〈eisα+itβ〉. The cumulants 〈αnβm〉c

are obtained from

ln〈eisα+itβ〉 =
∞∑

n+m=1

〈αnβm〉c
(is)n

n!

(it )m

m!
(7a)

or from

〈αnβm〉c = ∂n+m

∂ (is)n∂ (it )m
ln〈eisα+itβ〉

∣∣∣∣
s=t=0

. (7b)

For consistency with Eq. (5c), we incorporate the separation
of the two points r as

∂

∂z
ln〈eisα+itβ〉 = −ϕ(s, t, r/z)

z
. (7c)

Here ϕ is a nondimensional function of the nondimensional
parameters s, t , and r/z. They are independent of one another
and also of the other parameter z. From Eqs. (7b) and (7c),

∂

∂z
〈αnβm〉c = −1

z

∂n+mϕ(s, t, r/z)

∂ (is)n∂ (it )m

∣∣∣∣
s=t=0

= −ϕ(n,m,0)(0, 0, r/z)

in+mz
. (7d)
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We consider the cases of n + m � 2 and use the function
Dunum (r/z) in place of ϕ(n,m,0)(0, 0, r/z)/in+m. Because of
〈αnβm〉c = 〈un(x, z)um(x + r, z)〉c/un+m

τ ,

∂

∂z

〈un(x, z)um(x + r, z)〉c

un+m
τ

= −Dunum (r/z)

z
. (8)

The integration of Eq. (8) leads to the logarithmic law of
Eq. (3a).

For an extension into any other quantity, a joint distribution
between α for this quantity and β for (U + u)/uτ is imposed
to satisfy Eq. (7). Since Eq. (7) is reduced to Eq. (5) if m = 0,
the quantity itself satisfies Eq. (5) and then Eq. (7). We thereby
obtain its own scaling laws.

The laws for fluctuations of the spanwise velocity are
logarithmic as in the case of the streamwise velocity u. For
the wall-normal velocity w, since it is equal to 0 at the wall
[5], we adopt φ ≡ ϕ ≡ 0 in Eqs. (5) and (7). Hence, the
one-point cumulants are constants. The two-point cumulants
are functions of r/z alone. Both of them are independent of
ln(δ/z). The same laws have been derived from the attached-
eddy hypothesis [5,11].

We also consider the local rate of the energy dissipation
ε. Although the dissipation is due to the fluid viscosity ν, its
value does not affect statistics of ε such as the average 〈ε〉 if
the Reynolds number is high enough [3,21,22]. The rate ε is
nondimensionalized as

α = ε(x, z)

u3
τ /z

and β = ε(x + r, z)

u3
τ /z

. (9)

The mean rate of the energy production u3
τ /κz is enhanced

in the limit z/δ → 0 of the constant-flux sublayer. With
respect to this, the dissipation rate ε needs to remain finite.
We accordingly adopt φ ≡ ϕ ≡ 0 in Eqs. (5) and (7). Via
integration, Eq. (5d) at n = 1 yields Eq. (1c) if the integration
constant cε is assigned to be 1/κ , while Eq. (7d) yields
Eq. (3b).

Thus, without invoking the attached eddies, we have re-
produced the functional forms of Eqs. (1) and (3). Such a
scaling law exists simply because the constant-flux sublayer
has no parameter except for the distance z and the friction
velocity uτ . The laws are limited to cumulants. Only their laws
are extended systematically from that for the mean velocity
U . If allowed by the condition at the wall surface, the law
becomes logarithmic. For the existence of these scaling laws,
an attached eddy is unnecessary, albeit useful for discussing
their functions Cunum , Dunum , and Cεnεm (see Sec. V).

III. EXPERIMENTS

Experiments of turbulent boundary layers were done in
a wind tunnel of the Meteorological Research Institute. We
use coordinates xwt, ywt, and zwt in the streamwise, spanwise,
and floor-normal directions. Their origin xwt = ywt = zwt = 0
is on the center of the floor at the upstream end of the test
section of the tunnel. Its size is Δxwt = 18 m, Δywt = 3 m,
and Δzwt = 2 m. The cross section Δywt × Δzwt is the same
upstream to xwt = −4 m.

Upon the entire floor from xwt = −4 to +18 m with an
interval of Δxwt = 0.1 m, spanwise rods of diameter 3.0 mm
were set as roughness. This displaces the zero plane of the

wall turbulence z = 0 from the floor surface zwt = 0 [1], for
which we assume z − zwt = −1.5 ± 1.5 mm [23].

The incoming flow velocity U∞ was set at 6 or 12 m s−1.
Over some range of distances zwt at xwt = +14 m and at ywt =
0 m, where the turbulence had been well developed and had
become almost independent of the position xwt, we measured
the streamwise velocity U + u.

We used a hot-wire anemometer made up of a constant-
temperature system (Dantec, 90C10) and of a single-wire
probe (Dantec, 55P04). The wire was of platinum-plated
tungsten, 5 μm in diameter, 1.25 mm in sensing length, and
oriented to the spanwise direction. Its resistance overheat ratio
was set at 0.80. We calibrated the anemometer before and after
each series of the measurements.

The anemometer signal was low-pass filtered and then
digitally sampled. For each pair of U∞ and zwt, the sampling
frequency fs was set as high as possible, provided that noise
was still negligible at around fs where the energy spectrum of
the signal had decayed substantially [24,25]. The filter cutoff
was at fs/2.

The total length of the data at each of the distances zwt

from 45 to 105 mm was as large as 3.2 × 108 for U∞ =
6 m s−1 under fs = 16 kHz and 4.0 × 108 for U∞ = 12 m s−1

under fs = 44 kHz. At the other distances zwt, we individually
obtained 4.0 × 107 data.

During these measurements, we monitored the flow condi-
tions such as the temperature. They are used to estimate the
fluid viscosity ν.

From our data along time twt, spatial information is ob-
tained via Taylor’s hypothesis of x = −Utwt. Despite some
known problems [26,27], we rely on this hypothesis up to
a large separation of r/z � 102. The reason is the value of
〈u2〉/U 2. It was small enough, i.e., � 0.03, at all the distances
zwt.

The local rate ε of the energy dissipation is obtained as
15ν(∂xu)2 by assuming local isotropy of the turbulence. For
the calculation of the derivative ∂xu, we use the four-point
finite difference. This is a surrogate of the true rate, but its
result for 〈ε(x, z)ε(x + r, z)〉c is reliable except at smallest
separations r around and below the Kolmogorov length η =
(ν3/〈ε〉)1/4 [28].

These calculations are made for individual segments of
length 107 of our data. Among segments, statistics ex-
hibit scatters. They originate in variations of experimental
conditions, calibration uncertainties, and incomplete con-
vergence due to a limited sampling time. After removing
segments that are too noisy for some uncertain reason, we
use these scatters to estimate the final errors in a standard
manner [29].

Supplementary short measurements were also done. To
estimate the boundary layer thickness δ99, i.e., a distance
z at which U is 99% of its maximum, we measured U
with an interval of Δzwt = 10 mm � 0.03δ99. Furthermore,
to obtain the momentum flux ρ〈−uw〉, we measured u and
w simultaneously by utilizing a crossed-wire probe of the
anemometer (Dantec, 55P53). Its wires were 1 mm in sepa-
ration and oriented at ±45◦ to the streamwise direction. The
other settings were the same as for the single-wire probe.
We estimate the errors as described above about the long
measurements.
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FIG. 1. One-point statistics (a) U (z)/uτ , (b) 〈−uw(z)〉c/u2
τ = 〈−uw(z)〉/u2

τ , (c) 〈u2(z)〉c/u2
τ = 〈u2(z)〉/u2

τ , (d) 〈u4(z)〉c/u4
τ = [〈u4(z)〉 −

3〈u2(z)〉2]/u4
τ , and (e) 〈ε(z)〉c/(u3

τ /z) = 〈ε(z)〉/(u3
τ /z) against z/δ99 for U∞ = 6 m s−1 (circles) and 12 m s−1 (squares shifted horizontally by

two units). The filled symbols lie in the constant-flux sublayer. To these, solid lines are regression fits of Eq. (1a), (1b), or (3a). We provide
±2σ errors, albeit not including those for uτ and z − zwt.

IV. RESULTS

Figure 1 shows one-point statistics semilogarithmically as
a function of z/δ = z/δ99. Their parameters are summarized
in Table I. For these and other following results, ±2σ errors
are given as typical uncertainties [29].

The constant-flux sublayer is observed in Fig. 1 at least
from z/δ99 � 0.14 to 0.28 (filled symbols). Throughout this
range, U in Fig. 1(a) is logarithmic, 〈−uw〉c = 〈−uw〉 in
Fig. 1(b) is constant, and 〈u2〉c = 〈u2〉 in Fig. 1(c) is logarith-
mic.

The inner bound of the sublayer depends on roughness
of the wall [5,7]. Specifically for our roughness, we have
observed its direct effect at z � 40 mm, i.e., � 0.10δ99, by
shifting measurement positions slightly in the x direction. The
outer bound depends on the turbulence itself. Our estimate
of z/δ99 � 0.28 is larger than those of 0.15 in most studies

TABLE I. Parameters for U∞ = 6 and 12 m s−1: boundary layer
thickness δ99, friction velocity uτ , fluid viscosity ν, Reynolds number
δ99uτ /ν, aerodynamic roughness z0, and von Kármán constant κ of
U (z)/uτ = ln(z/z0)/κ , as well as Cun (0) and Dun (0) of Eq. (3a).
The uncertainties are ±2σ errors. We also provide ranges of the
Kolmogorov length η and of the total sampling time T among
distances z in the constant-flux sublayer.

Unit U∞ = 6 m s−1 U∞ = 12 m s−1

δ99 mm 392 ± 5 403 ± 5
uτ mm s−1 259 ± 1 512 ± 0
ν mm2 s−1 15.0 ± 0.0 14.7 ± 0.0
δ99uτ /ν 103 6.74 ± 0.08 14.0 ± 0.2
η mm 0.27 to 0.29 0.16 to 0.17
z0 mm 0.22 ± 0.07 0.19 ± 0.07
κ 0.35 ± 0.02 0.36 ± 0.02
Cu2 (0) = Cuu(0) 2.52 ± 0.15 2.59 ± 0.16
Du2 (0) = Duu(0) 1.25 ± 0.07 1.19 ± 0.08
Cu4 (0) = Cu2u2 (0) 2.08 ± 1.18 1.48 ± 1.14
Du4 (0) = Du2u2 (0) −5.01 ± 0.48 −4.47 ± 0.46
TU∞/δ99 106 0.28 to 0.31 0.20 to 0.24

[4,7,8,18]. Since the sublayer at any finite Reynolds number
is an approximation (Sec. I), no unique definition exists about
its bound. An estimate similar to ours is actually found in the
literature [10].

We have used 〈−uw〉1/2 as the friction velocity uτ . The
results for the von Kármán constant κ in Table I are small with
respect to the standard value of κ = 0.39 ± 0.02 [4]. Since it
yet lies within ±2σ errors of our results, we have adopted
±2σ as a typical level of the uncertainties. Then, cu2 = Cu2 (0)
and du2 = Du2 (0) in Table I are consistent with those in Sec. I
summarized from the literature [4,6–10].

The logarithmic scaling is also observed in Fig. 1(d) for
〈u4〉c = 〈u4〉 − 3〈u2〉2. We expect this from Eq. (3a) at r = 0
and n + m = 4. The results for Cu4 (0) and Du4 (0) in Table I
are consistent within ±2σ errors between the cases of U∞ = 6
and 12 m s−1 (see also Appendix A).

We have 〈u4〉c = 〈u4〉 − 3〈u2〉2 < 0 in the constant-flux
sublayer. Its streamwise fluctuations u are known to be sub-
Gaussian, i.e., 〈u4〉 < 3〈u2〉2. The spanwise and the wall-
normal fluctuations are super-Gaussian [30].

The present and some other data exhibit 〈u4〉c/〈u2〉2
c �

−0.3 [7–9,30,31]. Since 〈u4〉c is not so significant, 〈u4〉 =
〈u4〉c + 3〈u2〉2

c could be approximated by 3〈u2〉2
c = 3〈u2〉2, to

which Eq. (1b) for 〈u2〉 is applicable [31]. Nevertheless, the
exact law is Eq. (3a) for the cumulant 〈u4〉c.

Finally in Fig. 1(e), the ratio of 〈ε〉c = 〈ε〉 to u3
τ /z lies at

around 1/κ = 2.6 (dotted lines), which corresponds to the
standard value of κ = 0.39 [4]. Although that ratio appears
to vary in contrast to the law of Eq. (1c) or (3b) [12], a further
study is desired because 〈ε(x, z)ε(x + r, z)〉c satisfies Eq. (3b)
in a range of separations r (see below and also Appendix B).

To confirm that the spatial and temporal resolutions of
our experiments were high enough for an estimation of ε,
we consider 〈(∂xu)4〉/〈(∂xu)2〉2 � 〈ε2〉/〈ε〉2. As for U∞ = 6
and 12 m s−1, its values in the constant-flux sublayer are
7.7–7.8 and 8.5–8.6. Given the microscale Reynolds numbers
〈u2〉/ν〈(∂xu)2〉1/2 of 400–410 and 570–580, they are consis-
tent with results of the previous studies [32].

We now study scaling laws of two-point statistics for
Eq. (3a) at n = m = 1 and 2 as well as for Eq. (3b) at n =
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FIG. 2. Two-point velocity cumulant in the constant-flux sub-
layer 〈u(x, z)u(x + r, z)〉c/u2

τ = 〈u(x, z)u(x + r, z)〉/u2
τ against r/z

for (a) U∞ = 6 m s−1 and (b) 12 m s−1. The solid arrow indicates an
increase in δ99/z. The gray areas are examples of ±2σ errors, albeit
not including those for uτ and z − zwt. The panel (c) shows Cuu(r/z)
and Duu(r/z) of Eq. (3a). For U∞ = 12 m s−1, we provide ±2σ errors
including those for uτ but not for z − zwt.

m = 1. These statistics are shown in Figs. 2–6 as a function of
r/z or δ/z = δ99/z.

Figure 2 shows 〈u(x, z)u(x + r, z)〉c/u2
τ against r/z at sev-

eral wall-normal distances z lying in the constant-flux sub-
layer. Here 〈u(x, z)u(x + r, z)〉c = 〈u(x, z)u(x + r, z)〉 is a ve-
locity correlation that would offer basic information about the
wall turbulence. While it is usual to study this correlation as a
function of r/(ν/uτ ) [33] or r/δ [34,35], we have adopted r/z
from Eq. (3a).

If r/z is less than a few times 10−2, 〈u(x, z)u(x + r, z)〉c at
each of δ99/z is almost constant at about the value of 〈u2(z)〉c.

FIG. 3. Two-point velocity cumulant 〈u(x, z)u(x + r, z)〉c/u2
τ =

〈u(x, z)u(x + r, z)〉/u2
τ against ln(δ99/z) at r/z = 0.1, 0.3, 1.0, 3.0,

and 10.0 for (a) U∞ = 6 m s−1 and (b) 12 m s−1. The filled symbols
lie in the constant-flux sublayer. To these, solid lines are regression
fits of Eq. (3a). Although we provide ±2σ errors on all the data in the
same manner as in Figs. 2(a) and 2(b), none of them are discernible.

With an increase in r/z, it decays toward 0. It is no longer
persistent if r/z exceeds a few times 101.

If r/z is fixed, 〈u(x, z)u(x + r, z)〉c becomes large with an
increase in δ99/z (an arrow). This is due to the logarithmic law
of Eq. (3a). Actually in Fig. 3, data points of 〈u(x, z)u(x +
r, z)〉c make up linear functions of ln(δ99/z). The same has
been observed in a laser Doppler anemometry of a similar
flow [17]. By fitting Eq. (3a) to our data [29], we calculate
the functions Cuu(r/z) and Duu(r/z). Those in Fig. 2(c) for
U∞ = 6 and 12 m s−1 collapse individually to single curves,
the shapes of which are to be discussed in Sec. V.

Figure 4 shows 〈u2(x, z)u2(x + r, z)〉c/u4
τ against r/z.

Since 〈u2(x, z)u2(x + r, z)〉c = 〈u2(x, z)u2(x + r, z)〉 −
〈u(z)2〉2 − 2〈u(x, z)u(x + r, z)〉2 at r = 0 is reduced to
〈u4(z)〉c = 〈u4(z)〉 − 3〈u2(z)〉2 in Fig. 1(d), this is a cor-
relation of some non-Gaussian component of the velocity
fluctuations u.

The two-point cumulant 〈u2(x, z)u2(x + r, z)〉c at each of
δ99/z is constant up to r/z � 10−1 and is persistent up to
r/z � 101. If r/z is fixed, it is dependent on δ99/z. The
reason is the logarithmic law of Eq. (3a) as confirmed in
Fig. 5. Its functions Cu2u2 (r/z) and Du2u2 (r/z) in Fig. 4(c) are
consistent between the cases of U∞ = 6 and 12 m s−1. These
are analogous to results for 〈u(x, z)u(x + r, z)〉c in Figs. 2 and
3, although the shapes of the curves are entirely different.

Figure 6 shows 〈ε(x, z)ε(x + r, z)〉c/(u3
τ /z)2 against r/z.

Here 〈ε(x, z)ε(x + r, z)〉c = 〈ε(x, z)ε(x + r, z)〉 − 〈ε(z)〉2 is a
correlation of the dissipation rate ε. While it is usual to study
this correlation as a function of r/η [24,28,36], we have
adopted r/z from Eq. (3b).

There is an enhancement of 〈ε(x, z)ε(x + r, z)〉c at the
smallest separations r [24,28,36]. They lie in the dissipative
range, which extends from the Kolmogorov length η (circles
or squares) by a factor of 20–30 (dotted arrows). Since the
fluid viscosity ν is not negligible, Eq. (3b) does not hold there.
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FIG. 4. Same as in Fig. 2 but for 〈u2(x, z)u2(x + r, z)〉c/u4
τ =

[〈u2(x, z)u2(x + r, z)〉 − 〈u(z)2〉2 − 2〈u(x, z)u(x + r, z)〉2]/u4
τ .

The enhancement of 〈ε(x, z)ε(x + r, z)〉c is to be described
rather by the small-scale intermittency [22,32].

Above that dissipative range, there exist the inertial
and the energy-containing ranges. Throughout these two,
〈ε(x, z)ε(x + r, z)〉c/(u3

τ /z)2 is independent of δ99/z in ac-
cordance with Eq. (3b). It persists up to a large separation
[24,28,36], i.e., r/z � 101, as predicted originally by Landau
[3,36]. We calculate the average at each of r/z to obtain
the function Cεε(r/z). Those in Fig. 6(c) for U∞ = 6 and
12 m s−1 collapse to a single curve at least at separations r
in the inertial and the energy-containing ranges.

V. DISCUSSION

Having confirmed the scaling laws of Eq. (3), we discuss
their functions Cuu, Duu, Cu2u2 , Du2u2 , and Cεε in terms of the
attached-eddy hypothesis [5,11].

FIG. 5. Same as in Fig. 3 but for 〈u2(x, z)u2(x + r, z)〉c/u4
τ =

[〈u2(x, z)u2(x + r, z)〉 − 〈u(z)2〉2 − 2〈u(x, z)u(x + r, z)〉2]/u4
τ .

A. Scaling laws from attached eddies

Figure 7(a) is a schematic of the attached eddies. They
have various finite sizes, a common shape that is extending
from the wall, and a common characteristic velocity uτ . If
xe = (xe, ye, he ) is the most extended position of an eddy, he

is used as its size. It induces the streamwise velocity ue and
the energy dissipation εe at any position x = (x, y, z) as

ue(x)

uτ

= fu

(
x − xe

he

)
and

εe(x)

u3
τ /he

= fε

(
x − xe

he

)
. (10)

Here fu and fε are nondimensional functions that take finite
nonzero values in a finite volume. As for the velocity function
fu, we impose a free-slip wall condition, i.e., fu �= 0 at z = 0.

The number of eddies of size he per unit area of the wall
is Neh−3

e dhe [5]. Here Ne is a constant. Apart from Ne and
he, no quantity affects such a number density. Upon the wall,
the distribution of the eddies is random and independent. They
could overlap one another because we use them not as realistic
organized structures but only as bases to describe the flow
[5,18].

The entire flow is a superposition of the eddies. Since they
are random and independent, a sum of their cumulants is
identical to the cumulant of this flow. The law for z/δ → 0
is used as a law for the constant-flux sublayer, in accordance
with its asymptotic character (Sec. I, see also Appendix B).

From this attached-eddy hypothesis, Eq. (3) is derived
by simplifying the original derivation [11]. We again use
nondimensional functions of nondimensional parameters such
as r/z.

The velocity cumulant 〈un(x, z)um(x + r, z)〉c at any dis-
tance z � δ is given by an integration from he = z to δ,

〈un(x, z)um(x + r, z)〉c

un+m
τ

= Ne

∫ δ

z

dhe

he
Iunum

(
r

he
,

z

he

)
. (11a)

Here Iunum is a cumulant of eddies of particular size he. As in
the case of Eq. (2), it is related to moments Jul uk and Jul =
Jul u0 . For example,

Iuu

(
r

he
,

z

he

)
= Juu

(
r

he
,

z

he

)
− J2

u

(
0,

z

he

)
. (11b)
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FIG. 6. Two-point cumulant of the rate of the energy dissi-
pation in the constant-flux sublayer 〈ε(x, z)ε(x + r, z)〉c/(u3

τ /z)2 =
[〈ε(x, z)ε(x + r, z)〉 − 〈ε(z)〉2]/(u3

τ /z)2 against r/z for (a) U∞ =
6 m s−1 and (b) 12 m s−1. The solid arrow indicates an increase in
δ99/z. The panel (c) shows Cεε (r/z) of Eq. (3b). We provide examples
of ±2σ errors as in Figs. 2 and 4. The circles and squares indicate
the Kolmogorov length η. The insets are for large values of r/z.

We use r = (r, 0, 0) to define Jul uk via an integration at that
distance z,

Jul uk

(
r

he
,

z

he

)
=

∫∫
dxe

he

dye

he
f l
u

(
x − xe

he

)
f k
u

(
x + r − xe

he

)
.

(11c)

The first-order moment Ju is not necessarily equal to 0 [15].
Although this was neglected in the original studies [5,11],
their final results hold without any correction.

FIG. 7. Schematics of (a) attached eddies, (b) Iuu(r/he, z/he),
(c) Iu2u2 (r/he, z/he), and (d) Iεε (r/he, z/he). The solid arrow indicates
an increase in r/he. The dotted lines are examples of Î (0)

unun (r/z) ∝
Dunun (r/z) in Eq. (12c). They reproduce Duu � 0 and Du2u2 � 0 in
Figs. 2(c) and 4(c). As for integrations of Iunun − Î (0)

unun in Eq. (12b)
and of Iεε in Eq. (14b), the gray areas are examples to reproduce
Cuu(r/z), Cu2u2 (r/z), and Cεε (r/z) in Figs. 2(c), 4(c), and 6(c).

By using ζ = z/he and hence dζ/ζ = −dhe/he, we rewrite
Eq. (11a) as a function of z/δ and r/z,

〈un(x, z)um(x + r, z)〉c

un+m
τ

= Ne

∫ 1

z/δ

dζ

ζ
Iunum

(
r

z
ζ , ζ

)
. (12a)

The free-slip wall condition implies that Iunum (rζ/z, ζ ) at ζ →
0 is not necessarily equal to 0. There is a function Î (0)

unum (r/z)
such that Iunum → Î (0)

unum . By rewriting Iunum as Iunum − Î (0)
unum +

Î (0)
unum in Eq. (12a) and by taking the limit z/δ → 0, we derive

Eq. (3a). Its functions Cunum and Dunum are

Cunum

(
r

z

)
= Ne

∫ 1

0

dζ

ζ

[
Iunum

(
r

z
ζ , ζ

)
− Î (0)

unum

(
r

z

)]
, (12b)

Dunum

(
r

z

)
= NeÎ (0)

unum

(
r

z

)
. (12c)

Because of l � 1 for Iunum (rζ/z, ζ ) − Î (0)
unum (r/z) ∝ ζ l at each

of r/z in the limit ζ → 0, the integration for Cunum in Eq. (12b)
is convergent. The divergent component has been removed as
Dunum in Eq. (12c). Likewise, at n = 1 and m = 0, Eq. (12)
could yield the law of Eq. (1a) for the mean velocity U (z)
[15],

The functional form of Eq. (3a) implies that it is always
affected by the turbulence thickness δ. Such an effect is
through largest eddies of he = δ, which contribute to all of
nonzero cumulants [19].

For the local rate of the energy dissipation ε, its cumulant
is given by

〈εn(x, z)εm(x + r, z)〉c(
u3

τ

/
z
)n+m = Ne

∫ δ

z

dhe

he
Iεnεm

(
r

he
,

z

he

)
. (13a)

Here Iεnεm is a cumulant of eddies of size he that has been
multiplied by a factor of (z/he)n+m. The cumulant itself is
related to moments Jεl εk and Jεl = Jεl ε0 . For example,

Iεε

(
r

he
,

z

he

)
= z2

h2
e

[
Jεε

(
r

he
,

z

he

)
− J2

ε

(
0,

z

he

)]
. (13b)

053103-7



MOURI, MORINAGA, YAGI, AND MORI PHYSICAL REVIEW E 101, 053103 (2020)

The moment Jεl εk is defined as

Jεl εk

(
r

he
,

z

he

)
=

∫∫
dxe

he

dye

he
f l
ε

(
x − xe

he

)
f k
ε

(
x + r − xe

he

)
.

(13c)
We use ζ = z/he to rewrite Eq. (13a),

〈εn(x, z)εm(x + r, z)〉c(
u3

τ

/
z
)n+m = Ne

∫ 1

z/δ

dζ

ζ
Iεnεm

(
r

z
ζ , ζ

)
. (14a)

Since Iεnεm has a factor of (z/he)n+m = ζ n+m with n + m �
1 as in the case of Eq. (13b), the integration of Eq. (14a) is
convergent even in the limit z/δ → 0. Thus, Eq. (14a) yields
Eq. (3b). Its function Cεnεm is

Cεnεm

(
r

z

)
= Ne

∫ 1

0

dζ

ζ
Iεnεm

(
r

z
ζ , ζ

)
. (14b)

That at n = 1 and m = 0 corresponds to the law of Eq. (1c)
for the average 〈ε(z)〉.

B. Implication for attached eddies

By utilizing Duu(0) = Du2 (0) and Du2u2 (0) = Du4 (0), we
constrain the value of Ne. From Eq. (12c),

Du4 (0)

Ne
+ 2D2

u2 (0)

N2
e

= Î (0)
u4 (0) + 2

[
Î (0)
u2 (0)

]2 � 0. (15a)

This is because Î (0)
u4 (0) and Î (0)

u2 (0) are cumulants of orders 4
and 2, i.e., 〈α4〉c + 2〈α2〉2

c = 〈(α − 〈α〉)4〉 − 〈(α − 〈α〉)2〉2 =
〈[(α − 〈α〉)2 − 〈(α − 〈α〉)2〉]2〉 � 0. Then,

Ne � −2D2
u2 (0)

Du4 (0)
if Du4 (0) < 0. (15b)

The results for Du2 (0) and Du4 (0) in Table I yield Ne � 0.6.
Here Ne serves as a number of attached eddies of size he per
each volume of h3

e . It is thereby inferred that the eddies are
rather sparse so that those of similar sizes do not overlap one
another, although each of them contains many smaller eddies.

To explain Cuu, Duu, Cu2u2 , Du2u2 , and Cεε observed in
Figs. 2(c), 4(c), and 6(c), we discuss the likely shapes of Iuu,
Iu2u2 , and Iεε. They are illustrated schematically in Figs. 7(b)–
7(d).

The functions Cuu, Cu2u2 , and Cεε in Eqs. (12b) and (14b)
are due to eddies of wall-normal sizes he that are comparable
to the observing distance z [5]. Since those in Figs. 2(c), 4(c),
and 6(c) are persistent up to almost the same separation of
r/z � 101, the streamwise to wall-normal size ratio of an eddy
is about 101.

The functions Duu and Du2u2 in Eq. (12c) are due to wall-
adjacent portions of the eddies [5]. Since those in Figs. 2(c)
and 4(c) are again persistent up to r/z � 101, the streamwise
size of such a portion is proportional to the distance z.

From the shapes of Cu2u2 and Du2u2 observed in Fig. 4(c),
we expect Iu2u2 < 0 for all pairs of r/he and z/he (see Fig. 7).
The sub-Gaussianity of the fluctuations u, i.e., 〈u4〉c < 0 in
Fig. 1(d), extends over the entire ranges of streamwise sepa-
rations r and of wall-normal distances z in each of the eddies.

The function Cεε in Fig. 6(c) differs between the cases
of U∞ = 6 and 12 m s−1 at r � 30η (dotted arrows). This
dissipative range is where the attached-eddy hypothesis holds

no longer [11,18]. From Eq. (10), the Kolmogorov length
η is obtained as (ν3/εe)1/4 ∝ (ν/uτ )3/4h1/4

e , which is not
proportional to the eddy size he. To describe motions in
the dissipative range, we require some other class of small
eddies, e.g., vortex tubes [22,25,32], albeit not essential to
statistics like 〈un(x, z)um(x + r, z)〉c that are almost constant
there (Figs. 2 and 4).

VI. CONCLUDING REMARKS

For the constant-flux sublayer of wall turbulence, the log-
arithmic scaling of 〈un(x, z)um(x + r, z)〉c in Eq. (3a) and the
nonlogarithmic scaling of 〈εn(x, z)εm(x + r, z)〉c in Eq. (3b)
have been studied experimentally. We have done experiments
of boundary layers and have obtained those two-point cumu-
lants at several distances z from the wall (Sec. III). The results
in Figs. 2–6 are consistent with Eq. (3a) at n = m = 1 and 2
as well as with Eq. (3b) at n = m = 1 in the inertial and the
energy-containing ranges of the separations r (Sec. IV).

The mathematical reason for such a scaling law is that
the constant-flux sublayer has only two local parameters, i.e.,
the distance z and the friction velocity uτ . Under Galilean
invariance, only laws for cumulants are extended systemati-
cally from the law of Eq. (1a) for the mean velocity U (z).
The logarithmic or nonlogarithmic character of the scaling is
determined by a condition at the wall surface (Sec. II). Even if
those two points lie in the y or z direction [11], we could rely
on the same reasoning.

Having confirmed the scaling laws of Eq. (3), we have
related them to the attached eddies of Townsend [5,11]. Since
the eddy number Ne is rather small, eddies of each size he

do not overlap one another. The streamwise size of an eddy
is about ten times its wall-normal size he. Within the indi-
vidual eddies, the streamwise fluctuations u are sub-Gaussian
(Sec. V).

These characteristics of the attached eddies might have
been optimized to maximize the momentum flux ρ〈−uw〉.
Actually, from recent applications of variational calculus to
convective systems [37,38], it has been inferred that their scal-
ing laws and eddy structures are optimal for their heat transfer.
Such a study is equally desired for momentum transfer in wall
turbulence.

It is also desired to study cases other than the boundary
layers. As noted in Sec. I, among various configurations of
the wall turbulence, cu2 = Cu2 (0) of Eq. (1b) is not common
[4,6–10]. Then, Cunum (r/z) of Eq. (3a) and possibly Cεnεm (r/z)
of Eq. (3b) are not universal. Nevertheless, since du2 = Du2 (0)
is common, Dunum (r/z) is expected to be universal. The reason
would be that only Dunum is determined locally in the constant-
flux sublayer (Sec. II).

Thus far, we have studied two-point cumulants, which are
useful if wall turbulence is modeled as a superposition of
finite-size motions like those of the attached eddies. Although
it is usual to study energy spectra [18], their wavelengths do
not correspond to any particular size of the individual motions
[19].

Finally, we remark on the turbulence thickness δ. Wall
turbulence is known to include long organized structures
with streamwise lengths that exceed more than ten times the
thickness δ [34,39]. The ratio r/δ has accordingly been used
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FIG. 8. Same as in Fig. 1 but for (a) 〈u3(z)〉c = 〈u3(z)〉, (b) 〈u5(z)〉c = 〈u5(z)〉 − 10〈u3(z)〉〈u2(z)〉, (c) 〈u6(z)〉c = 〈u6(z)〉 −
15〈u4(z)〉〈u2(z)〉 − 10〈u3(z)〉2 + 30〈u2(z)〉3, (d) 〈u7(z)〉c = 〈u7(z)〉 − 21〈u5(z)〉〈u2(z)〉 − 35〈u4(z)〉〈u3(z)〉 + 210〈u3(z)〉〈u2(z)〉2, and (e)
〈u8(z)〉c = 〈u8(z)〉 − 28〈u6(z)〉〈u2(z)〉 − 56〈u5(z)〉〈u3(z)〉 − 35〈u4(z)〉2 + 420〈u4(z)〉〈u2(z)〉2 + 560〈u3(z)〉2〈u2(z)〉 − 630〈u2(z)〉4 nondimen-
sionalized with use of uτ . The solid lines are regression fits of Eq. (3a).

as a parameter of two-point statistics [34,35]. However, in our
results and in some others [17,19], those structures are not
discernible. They are meandering so that their total lengths
do not appear in one-dimensional correlations and spectra.
Furthermore, the structures lie essentially away from the wall
and do not affect any law of the constant-flux sublayer at least
at z/δ → 0 [18]. We have considered such asymptotic laws
alone (see also Appendix B). Given the limit z/δ → 0, since
the distance z is always not equal to 0, r/δ does not deserve to
be a parameter. The true nondimensional parameters are r/z
and δ/z as demonstrated here for cases of the scaling laws of
Eq. (3).
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APPENDIX A: OTHER LOGARITHMIC LAWS

Figure 8 shows one-point velocity cumulants 〈un〉c at n = 3
and 5 to 8 [1,13]. Those for z/δ99 � 0.10 are not included
because statistical errors are too large owing to the roughness
of the wall surface (see Sec. IV). Within the constant-flux
sublayer from z/δ99 � 0.14 to 0.28 (filled symbols), we find
that the cumulants obey the logarithmic laws of 〈un(z)〉c/un

τ =
Cun (0) + Dun (0) ln(δ99/z), i.e., Eq. (3a) at m = 0. Their pa-
rameters are summarized in Table II. Between the cases of
U∞ = 6 and 12 m s−1, the values are consistent within ±2σ

errors.
These logarithmic laws offer mutually independent infor-

mation about non-Gaussianity of the turbulence. If it were
exactly Gaussian, we would have 〈un〉c ≡ 0 at n � 3 [1,13].
The same scaling is expected for the corresponding two-point
cumulants, e.g., 〈u3(x, z)u3(x + r, z)〉c and 〈u4(x, z)u4(x +
r, z)〉c.

APPENDIX B: ASYMPTOTIC EXPANSION

Throughout our study, we have taken the limit z/δ → 0
and thereby invoked a sublayer where the momentum flux
ρ〈−uw〉 is constant at a value of ρu2

τ . This constant-flux

sublayer is yet wide in units of ν/uτ , i.e., ν/uτ 
 z 
 δ, at
a high Reynolds number δuτ /ν � 1.

If the limit is not taken, 〈−uw〉 is not a constant. For
example, in pipes and channels, 〈−uw〉 varies linearly with
z/δ [1]. A similar but nonlinear variation is expected for
boundary layers. We show that the logarithmic law of Eq. (3a)
and the nonlogarithmic law of Eq. (3b) are not exact there.
That is, for a study of such a scaling law, the constant-flux
sublayer in the limit z/δ → 0 is an essential notion.

First, we consider 〈uw(z)〉c/u2
τ = 〈uw(z)〉/u2

τ . The predic-
tion of the attached-eddy hypothesis is like those in Sec. V,

〈uw(z)〉c

u2
τ

= Ne

∫ 1

z/δ

dζ

ζ
Iuw(0, ζ ). (B1a)

Here Iuw is defined in the same manner as for Iunum in Eq. (11).
The condition w = 0 at z = 0 implies Iuw → 0 at ζ = z/he →
0 [5]. With use of some functions Î (l )

uw, we expand Iuw in a
Maclaurin series as

Iuw

(
r

z
ζ , ζ

)
=

∞∑
l=1

Î (l )
uw

(
r

z

)
ζ l

l!
. (B1b)

TABLE II. Parameters Cun (0) and Dun (0) of Eq. (3a) for U∞ = 6
and 12 m s−1. The uncertainties are ±2σ errors.

U∞ = 6 m s−1 U∞ = 12 m s−1

Cu3 (0) −2.17 ± 0.33 −1.99 ± 0.34
Du3 (0) 0.64 ± 0.13 0.60 ± 0.13
Cu5 (0) 7.35 ± 4.13 5.35 ± 5.11
Du5 (0) 3.75 ± 1.58 4.04 ± 1.97
Cu6 (0) = Cu3u3 (0) −74.4 ± 24.6 −63.4 ± 23.5
Du6 (0) = Du3u3 (0) 79.5 ± 9.8 71.7 ± 9.2
Cu7 (0) 82 ± 117 122 ± 151
Du7 (0) −255 ± 46 −255 ± 59
Cu8 (0) = Cu4u4 (0) 2790 ± 950 2460 ± 910
Du8 (0) = Du4u4 (0) −2260 ± 380 −2070 ± 350

053103-9



MOURI, MORINAGA, YAGI, AND MORI PHYSICAL REVIEW E 101, 053103 (2020)

The integration of Eq. (B1a) is thus convergent at z/δ → 0,

〈uw(z)〉c

u2
τ

→ cuw = Ne

∫ 1

0

dζ

ζ
Iuw(0, ζ ). (B1c)

Being analogous to Eq. (1c), this is a scaling law. We impose
cuw = −1 so as to be consistent with 〈−uw〉 = u2

τ [5]. How-
ever, if the limit z/δ → 0 is not taken, Eq. (B1a) is retained as
follows [15]:

〈uw(z)〉c

u2
τ

= cuw − Ne

∫ z/δ

0

dζ

ζ
Iuw(0, ζ )

= cuw −
∞∑

l=1

NeÎ (l )
uw(0)

(z/δ)l

l!l
. (B1d)

The residual terms of ∝ (z/δ)l correspond to the aforemen-
tioned variation of 〈−uw〉. As for pipes and channels, we need
Î (1)
uw (0) �= 0 and Î (2)

uw (0) = Î (3)
uw (0) = · · · = 0. Since these are

not necessarily equal to 0 in boundary layers, the significance
of each of the terms is likely to depend on the configuration
of the flow.

Then, we consider 〈un(x, z)um(x + r, z)〉c/un+m
τ in Eq. (3a),

which has been obtained from Iunum in Eq. (12). Because of
u �= 0 at z = 0, the Maclaurin series of Iunum has a term at l =
0 for Î (0)

unum ,

Iunum

(
r

z
ζ , ζ

)
=

∞∑
l=0

Î (l )
unum

(
r

z

)
ζ l

l!
. (B2a)

If the limit z/δ → 0 is not taken, Eq. (12a) is retained as

〈un(x, z)um(x + r, z)〉c

un+m
τ

= Cunum

(
r

z

)
+ Dunum

(
r

z

)
ln

(
δ

z

)

−
∞∑

l=1

NeÎ (l )
unum

(
r

z

)
(z/δ)l

l!l
. (B2b)

We have defined Cunum in Eq. (12b) and Dunum ∝ Î (0)
unum in

Eq. (12c). Since Eq. (B2b) is not exactly logarithmic, it is
concluded that the logarithmic law of Eq. (3a) holds only
asymptotically in the limit z/δ → 0 of the constant-flux sub-
layer.

The same is true for 〈εn(x, z)εm(x + r, z)〉c/(u3
τ /z)n+m in

Eq. (3b). If the limit z/δ → 0 is not taken, we retain residual
terms of ∝ (z/δ)l . Such a term might explain the variation
of 〈ε(z)〉c/(u3

τ /z) in Fig. 1(e), which is not consistent with
Eq. (3b) or (1c). We would need to study the constant-flux
sublayer obtained at the smaller values of z/δ in a laboratory
or in a field.

Finally, these results are reconsidered with our theory of
Sec. II. If the limit z/δ → 0 is not taken, z/δ is retained as a
parameter in Eq. (7c),

∂

∂z
ln〈eisα+itβ〉 = −ϕ(s, t, r/z, z/δ)

z
. (B3a)

Here z/δ is independent of s, t , and r/z but is not of z
because δ is a constant (Sec. I). By utilizing the Maclaurin
series of ϕ(n,m,0,0)(0, 0, r/z, z/δ), the corresponding extension
of Eq. (7d) is written as

∂

∂z
〈αnβm〉c = −

∞∑
l=0

ϕ(n,m,0,l )(0, 0, r/z, 0)

in+mz

(z/δ)l

l!
. (B3b)

The integration of Eq. (B3b) leads to 〈αnβm〉c. However,
there are again residual terms of ∝ (z/δ)l . For the case
of α = [U (z) + u(x, z)]/uτ and β = [U (z) + u(x + r, z)]/uτ

in Eq. (4), we expect that ϕ(n,m,0,l )(0, 0, r/z, 0)/in+m in
Eq. (B3b) is identical to NeÎ (l )

unum (r/z) in Eq. (B2b). A similar
identity would hold even if other quantities are used for the
variables α and β.

[1] A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics
(MIT Press, Cambridge, MA, 1971), Vol. 1.

[2] H. B. Squire, London, Edinburgh Dublin Philos. Mag. J. Sci.
39, 1 (1948).

[3] L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon,
London, 1959).

[4] I. Marusic, J. P. Monty, M. Hultmark, and A. J. Smits, J. Fluid
Mech. 716, R3 (2013).

[5] A. A. Townsend, The Structure of Turbulent Shear Flow, 2nd
ed. (Cambridge University Press, Cambridge, UK, 1976).

[6] M. Hultmark, M. Vallikivi, S. C. C. Bailey, and A. J. Smits,
Phys. Rev. Lett. 108, 094501 (2012).

[7] M. Hultmark, M. Vallikivi, S. C. C. Bailey, and A. J. Smits,
J. Fluid Mech. 728, 376 (2013).

[8] M. Vallikivi, M. Hultmark, and A. J. Smits, J. Fluid Mech. 779,
371 (2015).

[9] M. Samie, I. Marusic, N. Hutchins, M. K. Fu, Y. Fan, M.
Hultmark, and A. J. Smits, J. Fluid Mech. 851, 391 (2018).

[10] R. Örlü, T. Fiorini, A. Segalini, G. Bellani, A. Talamelli, and
P. H. Alfredsson, Phil. Trans. R. Soc. A 375, 20160187 (2017).

[11] H. Mouri, J. Fluid Mech. 821, 343 (2017).
[12] M. Lee and R. D. Moser, J. Fluid Mech. 774, 395 (2015).

[13] M. Kendall and A. Stuart, The Advanced Theory of Statistics,
4th ed. (Griffin, London, 1977), Vol. 1.

[14] M. B. Cook, Biometrika 38, 179 (1951).
[15] A. E. Perry and M. S. Chong, J. Fluid Mech. 119, 173 (1982).
[16] P. A. Davidson, T. B. Nickels, and P.-Å. Krogstad, J. Fluid

Mech. 550, 51 (2006).
[17] Y. Mizuno, T. Yagi, and K. Mori, Fluid Dyn. Res. 50, 045513

(2018).
[18] I. Marusic and J. P. Monty, Annu. Rev. Fluid Mech. 51, 49

(2019).
[19] H. Mouri, T. Morinaga, and S. Haginoya, Phys. Fluids 31,

035103 (2019).
[20] M. Oberlack, J. Fluid Mech. 427, 299 (2001).
[21] G. I. Taylor, Proc. R. Soc. London A 151, 421 (1935).
[22] T. Ishihara, T. Gotoh, and Y. Kaneda, Annu. Rev. Fluid Mech.

41, 165 (2009).
[23] S. Leonardi, P. Orlandi, R. J. Smalley, L. Djenidi, and R. A.

Antonia, J. Fluid Mech. 491, 229 (2003).
[24] A. Praskovsky and S. Oncley, Fluid Dyn. Res. 21, 331

(1997).
[25] H. Mouri, A. Hori, and Y. Kawashima, Phys. Fluids 19, 055101

(2007).

053103-10

https://doi.org/10.1080/14786444808561162
https://doi.org/10.1080/14786444808561162
https://doi.org/10.1080/14786444808561162
https://doi.org/10.1080/14786444808561162
https://doi.org/10.1017/jfm.2012.511
https://doi.org/10.1017/jfm.2012.511
https://doi.org/10.1017/jfm.2012.511
https://doi.org/10.1017/jfm.2012.511
https://doi.org/10.1103/PhysRevLett.108.094501
https://doi.org/10.1103/PhysRevLett.108.094501
https://doi.org/10.1103/PhysRevLett.108.094501
https://doi.org/10.1103/PhysRevLett.108.094501
https://doi.org/10.1017/jfm.2013.255
https://doi.org/10.1017/jfm.2013.255
https://doi.org/10.1017/jfm.2013.255
https://doi.org/10.1017/jfm.2013.255
https://doi.org/10.1017/jfm.2015.273
https://doi.org/10.1017/jfm.2015.273
https://doi.org/10.1017/jfm.2015.273
https://doi.org/10.1017/jfm.2015.273
https://doi.org/10.1017/jfm.2018.508
https://doi.org/10.1017/jfm.2018.508
https://doi.org/10.1017/jfm.2018.508
https://doi.org/10.1017/jfm.2018.508
https://doi.org/10.1098/rsta.2016.0187
https://doi.org/10.1098/rsta.2016.0187
https://doi.org/10.1098/rsta.2016.0187
https://doi.org/10.1098/rsta.2016.0187
https://doi.org/10.1017/jfm.2017.248
https://doi.org/10.1017/jfm.2017.248
https://doi.org/10.1017/jfm.2017.248
https://doi.org/10.1017/jfm.2017.248
https://doi.org/10.1017/jfm.2015.268
https://doi.org/10.1017/jfm.2015.268
https://doi.org/10.1017/jfm.2015.268
https://doi.org/10.1017/jfm.2015.268
https://doi.org/10.1093/biomet/38.1-2.179
https://doi.org/10.1093/biomet/38.1-2.179
https://doi.org/10.1093/biomet/38.1-2.179
https://doi.org/10.1093/biomet/38.1-2.179
https://doi.org/10.1017/S0022112082001311
https://doi.org/10.1017/S0022112082001311
https://doi.org/10.1017/S0022112082001311
https://doi.org/10.1017/S0022112082001311
https://doi.org/10.1017/S0022112005008001
https://doi.org/10.1017/S0022112005008001
https://doi.org/10.1017/S0022112005008001
https://doi.org/10.1017/S0022112005008001
https://doi.org/10.1088/1873-7005/aacb92
https://doi.org/10.1088/1873-7005/aacb92
https://doi.org/10.1088/1873-7005/aacb92
https://doi.org/10.1088/1873-7005/aacb92
https://doi.org/10.1146/annurev-fluid-010518-040427
https://doi.org/10.1146/annurev-fluid-010518-040427
https://doi.org/10.1146/annurev-fluid-010518-040427
https://doi.org/10.1146/annurev-fluid-010518-040427
https://doi.org/10.1063/1.5063545
https://doi.org/10.1063/1.5063545
https://doi.org/10.1063/1.5063545
https://doi.org/10.1063/1.5063545
https://doi.org/10.1017/S0022112000002408
https://doi.org/10.1017/S0022112000002408
https://doi.org/10.1017/S0022112000002408
https://doi.org/10.1017/S0022112000002408
https://doi.org/10.1098/rspa.1935.0158
https://doi.org/10.1098/rspa.1935.0158
https://doi.org/10.1098/rspa.1935.0158
https://doi.org/10.1098/rspa.1935.0158
https://doi.org/10.1146/annurev.fluid.010908.165203
https://doi.org/10.1146/annurev.fluid.010908.165203
https://doi.org/10.1146/annurev.fluid.010908.165203
https://doi.org/10.1146/annurev.fluid.010908.165203
https://doi.org/10.1017/S0022112003005500
https://doi.org/10.1017/S0022112003005500
https://doi.org/10.1017/S0022112003005500
https://doi.org/10.1017/S0022112003005500
https://doi.org/10.1016/S0169-5983(97)86593-8
https://doi.org/10.1016/S0169-5983(97)86593-8
https://doi.org/10.1016/S0169-5983(97)86593-8
https://doi.org/10.1016/S0169-5983(97)86593-8
https://doi.org/10.1063/1.2720827
https://doi.org/10.1063/1.2720827
https://doi.org/10.1063/1.2720827
https://doi.org/10.1063/1.2720827


LOGARITHMIC AND NONLOGARITHMIC SCALING LAWS … PHYSICAL REVIEW E 101, 053103 (2020)

[26] D. J. C. Dennis and T. B. Nickels, J. Fluid Mech. 614, 197
(2008).

[27] J. C. del Álamo and J. Jiménez, J. Fluid Mech. 640, 5
(2009).

[28] J. Cleve, M. Greiner, and K. R. Sreenivasan, Europhys. Lett. 61,
756 (2003).

[29] P. R. Bevington and D. K. Robinson, Data Reduction and Error
Analysis for the Physical Sciences, 3rd ed. (McGraw-Hill, New
York, 2003).

[30] H. H. Fernholz and P. J. Finley, Prog. Aerosp. Sci. 32, 245
(1996).

[31] C. Meneveau and I. Marusic, J. Fluid Mech. 719, R1 (2013).
[32] K. R. Sreenivasan and R. A. Antonia, Annu. Rev. Fluid Mech.

29, 435 (1997).

[33] B. Ganapathisubramani, N. Hutchins, W. T. Hambleton, E. K.
Longmire, and I. Marusic, J. Fluid Mech. 524, 57 (2005).

[34] J. P. Monty, J. A. Stewart, R. C. Williams, and M. S. Chong,
J. Fluid Mech. 589, 147 (2007).

[35] D. J. C. Dennis and T. B. Nickels, J. Fluid Mech. 673, 180
(2011).

[36] H. Mouri, M. Takaoka, A. Hori, and Y. Kawashima, Phys.
Fluids 18, 015103 (2006).

[37] P. Hassanzadeh, G. P. Chini, and C. R. Doering, J. Fluid Mech.
751, 627 (2014).

[38] S. Motoki, G. Kawahara, and M. Shimizu, J. Fluid Mech. 851,
R4 (2018).

[39] D. J. C. Dennis and T. B. Nickels, J. Fluid Mech. 673, 218
(2011).

053103-11

https://doi.org/10.1017/S0022112008003352
https://doi.org/10.1017/S0022112008003352
https://doi.org/10.1017/S0022112008003352
https://doi.org/10.1017/S0022112008003352
https://doi.org/10.1017/S0022112009991029
https://doi.org/10.1017/S0022112009991029
https://doi.org/10.1017/S0022112009991029
https://doi.org/10.1017/S0022112009991029
https://doi.org/10.1209/epl/i2003-00298-x
https://doi.org/10.1209/epl/i2003-00298-x
https://doi.org/10.1209/epl/i2003-00298-x
https://doi.org/10.1209/epl/i2003-00298-x
https://doi.org/10.1016/0376-0421(95)00007-0
https://doi.org/10.1016/0376-0421(95)00007-0
https://doi.org/10.1016/0376-0421(95)00007-0
https://doi.org/10.1016/0376-0421(95)00007-0
https://doi.org/10.1017/jfm.2013.61
https://doi.org/10.1017/jfm.2013.61
https://doi.org/10.1017/jfm.2013.61
https://doi.org/10.1017/jfm.2013.61
https://doi.org/10.1146/annurev.fluid.29.1.435
https://doi.org/10.1146/annurev.fluid.29.1.435
https://doi.org/10.1146/annurev.fluid.29.1.435
https://doi.org/10.1146/annurev.fluid.29.1.435
https://doi.org/10.1017/S0022112004002277
https://doi.org/10.1017/S0022112004002277
https://doi.org/10.1017/S0022112004002277
https://doi.org/10.1017/S0022112004002277
https://doi.org/10.1017/S002211200700777X
https://doi.org/10.1017/S002211200700777X
https://doi.org/10.1017/S002211200700777X
https://doi.org/10.1017/S002211200700777X
https://doi.org/10.1017/S0022112010006324
https://doi.org/10.1017/S0022112010006324
https://doi.org/10.1017/S0022112010006324
https://doi.org/10.1017/S0022112010006324
https://doi.org/10.1063/1.2166455
https://doi.org/10.1063/1.2166455
https://doi.org/10.1063/1.2166455
https://doi.org/10.1063/1.2166455
https://doi.org/10.1017/jfm.2014.306
https://doi.org/10.1017/jfm.2014.306
https://doi.org/10.1017/jfm.2014.306
https://doi.org/10.1017/jfm.2014.306
https://doi.org/10.1017/jfm.2018.557
https://doi.org/10.1017/jfm.2018.557
https://doi.org/10.1017/jfm.2018.557
https://doi.org/10.1017/jfm.2018.557
https://doi.org/10.1017/S0022112010006336
https://doi.org/10.1017/S0022112010006336
https://doi.org/10.1017/S0022112010006336
https://doi.org/10.1017/S0022112010006336

