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Unsteady motion of a perfectly slipping sphere
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An integral expression for the translational velocity of a perfectly slipping spherical particle under a time-
dependent applied force in unsteady Stokes flow is derived. For example, when the ratio of particle density to
fluid density is small, our analysis pertains to an inviscid bubble in a viscous fluid. We determine an explicit
form of the particle velocity under an impulsive force, wherefrom the velocity autocorrelation function and
mean-squared displacement of a perfectly slipping sphere undergoing Brownian motion are obtained. The above
results are contrasted against the time-dependent diffusion of a rigid sphere with no hydrodynamic slip. Finally,
the thermal force power spectral density is analytically calculated for a diffusing sphere with arbitrary slip length.
We suggest this quantity to be suitable to infer slip length from the measurement of nondiffusive Brownian
motion.
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I. INTRODUCTION

Modeling the unsteady motion of small objects in a vis-
cous fluid is relevant to contaminant dispersion [1], particle
clustering in turbulence [2], micro-organism movement [3],
and electrophoresis [4]. The motion of a rigid sphere to which
fluid perfectly adheres (i.e., the no-slip condition is obeyed)
is described at zero Reynolds number by the so-called Basset-
Boussinesq-Oseen (BBO) equation [5]

4

3
πa3ρb

dU (t )

dt
= − 6πμaU (t ) − 2

3
πρa3 dU (t )

dt

−
∫ t

−∞
K (t − t ′)

dU (t ′)
dt ′ dt ′ + FA(t ), (1)

where

K (t ) =
{

6πμa2√
πtν

for t � 0,

0 for t < 0.
(2)

In (1) and (2), a is the particle radius, ρb is the particle
density, ρ is the fluid density, μ is the dynamic viscosity
and ν = μ/ρ is the kinematic viscosity, U (t ) is the particle
velocity, t is time, and FA(t ) is an externally applied force.
The BBO equation is just Newton’s second law of motion for
the particle. The left-hand side in (1) is the particle inertia,
which is balanced by the hydrodynamic force (the first three
terms on the right-hand side) and the applied force. The first
term on the right-hand side is the quasisteady Stokes drag. The
next two terms originate from unsteady effects in the flow. The
second term on the right-hand side is the acceleration reaction
on the particle due to the inviscid pressure disturbance caused
by its changing velocity. The Basset history force is described
by the integral expression in (1) and originates from the
diffusion of vorticity away from the particle. The memory
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kernel K (t ) acts to weigh the importance of the history of the
particle motion dU (t )/dt on its current velocity.

The BBO equation is a first-order integrodifferential equa-
tion for the time-dependent velocity of a spherical, no-slip
particle under an arbitrary time-dependent force. Due to the
nonlocal nature of the Basset force, numerical solutions are
generally sought out, as analytical solutions can be obtained
only for sufficiently simple forms of FA(t ). Numerical dif-
ficulties in solving (1) are due to the history integral: K (t )
is integrably singular as t → 0, and the integration must be
calculated throughout the entire history of motion, which
presents storage issues [1]. The generalization of the BBO
equation to account for ambient flows is known as the Maxey-
Riley (MR) equation, which is a nonlinear equation, since the
instantaneous force on the particle depends on its position in
the flow, which is unknown a priori [6].

While there has been much work on how rigid, no-slip
spherical particles are transported in unsteady flows, there
is a lack of comparative knowledge for bubbles, drops, and
slipping spheres. The key difference is that a rigid sphere is
subject to the no-slip boundary condition, while the surface
of a drop or bubble is mobile and a slipping sphere admits
hydrodynamic slip. The equivalent to the BBO equation for a
perfectly slipping sphere is [7]

4

3
πa3ρb

dU (t )

dt
= − 4πμaU (t ) − 2

3
πρa3 dU (t )

dt

−
∫ t

−∞
G(t − t ′)

dU (t ′)
dt ′ dt ′ + FA(t ), (3)

where

G(t ) =
{

8πμa e9tν/a2
erfc(3

√
tν/a2) for t � 0,

0 for t < 0.
(4)

Note, by “perfectly slipping” we mean that the surface of
the sphere cannot support a shear stress. Here, erfc is the
complementary error function. The memory kernel G(t ) is
different from that of a no-slip sphere: It is bounded as t → 0,
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while K (t ) is unbounded. Note, both G(t ) and K (t ) decay as
t−1/2 as t → ∞. Thus, we expect significant differences in the
particle motion on times small compared to the momentum
diffusion time a2/ν. For a particle with radius a = 1 μm
in water with kinematic viscosity ν = 10−6 m2/s, we have
a2/ν ≈ 10−6 s. Thus, these differences would be important
for particle motion on the microsecond timescale, or actuated
by external forces that vary at frequencies of O(MHz). For
ρb/ρ → 0, (3) corresponds to an inviscid bubble [8], and for
ρb/ρ = 1, (3) corresponds to a neutrally buoyant sphere with
perfect slip [9].

In this article, we calculate the time-dependent velocity of
a perfectly slipping sphere under an arbitrary applied force.
That is, we will invert (3) to determine an integral expression
for the time-dependent velocity in terms of the history of the
applied force. We derive an explicit expression for the time-
dependent velocity under a force impulse. This is then used
to derive the velocity autocorrelation function (VACF) and
mean-squared displacement (MSD) of a particle undergoing
nondiffusive Brownian motion.

In Sec. II, an integral expression for the time-dependent
velocity of a perfectly slipping sphere is derived. In Sec. III,
we calculate the VACF and MSD for a perfectly slipping
sphere and compare to a no-slip sphere. In Sec. IV, we
calculate the thermal force power spectral density (FPSD) of
a particle with arbitrary slip length. A conclusion is offered in
Sec. V.

II. CALCULATION OF THE TIME-DEPENDENT
VELOCITY

Consider a perfectly slipping sphere under a force FA(t )
that is applied at t = 0 (and zero beforehand). We thus pro-
ceed by taking the Laplace transform of (3), which yields

4

3
πa3ρbsŨ (s) = − 4πμaŨ (s) − 2

3
πρa3sŨ (s)

− sG̃(s)Ũ (s) + F̃A(s), (5)

where s is the Laplace transform variable and the tilde dec-
oration denotes a Laplace transformed quantity. The Laplace
transform of the memory kernel is

G̃(s) = 8πμa

[
9ν

a2

(
sa2

9ν
+

√
sa2

9ν

)]−1

. (6)

Combining (5) and (6) gives

Ũ (ŝ) = 1

6πμaγ

F̃A(ŝ)(1 + ŝ1/2)

ŝ3/2 + ŝ + 2γ −1ŝ1/2 + 2
3γ −1

, (7)

where ŝ = sa2/9ν and γ = 1 + 2ρb/ρ. The three roots of the
denominator of the second fraction in (7) are

η = − 1
3 − α + β, (8)

ζ = − 1
3 + 1

2 (1 + i
√

3)α − 1
2 (1 − i

√
3)β, (9)

ζ ∗ = − 1
3 + 1

2 (1 − i
√

3)α − 1
2 (1 + i

√
3)β, (10)

where η is real, ζ ∗ is the complex conjugate of ζ , i = √−1,
and

α = 21/3[−1 + 6γ −1]

3[−2 +
√

4 + 4(−1 + 6γ −1)3]1/3
, (11)

β = 1

3(21/3)
[−2 +

√
4 + 4(−1 + 6γ −1)3]1/3. (12)

We now factor the cubic in ŝ1/2 in the denominator of the
second fraction in (7) to obtain

Ũ (ŝ) = 1

6πμaγ

[
F̃A(ŝ)(1 + ŝ1/2)

(ŝ1/2 − η)(ŝ1/2 − ζ )(ŝ1/2 − ζ ∗)

]
. (13)

Next, (13) is separated into two fractions

Ũ (ŝ) = 1

6πμaγ

[
F̃A(ŝ)

(ŝ1/2 − η)(ŝ1/2 − ζ )(ŝ1/2 − ζ ∗)

+ ŝF̃A(ŝ) + FA(0) − FA(0)

ŝ1/2(ŝ1/2 − η)(ŝ1/2 − ζ )(ŝ1/2 − ζ ∗)

]
, (14)

where the numerator of the second fraction in (14) has FA(0)
added and subtracted for simplification purposes later. We
write (14) in shorthand as

Ũ (ŝ) = 1

6πμaγ
[F̃A(ŝ)M̃1(ŝ) + [ŝF̃A(ŝ) − FA(0)]M̃2(ŝ)

+ FA(0)M̃2(ŝ)], (15)

where

M̃1(ŝ) = [(ŝ1/2 − η)(ŝ1/2 − ζ )(ŝ1/2 − ζ ∗)]−1, (16)

and

M̃2(ŝ) = [ŝ1/2(ŝ1/2 − η)(ŝ1/2 − ζ )(ŝ1/2 − ζ ∗)]−1. (17)

We invert back to the time domain using the Laplace transform
identities [10]

L−1

[
1

ŝ1/2(ŝ1/2 + b)

]
= eb2 t̂ erfc(b

√
t̂ ) (18)

and

L−1

[
1

ŝ1/2 + b

]
= 1

(π t̂ )1/2
− beb2 t̂ erfc(b

√
t̂ ), (19)

where L−1 denotes the inverse Laplace transform and t̂ =
9tν/a2. Hence, the time-dependent velocity is

U (t̂ ) = 3

2πρa3γ

[∫ t̂

0
FA(τ )M1(t̂ − τ )dτ

+
∫ t̂

0

dFA(τ )

dτ
M2(t̂ − τ )dτ + FA(0)M2(t̂ )

]
(20)
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in which

M1(t̂ ) = 1

(η − ζ )(η − ζ ∗)

[
1

(π t̂ )1/2
+ ηeη2 t̂ erfc(−η

√
t̂ )

]

− 1

(η − ζ )(ζ − ζ ∗)

[
1

(π t̂ )1/2
+ ζeζ 2 t̂ erfc(−ζ

√
t̂ )

]

+ 1

(η − ζ ∗)(ζ − ζ ∗)

[
1

(π t̂ )1/2
+ ζ ∗eζ ∗2 t̂ erfc(−ζ ∗√t̂ )

]
,

(21)

and

M2(t̂ ) = 1

(η − ζ )(η − ζ ∗)

[
ηeη2 t̂ erfc(−η

√
t̂ )

]
− 1

(η − ζ )(ζ − ζ ∗)

[
ζeζ 2 t̂ erfc(−ζ

√
t̂ )

]
+ 1

(η − ζ ∗)(ζ − ζ ∗)

[
ζ ∗eζ ∗2 t̂ erfc(−ζ ∗√t̂ )

]
, (22)

and τ is a dimensionless integration variable. Using integra-
tion by parts and the fact that M2(0) = 0, (20) simplifies to

U (t̂ ) = 3

2πρa3γ

[ ∫ t̂

0
FA(τ )

(
M1(t̂ − τ )

−dM2(t̂ − τ )

dτ

)
dτ

]
, (23)

where

M1(t̂ ) − dM2(t̂ )

dτ
= η(η + 1)

(η − ζ )(η − ζ ∗)
eη2 t̂ erfc(−η

√
t̂ )

− ζ (ζ + 1)

(η − ζ )(ζ − ζ ∗)
eζ 2 t̂ erfc(−ζ

√
t̂ )

+ ζ ∗(ζ ∗ + 1)

(η − ζ ∗)(ζ − ζ ∗)
eζ ∗2 t̂ erfc(−ζ ∗√t̂ ).

(24)

Equation (23) gives the time-dependent velocity of a perfectly
slipping sphere as an integral of the history of the force it
has been subject to; the memory of that force is weighted by
the kernel (24). Unfortunately, the complexity of the kernel
means that (23) must, in general, be evaluated by a numerical
quadrature. An integral expression for the velocity of a no-slip
sphere analogous to (23) can be obtained from solution of
(1) [11], which also requires numerical evaluation in general.
In the next section we show that an analytical evaluation is
possible for an impulsive force, which is relevant to Brownian
motion and thus of particular practical value.

III. MOTION UNDER AN IMPULSIVE FORCE AND
APPLICATION TO NONDIFFUSIVE BROWNIAN MOTION

Hinch [12] demonstrated that the solution of the BBO
equation under an impulsive force of magnitude kT , where k
is Boltzmann’s constant, and T is the absolute temperature,
yields the time-dependent velocity autocorrelation function
(VACF) of a rigid, no-slip sphere. Let us denote the VACF
as R = R(t )I, where I is the identity tensor: Then the solution

of (1) under a force impulse FA(t ) = Mδ(t ), where M is a
constant vector of magnitude kT and δ(t ) is the Dirac delta
function, gives [12]

R(t ) = kT

2πa3ρ
(
5 − 8 ρb

ρ

)1/2

(
a2

ν

)1/2

× [
α+eα2

+t erfc(α+
√

t ) − α−eα2
−t erfc(α−

√
t )

]
, (25)

where

α± = 1

γ

( ν

a2

)1/2 3

2

[
3 ±

(
5 − 8

ρb

ρ

)1/2
]
. (26)

Here, at long times, tν/a2 → ∞, the VACF algebraically
decays as t−3/2. Alder and Wainwright saw this decay, or
“long-time tail,” using molecular dynamics simulations [13]
as well as numerical solutions to the Navier-Stokes equations
[14]. Comparatively, an incorrect exponential decay is pre-
dicted when neglecting unsteady forces, i.e., retaining only
the quasisteady drag in (1). Weitz et al. [15] used diffusing-
wave spectroscopy to experimentally observe this long-time
algebraic decay for an ensemble of particles. Their experi-
mental results for the time-dependent diffusivity show good
agreement with the theoretical result obtained from (25). Paul
and Pusey observed the long-time tail in Brownian motion
using photon correlation dynamic laser light scattering [16].
More recently, Kheifets et al. [17] and Franosch et al. [18]
have observed the long-time tail at the single-particle level
using optical tweezers.

From (23), the VACF of a perfectly slipping sphere under
a force impulse of magnitude kT is

R(t̂ ) = 3kT

2πρa3γ

[
η(η + 1)

(η − ζ )(η − ζ ∗)
eη2 t̂ erfc(−η

√
t̂ )

− ζ (ζ + 1)

(η − ζ )(ζ − ζ ∗)
eζ 2 t̂ erfc(−ζ

√
t̂ )

+ ζ ∗(ζ ∗ + 1)

(η − ζ ∗)(ζ − ζ ∗)
eζ ∗2 t̂ erfc(−ζ ∗√t̂ )

]
, (27)

which is plotted in Fig. 1. The long-time behavior of the
VACF is calculated using the asymptotic approximation for
the complex complementary error function

lim
z→∞ erfc(z) ∼ e−z2

zπ1/2

∞∑
n=0

(−1)n (2n)!

n!(4z2)n

for |arg(z)| < 3π/4, (28)

where z is a complex variable. Using the first three terms in
this series and substituting (28) into (27) yields

lim
t̂→∞

R(t ) = kT

12π3/2ρa3

[(
a2

νt

)3/2

+
(

a2

νt

)5/2(
ρb

ρ
− 1

)
+ O

[(
a2

νt

)3
]]

, (29)

the leading-order term is identical to the no-slip sphere case.
Physically, at long times momentum diffuses far enough away
that the boundary condition on the sphere is unimportant: Both
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FIG. 1. VACF of a rigid, neutrally buoyant no-slip and perfectly
slipping sphere, and an inviscid bubble vs dimensionless time t̂ ,
where t̂ = tν/a2.

a no-slip rigid sphere and perfectly slipping sphere appear as
an impulsive Stokeslet leading to an identical leading-order
decay of R(t ). The second term in (29) differs from that of a
no-slip sphere: Instead of (ρb/ρ − 1), the long-time asymp-
totic expansion of (25) has a coefficient of (4ρb/ρ − 7)/6.
Note, the leading-order decay of the angular VACF (scaling
as t−5/2) is sensitive to particle geometry [19]. Thus, it may
be that the angular VACF of a perfectly (or even partially)
slipping sphere is different at leading order to a no-slip sphere.

The short-time limit of the VACF is calculated using the
expansion

ez2
erfc(−z) ∼ 1 + 2z

π1/2
+ z2 + 4z3

3π1/2
+ · · · as z → 0.

(30)
Substituting the above into (27) yields

R(t̂ ) ∼ 3kT

2πρa3γ

[
1 − 2

γ
t̂ + 16

9π1/2

1

γ
t̂3/2 + · · ·

]
as t̂ → 0.

(31)
Note, the VACF of a no-slip sphere has a t̂1/2 contribution
at short times; evidently, the perfectly slipping sphere does
not. Physically, this occurs because the no-slip boundary
conditions results in a more efficient transfer of momentum
from the particle to the fluid; thus the VACF decays more
rapidly at short times for a rigid sphere.

When t̂ = 0, the VACF is

R(0) = kT
4
3πa3

(
ρb + 1

2ρ
) , (32)

which is kT divided by the sum of the particle mass and
the added mass. However, the equipartition theorem states
that properly R(0) = kT/( 4

3πa3ρb). The discrepancy lies in
our assumption that the fluid is incompressible. Relaxing the
assumption recovers the correct R(0) as shown by Zwanzig
and Bixon [20]. Specifically, compressible effects result in a
drop of R(0) from its proper initial value to that in (32) over
a duration that is comparable to the timescale required for a

10-3 10-2 10-1 100 101 102
10-3

10-2

10-1

100

FIG. 2. MSD of a neutrally buoyant no-slip sphere, neutrally
buoyant slipping sphere, and an inviscid bubble, where t̂ = tν/a2 and
D is the steady diffusivity.

sound wave to travel across the particle, i.e., a/c, where c
is the speed of sound. Importantly, this timescale is typically
much shorter than the momentum diffusion time, a2/ν. Thus,
it is a reasonable approximation to assume the fluid is incom-
pressible when calculating the unsteady momentum diffusion
from the impulsively forced particle.

Let the mean-squared displacement (MSD) of the particle
be x2(t )I. The MSD is defined in terms of the VACF by [15]

x2(t̂ ) = 2
∫ t̂

0
(t̂ − τ )R(τ )dτ. (33)

Substituting (27) into (33) yields

x2(t̂ )

2Dt̂
= 2

3

[
9

4t̂

(
3 − 2

ρb

ρ

)
+ 3

2
− 6√

π t̂

+ 1

t̂γ

{
(η + 1)

η3(η − ζ )(η − ζ ∗)
eη2 t̂ erfc(−η

√
t̂ )

− (ζ + 1)

ζ 3(η − ζ )(ζ − ζ ∗)
eζ 2 t̂ erfc(−ζ

√
t̂ )

+ (ζ ∗ + 1)

ζ ∗3(η − ζ ∗)(ζ − ζ ∗)
eζ ∗2 t̂ erfc(−ζ ∗√t̂ )

}]
, (34)

and the MSD is plotted in Fig. 2. Here, D = kT/4πμa, which
is the long-time diffusion coefficient of a perfectly slipping
sphere first calculated by Sutherland [21]. In that paper,
Sutherland also gave a formula for D at an arbitrary value
of the ratio of the slip length to particle radius. As this ratio
becomes small one recovers the familiar result D = kT/6πμa
usually attributed to Einstein in his celebrated 1905 paper on
Brownian motion [22]. In fact, Sutherland himself derived this
result one year earlier in 1904 [23] (albeit with an unfortunate
typographical error where k was replaced by the universal gas
constant). This has prompted some to rename the formula
D = kT/6πμa as the “Stokes-Einstein-Sutherland” [24] or
“Sutherland-Einstein” diffusivity [25].
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At long times, the MSD is from (34)

x2(t̂ )

2Dt̂
∼ 1 − 4√

π t̂
+ 3

2t̂

(
3 − 2

ρb

ρ

)
+ · · ·, (35)

with an algebraic error due to the long-time tail of the VACF.
The short-time limit of the MSD is from (34)

x2(t̂ )

2Dt̂
∼ 1

3γ
t̂ − 2

9γ 2
t̂2 + · · ·, (36)

corresponding to ballistic motion at leading order.

IV. THERMAL FORCE POWER SPECTRAL DENSITY OF A
PARTIALLY SLIPPING SPHERE

We now consider a rigid sphere over which fluid partially
slips. Let λ be the slip length. The equivalent to the BBO

equation for a partially slipping sphere is [26–28]

4

3
πa3ρb

dU (t )

dt
= − 6πμaW (λ)U (t ) − 2

3
πρa3 dU (t )

dt

−
∫ t

−∞
J (t − t ′)

dU (t )

dt
dt ′ + FA(t ), (37)

where the new memory kernel

J (t ) = H (λ)6πμa
(
e(H/W 2 )2tν/a2)

erfc

(
(H/W 2)

√
tν

a2

)
. (38)

We have also defined

W (λ) = 1 + 2λ/a

1 + 3λ/a
, and H (λ) = (1 + 2λ/a)2

λ/a(1 + 3λ/a)
. (39)

Following the same procedure as Sec. II, the frequency-
dependent velocity in the Laplace space is

Ũ (ŝ) = 3F̃A(ŝ)

2πμaγ (W 2/H )

[
1 + (W 2/H )ŝ1/2

ŝ3/2 + (H/W 2)ŝ + 9(H + W )γ −1ŝ1/2 + 9(H/W )γ −1

]
. (40)

The presence of the coefficients in (40) involving W and H
mean that an inversion of (40), while technically possible,
results in an expression that is far too lengthy to be of value.
Instead, we use (40) to analytically determine the thermal
force power spectral density (FPSD) of a partially slipping
sphere in Brownian motion. Mo et al. [29] recently numeri-
cally computed this FPSD and suggested it to be a suitable
quantity from which to infer slip length from measurement of
single-particle Brownian motion in an optical trap. The FPSD

is defined as [29]

SF (ω̂) = 4πkTR
( |F̃A(ω̂)|

|Ũ (ω̂)|
)

, (41)

where R denotes the real part and the term in the parentheses
is the Fourier transform of the time-dependent hydrodynamic
resistance. Here, ω̂ = ων/a2 is a normalized Fourier-space
frequency. The Fourier-space resistance is readily determined
from (40) via the analytic continuation ŝ → iω̂. Solving for
R(|F̃A(ω̂)|/|Ũ (ω̂)|) yields

R
( |F̃A(ω̂)|

|Ũ (ω̂)|
)

= 2

3
πμa(W 2/H )

[
9(W 2 + W 3/H )ω̂ + 9

√
2

2 (H + 2W )ω̂1/2 + 9(H/W )

(W 4/H2)ω̂ + √
2(W 2/H )ω̂1/2 + 1

]
. (42)

The FPSD is then simply calculated by substituting (42) into
(41). Figure 3 shows the FPSD of a particle with varying slip
length. Notably, the FPSD is independent of the density ratio.
At higher frequencies, SF becomes more sensitive to the effect
of slip length. Since high frequency corresponds to short time,
momentum only diffuses short distances from the particle.
The difference created by having a slip condition is therefore
more dramatic.

The high-frequency limit of (41) is

SF (ω̂) ∼ 24π2μakT

(
H + W −

√
2

2

H2

W 2
ω̂−1/2 + · · ·

)
,

(43)

and is plotted in the solid blue line in Fig. 3. The high-
frequency limit from (43) gives the approach to a constant
FPSD as ω̂ → ∞ for any sphere with slip, however, the FPSD
of a no-slip sphere will diverge as ω̂1/2 as ω → ∞.

The low-frequency limit of (41) is

SF (ω̂) ∼ 24π2μakT

(
W +

√
2

2
H ω̂1/2 + · · ·

)
, (44)

and is plotted in the dashed blue line in Fig. 3. We hope that
the analytical approximations (43) and (44) may prove useful
in determining slip length from experimental measurements
of non-diffusive Brownian motion.

V. CONCLUSION

An integral expression (23) for the translational velocity of
a perfectly slipping spherical particle under a time-dependent
applied force in unsteady Stokes flow is derived. We compare
this result to that of a rigid, no-slip sphere and an inviscid
spherical bubble. Under an impulsive force of magnitude kT ,
we calculate the VACF and MSD of a perfectly slipping
particle undergoing non-diffusive Brownian motion. At long
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FIG. 3. FPSD of a particle normalized by 8
3 π 2μakT vs di-

mensionless frequency, ω̂ = ωa2/ν. Asymptotic approximations are
shown at small and large frequency for λ/a = 1.

times, we recover leading order algebraic t−3/2 decay of the
VACF of a perfectly slipping sphere which is identical to that
of a no-slip sphere. That is, at long times, momentum diffuses
far enough away from the sphere that the surface bound-
ary condition is unimportant. The FPSD of a rigid sphere
with arbitrary slip length is calculated. Short- and long-time
asymptotic approximations are calculated, which we hope
may be useful for inference of slip length from experimental
measurements of non-diffusive Brownian motion.

Here, we assumed that an inviscid bubble is equivalent
to a perfectly slipping sphere of constant radius and zero

density. That is, we neglect the possibility that the radius of the
bubble changes in time. Magnaudet and Legendre [30] have,
in fact, computed the time-dependent hydrodynamic force on
a bubble of varying radius in unsteady Stokes flow. They show
that the history of the variation in bubble radius contributes
to the unsteady viscous force on it [see Eq. (22b) in their
paper]. Hence, one could use their expression for the time-
dependent force in (3) to consider the motion of a bubble with
time varying radius. However, the complexity of the unsteady
viscous force would necessitate a numerical solution, i.e., an
integral expression for the velocity akin to (23) would not be
obtainable, we believe. Similarly, our analysis has neglected
hydrodynamic interactions between particles and is thus only
applicable to the unsteady motion of a single sphere. The con-
sideration of particle-particle interactions would necessitate a
major extension, as opposed to modification, of our analysis.
That is, even at the pair (two-body) level one would have to
solve the unsteady Stokes equations around two oscillating
spheres to determine the influence of hydrodynamic interac-
tions on the frequency-dependent drag felt by each particle,
which is certainly a challenging task. Finally, Daitche and Tél
[1] demonstrated that the history force on a no-slip sphere is
relevant in the correct prediction of particle trajectories and
chaotic advection in an ambient flow. An interesting problem
for future work would be to quantify how the different form
of the history force for a perfectly slipping sphere affects such
dynamics in ambient flows.
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