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Snapping of hinged arches under displacement control: Strength loss and nonreciprocity
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We investigate experimentally and numerically the response of hinged shallow arches subjected to a transverse
midpoint displacement. We find that this simple system supports a rich set of responses, which, to date, have
received relatively little attention. We observe not only the snapping of the arches to their inverted equilibrium
configuration, but also an earlier dynamic transition from a symmetric to an asymmetric shape that results in a
sudden strength loss. Moreover, we find that the response of plastically deformed arches is nonreciprocal with
respect to the loading direction. Finally, we discover that, while elastically deformed arches always snap to the
inverted stable configuration, for plastically deformed ones there is a critical rise below which the structures are
monostable.
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I. INTRODUCTION

While for thousands years arches have been used as struc-
tural elements capable of spanning large openings [1,2], more
recently they have attracted significant interest because of
their ability to snap between two stable configurations [3–8].
By controlling such snap-through instability scientists and
engineers have designed a broad range of structures and
devices across scales, including aerospace morphing systems
[9], microelectromechanical (MEMS) devices [10,11], fluidic
systems with passive control of viscous flow [12], energy-
trapping structures [13], microactuators [14], switches [15],
and metamaterials to manipulate the propagation of elastic
pulses [16,17]. However, while in these innovative applica-
tions the arched elements are typically loaded by controlling
their transverse displacement, most of previous efforts to
accurately capture their snapping behavior have focused on
the response induced by a fixed load [18–23].

Here we use a combination of experiments and analyses to
investigate the response of a hinged arch subjected to a mid-
point transverse displacement. To our surprise, we find that
the behavior of this system is very rich and still unexplored.
First, for a wide range of rises the system is characterized by
a dynamic transition even before snapping. Such a transition
manifests itself as a sudden force drop and corresponds to the
instantaneous asymmetric reconfiguration of the arch. Second,
the response of plastically deformed arches is nonrecipro-
cal with respect to the loading direction, as the maximum
recorded force and the snapping time are significantly differ-
ent when the direction of the applied displacement is changed.
Third, while elastically deformed arches snap for any rise,
we discover a critical rise (i.e., critical snapping threshold)
below which for plastically deformed arches snapping does
not occur. Given all these interesting features, we envision
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shallow arches to serve as building blocks for highly nonlinear
metamaterials capable of manipulating the transmission of
mechanical signals in unprecedented ways.

II. EXPERIMENTS

We start by experimentally investigating the response of
two shallow arches with simply supported ends when sub-
jected to a midpoint transverse displacement. The two arches
have identical span, L = 120 mm, and rise, e(1) = 11 mm
[see inset in Fig. 1(c)]. Moreover, both arches are made of
an initially flat spring steel shim of length L0 = 122.5 mm
(note that this length includes also the hinges), but one is
realized by plastically deforming it into the target shape
e(1) sin(πx/L) [Fig. 1(a)], while the other one is fabricated
by applying an axial force to elastically buckle it [Fig. 1(b);
see also Supplemental Material, Fabrication section [24]]. As
such, the plastically deformed arch permanently maintains the
sinusoidal shape, while the elastically deformed one returns to
its straight configuration as soon as removed from the hinges.
We arrange the two arches so that they are initially curved
upwards and conduct two tests on each of them using an
indenter that moves their midpoints at a constant speed α.
In the first experiment (which we refer to as Loading 1) we
apply a downward displacement d (1) < 0 to snap the arches to
their inverted equilibrium configuration, while in the second
one (which we refer to as Loading 2) we impose an upward
midpoint displacement d (2) > 0 to the inverted arches to snap
them back to their initial configuration (see Movie S1 and
Fig. S5 [24]).

In Figs. 1(c) and 1(d) we show results for tests conducted
at α = 15 mm/s and find that the response of our arches
is characterized by three distinct regimes. First, the arches
deform symmetrically and the force monotonically increases.
Second, at t = tasym they transition to an asymmetric shape
[see snapshots in Figs. 1(e) and 1(f)]. Remarkably, this tran-
sition is a dynamic event that results in a sudden drop in
force. Note that such a drop, to our best knowledge has
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FIG. 1. (a)–(b) Snapshots of our (a) plastically deformed arch and (b) elastically deformed arch before and after mounting on the end
supports. (c)–(d) Forces recorded during the tests for the (c) plastically and (d) elastically deformed shallow arches subjected to Loading 1
(continuous lines) and Loading 2 (dashed lines). (e)–(f) Snapshots of the (e) plastically and (f) elastically deformed shallow arches subjected
to Loading 1.

never been observed in snapping experiments conducted on
arches under displacement-controlled conditions, as it was
prevented by either clamped boundary conditions [4] [see
also Fig. S7 [24]] or loading offset [5] [see also Fig. 2(b)].
After this dynamic transition, the recorded force linearly

decreases until t = tsnap, when the arches snap to the inverted
stable configuration. Surprisingly, while for the elastically
deformed arch tsnap is identical for Loading 1 and Loading
2 (i.e., t (1)

snap = t (2)
snap), for the plastically deformed one it is very

different for the two loading scenarios (i.e., t (1)
snap/t (2)

snap ∼ 1.98;
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FIG. 2. (a)–(b) Forces recorded when indenting an elastically deformed arch according to Loading 1 (a) at α = 1 and 15 mm/s and (b) with
δ = 0 and 12 mm. (c)–(d) Snapshots of our elastically deformed arch when tested at (c) α = 1 mm/s and with (d) δ = 12 mm. Note that for
clarity in (a) we report the force as a function of midspan position, w(L/2, t ).
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see Fig. S11 [24]). This indicates that the plastically deformed
arches manifest nonreciprocity with respect to the loading
condition, an observation that it is further supported by the
fact that the maximum forces recorded when testing them
under Loading 1 and Loading 2 are very different (i.e.,
max |Q(1)|/ max |Q(2)| ∼ 1.75).

While the results reported in Fig. 1 were obtained by
indenting the arches at α = 15 mm/s, we want to emphasize
that the observed sudden drop in force is a robust feature of the
system. To demonstrate this important point, in Figs. 2(a) and
2(c) we focus on the elastically deformed arch and show the
evolution of the force when loaded according to Loading 1
at α = 1 mm/s. Despite the considerably lower speed, the
arch still dynamically transitions to an asymmetric configura-
tion, leading to a sudden drop in the recorded force (similar
results for the plastically deformed arch are shown in the
Supplemental Material, Additional Results [24]). However,
the point at which the dynamic transition occurs is affected by
the loading rate [see Fig. 2(a)]. By contrast, the drop in force
is suppressed as soon as the indenter is offset from the center
point [Figs. 2(b) and 2(d)] as in this case the arch deforms
asymmetrically from the very beginning [see snapshots in
Figs. 2(b) and 2(d)].

III. NUMERICAL MODEL

Next, to get more insights into the observed nonlinear
phenomena, we develop a numerical model. While previous
modeling efforts have used quasistatic assumptions to capture
the response of shallow arches loaded with an indenter prior to
snapping [4,5], the dynamic nature of the transition observed
in our tests at t = tasym requires a fully dynamic approach. As
such, we describe the arches’ time-dependent profile w(x, t )
using Kirchhoff plate theory [25] and write the equation of
motion for Loading j (with j = 1, 2) as [4,6,19,26–28]

ρA
∂2w

∂t2
+ β

∂w

∂t
+ EI

(
∂4w

∂x4
− d4w0

dx4

)
+ p

∂2w

∂x2

+ Q( j)δ

(
x − L

2

)
= 0, (1)

where A and I are the area and moment of inertia of the
cross section, respectively, ρ and E are the volumetric density
and Young’s modulus of the material, respectively, and β

represents the viscous damping coefficient. Moreover, w0 is
the initial unstressed position of the midsurface of the arch, p
is the midplane force produced by the stretching of the middle
surface, and δ is the Dirac delta function.

Next, we introduce the nondimensional variables

x̄ = πx

L
, t̄ = π2t

L2

√
EI

Aρ
, w̄(x̄, t̄ ) = w(x, t )

r
, w̄

( j)
i (x̄) = w

( j)
i (x)

r
, w̄0(x̄) = w0(x)

r
, ē( j) = e( j)

r
, (2a-f)

d̄ ( j)(t̄ ) = d ( j)(t )

r
, p̄(t̄ ) = L2 p(t )

π2EI
, Q̄( j) = 2Q( j)L3

π4EIr
, β̄ = βL2

π2
√

ρAEI
, δ̄(·) = L

π
δ(·), (2g-k)

where r = √
I/A and rewrite Eq. (1) in dimensionless form as

∂2w̄

∂ t̄2
+ β̄

∂w̄

∂ t̄
+

(
∂4w̄

∂ x̄4
− d4w̄0

dx̄4

)
+ p̄

∂2w̄

∂ x̄2

+ π

2
Q̄( j)δ̄

(
x̄ − π

2

)
= 0. (3)

For the pinned end conditions considered in this study,

w̄(0, t̄ ) = w̄(π, t̄ ) = 0, w̄′′(0, t̄ ) = w̄′′(π, t̄ ) = 0, (4)

and, since in our experiment we control the displacement, we
impose

w̄

(
π

2
, t̄

)
= ē( j) + d̄ ( j)(t̄ ). (5)

It follows that under these conditions the deformed shape
w̄(x̄, t̄ ) can be expressed as a series of sine functions

w̄(x̄, t̄ ) = w̄0(x̄) +
N∑

n=1

an(t̄ ) sin(nx̄). (6)

In the following sections we specialize Eq. (3) to the cases of
plastically and elastically deformed shallow arches and obtain
the coefficients an(t̄ ) entering in the solution.

A. Plastically deformed shallow arch

We start by focusing on plastically deformed shallow
arches and note that for these structures the midplane force
is [19,20]

p̄(t̄ ) = − 1

2π

∫ π

0

[(
∂w̄

∂ x̄

)2

−
(

dw̄0

dx̄

)2]
dx̄, (7)

and the initial unstressed position of the midsurface is

w̄0 = ē(1) sin(x̄), (8)

since in all our experiments (i.e., for both Loading 1 and
Loading 2) the arches are plastically deformed to be initially
curved upwards. Substitution of Eqs. (6), (7), and (8) into
Eq. (3), multiplication of all terms by sin (mx̄) (m being an
integer, m = 1, . . . , N) and integration with respect to x̄ from
0 to π yield

ä1+β̄ȧ1+a1+1

4

(
2ē(1)a1 +

N∑
k=1

k2a2
k

)(
a1 + ē(1)

) + q( j)
1 = 0

for n = 1, (9a)

än + β̄ȧn + n4an + n2

4

(
2ē(1)a1 +

N∑
k=1

k2a2
k

)
an + q( j)

n = 0

for n = 2, . . . , N, (9b)
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with

qn
( j) = Q̄( j) sin

(
nπ

2

)
for n = 1, . . . , N. (10)

Moreover, by substituting Eqs. (6) and (8) into Eq. (5) we
obtain

−d̄ ( j) + ē(1) − ē( j) +
‖(N+1)/2‖∑

j=1

−(−1) ja2 j−1 = 0. (11)

At this point it is important to notice that Eq. (11) describes
the behavior of the arch only while it is in contact with the
indenter (i.e., |Q̄( j)(t )| > 0). When Q̄( j)(t ) = 0 the arch leaves
the indenter, Eq. (11) does not hold true anymore, and Eqs. (9)
simplify to

ä1 + β̄ȧ1 + a1 + 1

4

(
2ē(1)a1 +

N∑
k=1

k2a2
k

)
(a1 + ē(1) ) = 0

for n = 1, (12a)

än + β̄ȧn + n4an + n2

4

(
2ē(1)a1 +

N∑
k=1

k2a2
k

)
an = 0

for n = 2, . . . , N. (12b)

To obtain the response of the arch upon indentation, we
start by numerically solving Eqs. (9) with Runge-Kutta while
imposing the constraint given by Eq. (11). We monitor the
evolution of |Q̄( j)(t̄ )| and when it vanishes immediately switch
to Eq. (12), which we numerically solve using the positions
and velocities given by Eqs. (9) and Eq. (11) for |Q̄( j)(t̄ )| = 0
as initial conditions.

Finally, we note that Eqs. (12) also provide the stable
inverted equilibrium configuration when solved in the qua-
sistatic limit [i.e., än = ȧn = 0; see the Supplemental Material,
Mathematical model for the derivation [24]]. We find that,
for plastically deformed arches with ē(1) � 4 the inverted
configuration has a smaller rise,

ē(2) = − 1
2

[
ē(1) +

√(
ē(1)

)2 − 16
]
, (13)

an observation that supports the nonreciprocal behavior ob-
served in our experiments.

B. Elastically deformed shallow arch

For an elastically deformed shallow arch (i.e., a postbuck-
led beam) the midplane force is given by [4,29]

p̄(t̄ ) =
[

L2(L0 − L)

L0π2r2
− 1

2π

∫ π

0

(
∂w̄

∂ x̄

)2

dx̄

]
, (14)

and the initial unstressed position of the midsurface is

w̄0 = 0. (15)

As for the plastically deformed arch, to obtain the govern-
ing equations for an we substitute Eqs. (6), (14), and (15) into
Eq. (3), multiply of all terms by sin (mx̄) (m being an integer,
m = 1, . . . , N), and integrate with respect to x̄ from 0 to π to

obtain

än + β̄ȧn + n4an − n2

(
�L̄ − 1

4

N∑
k=1

k2a2
k

)
an + q( j)

n = 0

for n = 1, 2, . . . , N, (16)

where

�L̄ = L2(L0 − L)

L0π2r2
, (17)

and qn
( j) is defined in Eq. (10).

Moreover, by substituting Eqs. (6) and (15) into Eq. (5) we
obtain

−d̄ ( j) − ē( j) +
‖(N+1)/2‖∑

j=1

−(−1) ja2 j−1 = 0. (18)

Also for the elastically deformed arch, Eq. (18) describes its
behavior only while it is in contact with the indenter (i.e.,
|Q̄( j)(t )| > 0). When Q̄( j)(t ) = 0 the arch leaves the indenter,
Eq. (18) does not hold true anymore, and Eq. (16) simplifies
to

än + β̄ȧn + n4an − n2

(
�L̄ − 1

4

N∑
k=1

k2a2
k

)
an = 0,

for n = 1, 2, . . . , N. (19)

To obtain the response of the arch upon indentation, we
numerically solve Eq. (16), while imposing the constraint
given by Eq. (18) when the indenter and the arch are in
contact. When |Q̄( j)(t̄ )| vanishes, we switch to Eq. (19), which
we numerically solve using the positions and velocities given
by Eqs. (16) and (18) for |Q̄( j)(t̄ )| = 0 as initial conditions.

Last, we want to emphasize that Eq. (19) also provides
the stable inverted equilibrium configuration when solved
in the quasistatic limit (i.e., än = ȧn = 0). As expected, for
the elastically deformed arches the two equilibrium configu-
rations are identical.

IV. NUMERICAL RESULTS

To verify the validity of our numerical model, in Fig. 3(a)
we focus on the evolution of the nondimensionalized force,
|Q̄(1)|, and compare the numerical predictions for different
values of N (green and red thin lines) with the experimental
results (black line). Since the deformed arch shape observed in
experiments [see snapshots in Figs. 1(e) and 1(f) at t = 0.26 s
and t = 0.19 s, respectively] cannot be represented with only
two modes, for both the plastically and elastically deformed
arches the model with N = 2 predicts a nonrealistic large peak
force. On the contrary, we find very good agreement between
the numerical and experimental results for N � 3, with the
model that precisely predicts the sharp drop in the forces at
t̄asym, the maximum value of the forces and the snapping times
t̄snap [see Fig. 3(a) and Movie S2 [24]].

Next, we focus on the evolution of the coefficients an

and find that [see Fig. 3(b)] (i) the first symmetric mode
contributes to the arch deformation during the entire test (i.e.,
a1 �= 0 for t̄ > 0); (ii) the antisymmetric mode with amplitude
a2 is suddenly activated at t̄ = t̄asym, remains almost constant
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FIG. 3. (a) Comparison between the experimentally measured (black-thick lines) and numerically predicted (green and red thin lines)
reaction force |Q̄(1)| for our plastically (left) and elastically (right) deformed arches subjected to Loading 1. (b) Computed mode amplitudes
ai. (c) Comparison between the experimentally measured (thick lines) and numerically predicted (thin lines) position w̄ for Loading 1.

for t̄asym < t̄ < t̄snap, and then rapidly vanishes at t̄ = t̄snap;
(iii) a3 monotonically increases up to t̄ = t̄asym and then
almost vanishes once the antisymmetric mode is triggered;
and (iv) a4(t̄ ), a5(t̄ ), and a6(t̄ ) are very close to zero during
the entire test and do not contribute to the overall solution.
In full agreement with our experimental observations, such
evolution of the modal coefficients results in an asymmetric
configuration for t̄asym < t̄ < t̄snap, as the displacement w̄ π

4

and w̄ 3π
4

predicted by the model deviate from each other
[see Fig. 3(c)].

Having confirmed the ability of our dynamical model to
accurately capture the response of the arches for N � 3, we
next use it with N = 3 to explore the effect of the initial
nondimensional rise ē(1) (with ē(1) < 142, since for larger
rises the Kirchhoff plate theory is not accurate anymore [25]).
As expected, we find that both the maximum force, max |Q̄( j)|,
and the snapping time, t̄ ( j)

snap, monotonically decrease with
ē(1) [see Figs. 4(a)–4(c)]. Similarly, also the drop in force at
t̄ = t̄asym, �Q̄( j) [see Fig. 3(d)] monotonically decreases and
eventually vanishes for ē(1) � 9.6 for the elastically deformed
arches and for ē(1) � 11.9 and ē(1) � 6.2 for the plastically de-
formed ones when tested according to Loading 1 and Loading
2, respectively. While all arches for which �Q̄( j) > 0 mani-
fest a sudden activation of the antisymmetric mode prior to
snapping, those with �Q̄( j) = 0 do not exhibit such additional
dynamic transition from the symmetric to the asymmetric
shape. Further, we find that the nonreciprocity in the response
of the plastically deformed shallow arches is a robust feature,
as for a wide range of ē(1), t̄ (1)

snap > t̄ (2)
snap. To better characterize

such nonreciprocity, in Fig. 4(e) we report evolution of the
difference between the snapping times for Loading 1 and 2,

�T̄ = t̄ (1)
snap − t̄ (2)

snap, as a function of ē(1). We find that �T̄
linearly decreases as ē(1) is reduced and eventually vanishes
when ē(1) = 4.

Next, we use our dynamical model to investigate the effect
of the loading rate α on the mechanical response of the
system. Towards this end, we consider an elastically deformed
arch with ē(1) ∼ 125 and simulate its behavior when indented
with α ∈ [0.01, 15] mm/s (note that in all our analyses β =
0.8). Two key features emerge from the results shown in
Fig. 5. First, all the curves are identical for w(L/2, t ) >

9.58 mm, indicating that the initial response of the arches is
fully determined by the instantaneous arch position and not
affected by α. Second, α has a strong effect on the location of
the asymmetric transition and magnitude of the corresponding
jump in force. Specifically, three distinct regions can be identi-
fied: (i) for 0.13 mm/s < α � 15 mm/s the force at which the
asymmetric transition occurs and the magnitude of the jump
monotonically decreases as the indentation speed becomes
smaller (i.e., the drop in force happens for larger values of
w(L/2, t )); (ii) for 0.01 mm/s < α � 0.13 mm/s the transi-
tion is triggered at significantly smaller values of w(L/2, t )
(and these decrease as α decreases). This is because with
simply supported boundary conditions the activation of the
antisymmetric mode is always accompanied by a sudden drop
in the force (differently from clamp-clamp boundary condi-
tions [see Fig. S7 [24]]) and such a drop cannot be achieved
for w(L/2, t ) > 9.58 mm; and (iii) for α � 0.01 mm/s the
arch does not exhibit a dynamic transition (i.e., the jump in
force vanishes). It maintains a symmetric profile during the
entire test and approaches the curve obtained when solving
Eq. (16) in the quasistatic limit (i.e., with än = ȧn = 0; see
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snap.

Fig. 5, empty-circle markers and Fig. S10 in Supplemental
Material, Additional Results [24]).

Finally, we focus on shallow arches with ē1 � 9. As shown
in Fig. 6, for all these structures the force is smooth [Figs. 6(a)
and 6(b)] and the symmetric shape is maintained during the
entire test, i.e., a2 = 0 [see Figs. 6(c) and 6(d)]. However,
we also find a significant difference between the elastically
and plastically deformed arches. While the former snap for
any ē(1) > 0, for the latter snapping occurs only for ē(1) > 4
when the force Q̄(1) still crosses zero [see Fig. 6(a)]. Note
that such feature is also predicted by Eq. (13), as ē2 is not
a real number for ē1 < 4 anymore, and, therefore, the inverted
equilibrium configuration does not exist anymore. As such,
when a plastically deformed arch with ē1 = 4 is forced to
the inverted equilibrium configuration ē(2), it immediately
returns to the initial shape once the indenter is removed [see
Fig. 6(e)], further evidence of the lack of bistability. Thus,
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FIG. 5. Numerically predicted evolution of |Q(1)| for different
indentation rates α ∈ [0.01,15] mm/sec. In these analyses we con-
sider an elastically deformed shallow arch with rise ē(1) ∼ 125. The
circular markers corresponds to the quasistatic solution.

ē(1) = 4 represents a critical snapping threshold for the plas-
tically deformed shallow arches when transversely loaded.
Differently, elastically deformed arches always maintain the
stable inverted equilibrium configuration [see Fig. 6(f)].

V. CONCLUSIONS

To summarize, we have experimentally investigated the
nonlinear response of hinged shallow arches subjected to
midpoint displacement and found a surprisingly rich dynamic
behavior. Further, we have developed a fully dynamic model
that can accurately predict the response observed in the ex-
periments and, therefore, can be used as a powerful tool
for the a priori design and optimization of such nonlinear
mechanical systems. Given all the interesting features ex-
hibited by hinged shallow arches subjected to a midpoint

(a) (b)

(c) (d)

(e) (f)

FIG. 6. Arches with low rises ē(1) � 9: computed quasistatic
reaction forces |Q̄(1)| of (a) plastic and (b) elastic shallow arches
for Loading 1 with corresponding modes amplitudes ai (c), (d)
and positions w̄ (e), (f). The red star represents when the inverted
equilibrium condition ē2 is reached by the indenter.
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displacement (including nonreciprocity, sudden strength loss,
and critical threshold for snapping), we envision these struc-
tural elements could serve as building blocks for the next
generation of nonlinear mechanical metamaterials designed to
manipulate the propagation of elastic pulses in unprecedented
ways.
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