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Slender elastic objects such as a column tend to buckle under loads. While static buckling is well understood
as a bifurcation problem, the evolution of shapes during dynamic buckling is much harder to study. Elastic
rings under normal pressure have emerged as a theoretical and experimental paradigm for the study of dynamic
buckling with controlled loads. Experimentally, an elastic ring is placed within a soap film. When the film outside
the ring is removed, surface tension pulls the ring inward, mimicking an external pressurization. Here we present
a theoretical analysis of this process by performing a postbifurcation analysis of an elastic ring under pressure.
This analysis allows us to understand how inertia, material properties, and loading affect the observed shape. In
particular, we combine direct numerical solutions with a postbifurcation asymptotic analysis to show that inertia
drives the system towards higher modes that cannot be selected in static buckling. Our theoretical results explain
experimental observations that cannot be captured by a standard linear stability analysis.
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I. INTRODUCTION

Buckling is a ubiquitous instability in elastic materials [1].
The static buckling problem consists of determining the value
of the load at which an instability takes place as well as
the shape observed close to the instability. It can be recast
as a standard bifurcation problem for which there exists an
extensive literature [2–4]. The classic example of this is the
Euler buckling of a column, which can be readily observed
by attempting to compress a thin piece of paper along its axis
[4]: different buckling modes (eigenfunctions) exist, each with
a different buckling load (the eigenvalue). In most situations
it is the eigenfunction with the smallest eigenvalue that is ob-
served experimentally; indeed, the higher modes are usually
dynamically unstable, rapidly transitioning to the lowest mode
[5].

Many other elastic structures exhibit a similar phe-
nomenology: For instance, the static buckling of an elastic
ring under external pressure is a physical problem that has
received much attention [6–14]. These seminal works provide
an in-depth analysis of the stability of the ring, showing
that the lowest mode is the “figure-of-eight” shape, deter-
mining higher modes and also offering different analytical
and numerical methods through which to find the equilibrium
shapes after bifurcation. These postbifurcation equilibria are
relevant to biological problems such as fluid flow through
blood vessels [15].

In contrast to the many studies on the static stability of
elastic rings, the problem of dynamic buckling has received
much less attention. In dynamic buckling, the problem is to
understand both the onset of instability under possibly dy-
namic loading and the evolution of the object’s shape after the
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onset of instability. These problems are considerably harder
as they involve both space and time [16,17] and simple energy
arguments cannot be used to obtain the postbuckling dynam-
ics. For instance, twisted elastic rings going through a Michell
instability [18] fold into a figure-of-eight shape without ever
following equilibrium solutions. Dynamic loading can also be
used to excite higher unstable modes that cannot be reached
through static methods [19–21]. As such, dynamic buckling
is a much richer phenomenon that offers many possibilities
for new behavior and, potentially, for the development of new
active devices.

In this paper we study the dynamic evolution of an elastic
ring subject to a sudden jump in external pressure. When an
elastic ring is subject to a slowly increasing external pressure,
it buckles into its first unstable mode, a flattened, ellipse-like
shape referred to as mode 2. Higher modes with more lobes
can be excited in dynamic loading and the problem here is
to understand how these modes are selected and how they
evolve after the onset of the instability. In particular, we shall
show that the presence of inertia implies that higher modes are
selected, and we identify the mode number as a function of the
driving pressure. Experimentally, these modes can be obtained
by following the dynamics of an elastic ring embedded in a
soap film, as presented in a companion paper [22]. Initially,
the elastic ring is maintained in equilibrium by the balance of
surface tension between an internal and external soap film.
Once the external soap film is removed (by puncturing it
at a point and allowing it to retract), the force from the
internal soap film is suddenly unbalanced and pulls the ring
inwards. This is equivalent to an external pressure applied
instantaneously to the ring, which is illustrated schematically
in Fig. 1. The experiments described in Ref. [22] demonstrate
that a circular elastic ring buckling under surface tension in
this way can exhibit a range of modes, with higher modes
selected dynamically as the importance of surface tension
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FIG. 1. Schematic of an elastic ring subject to an external pres-
sure p (indicated by the arrows). The experiments described in a
companion paper [22] achieve this via an unbalanced soap film filling
the shaded area within the elastic ring (see Fig. 2). The shape of the
ring is described by its centerline with arc length s measured with
respect to a point 0. At each point s, the normal and tangent vectors
n and t are defined together with the angle θ between the horizontal
x axis and the tangent vector.

increases. An illustrative experimental time series of these
experiments is shown in Fig. 2.

To develop some intuition for the problem of mode se-
lection in dynamic buckling, we begin by considering the
one-dimensional toy problem of an elastic beam (rather than
a circular ring) of thickness h under an in-plane compressive
force F per unit width. In linear beam theory the governing
equation for the vertical deflection w(x, t ) of a pinned-pinned
beam of length L is [23]

ρh
∂2w

∂t2
+ B

∂4w

∂x4
+ F ∂2w

∂x2
= 0, (1)

w(−L/2) = w′′(−L/2) = w(L/2) = w′′(L/2) = 0, (2)

where ρ is the density and B is the bending stiffness of the
beam. This equation exhibits growing buckled solutions of the

form w(x, t ) = Kexp(σ t ) cos((2n + 1)πx/L) if

ρhσ 2 = (2n + 1)2π2

L2

(
F − B

(2n + 1)2π2

L2

)
. (3)

By examining the maximum value of the growth rate, σ ,
as a function of n in Eq. (3), we see that the nth mode is
the fastest growing mode (and hence expected to be selected)
if the compressive force is suddenly raised to Fn = 2(2n +
1)2π2B/L2. Alternatively, if a particular force F is imposed
then we might expect that the observed mode would be

n ≈ 1

23/2π

(FL2

B

)1/2

− 1

2
, (4)

since it will be close to the fastest-growing mode. This se-
lection of a mode other than the lowest Euler mode (which
corresponds to n = 0) is made possible by the presence of the
inertia term.

Although the above calculation gives us an intuitive feel
for the problem of dynamic buckling, it is expected to be
only quantitatively accurate for an elastic beam subject to a
controlled compressive force F . Achieving such a condition
experimentally is difficult and is perhaps closest to being
achieved by an impactor with a known weight [21], although
then the imposed force becomes dependent on the imposed
boundary conditions. The case of an elastic ring embedded
in a soap film comes closer to a truly controlled force, but
the question then becomes how the calculation that leads to
Eq. (4) is modified by the ring’s curvature κ = 1/a, with a
being the ring radius. In a related study [22], quantitative
agreement with experiment was found by replacing the force
F in Eq. (4) with the compressive force induced by the
pressure difference p combined with the ring curvature 1/a
(Laplace’s law), which gives F = pa. In this paper we go
beyond this simple physical argument to account for the
effects of curvature completely, both in terms of the onset of
instability and also in the postbuckling of the ring.

The paper begins in Sec. II with a formulation of the
governing equations from first principles, together with our
numerical technique and a presentation of the typical nu-
merical results. To make analytical progress, Sec. III first
reformulates the governing equations of Sec. II in a form
that is more convenient for analytical work. This allows us
to present a detailed linear stability analysis that goes beyond

FIG. 2. Time series from the companion paper [22] showing experimental images of the dynamic buckling of an elastic ring with square
cross section. This dynamic buckling is achieved by placing an elastic ring (Young’s modulus E = 42 kPa, thickness h = 1 mm, and radius
a = 24 mm) in a soap film and bursting the outer soap film at time t = 0. This leaves an unbalanced tension, γ ≈ 26.5 mN/m, acting on the
inner edge of the ring. This corresponds to an effective pressure difference p = γ /h ≈ 26.5 Pa acting on the ring, or a dimensionless pressure,
defined in (12), P ≈ 105. Here, the characteristic timescale t∗ ≈ 0.31 s so that the final image shown here corresponds to dimensionless time
t/t∗ ≈ 0.1. (Image courtesy of Finn Box.)
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the simple-minded application of Eq. (4). While the linear
stability analysis is able to explain some features of our
numerical results, other qualitative features of the numerics
presented here and the experiments of Ref. [22] are not
explained by the solution of the linear problem. We therefore
turn next to a weakly nonlinear analysis through which we
derive an amplitude equation for the motion, which can be
solved analytically. We illustrate the utility of this approach
by applying the predictions of the weakly nonlinear analysis
to explain various features of our numerical results, before
summarizing our results in Sec. IV.

II. THEORETICAL FORMULATION

A. Model problem

We consider a circular elastic ring of radius a subject
to an externally applied pressure p. We model the elastic
ring as a rod of thickness h and length L = 2πa, whose
shape is parametrized by its arc length s ∈ [0, L]. Previous
work has considered the vibrations of arches, accounting for
the effects of extensibility [24,25]. These works show that,
under a controlled applied force, the effect of extensibility
on the frequency of vibration is negligible provided that η =
h2/(12L2) � 1. The experiments of the companion to this
paper [22] have η ∼ 10−4 and are performed with controlled
applied force. We shall therefore model the ring as being in-
extensible and unshearable to simplify the analysis somewhat.
The ring is composed of a material of density ρ, Young’s
modulus E , and its circular cross section has cross-sectional
area A× and second moment of area I = A2

×/(4π ), which
gives a bending stiffness B = EI = EA2

×/(4π ).
The position of a material point on the ring centerline at a

time t is denoted by the vector r(s, t ) = xex + yey + zez ∈ R3

(Fig. 1). Previous work has shown that the static equilibrium
of a ring with an internal soap film may take a saddle shape
[11,13]. However, in our problem the ring remains in the
plane and we restrict our attention to planar deformations.
With the assumption of planarity, we denote by t , n, and k
the unit tangent, normal, and binormal vectors attached to the
curve describing the centerline respectively. They satisfy the
property ∂sr(s, t ) = t and ∂st = κn, where |κ| is the curvature.

The motion of the elastic ring is governed by Kirchhoff’s
equations [26,27]. Let pn be the external body force per
unit length due to the applied pressure (integrated over the
ring thickness) and denote by F, M the resultant force and
moment, respectively, acting on the centerline. The balances
of linear and angular momenta then lead to [2,28]

∂F
∂s

+ pn = ρA×
∂2r
∂t2

, (5)

∂M
∂s

+ t × F = 0, (6)

where, in Eq. (6), we have ignored the rotary inertia terms [28,
p. 115].

The governing equations are closed by the constitutive
relation M = Bκ (s, t )k and the constraint that the ring is
unshearable and inextensible. We note that, alternatively, an
energy formulation can be used to establish the governing

equations; for example, the static buckling of twisted elastic
rings within a soap film is studied in Refs. [12,14].

We denote by θ the angle between the x axis and the
tangent t , so that t = (cos θ, sin θ ). We rescale all lengths by
the radius of the initial unstressed ring a, pressure by p∗ =
B/a3, and time by the inertial timescale t∗ = a2(ρA×/B)1/2.
In the new dimensionless variables, the governing equations
projected on ex and ey, are

∂x

∂s
= cos θ, (7)

∂y

∂s
= sin θ, (8)

∂2θ

∂s2
= Fx sin θ − Fy cos θ, (9)

∂Fx

∂s
− P sin θ = ∂2x

∂t2
, (10)

∂Fy

∂s
+ P cos θ = ∂2y

∂t2
. (11)

This nondimensionalization introduces the dimensionless pa-
rameter

P = pa3

B
, (12)

which is the control parameter in the problem. It measures
the importance of the work done by the external pressure
compared with the bending energy of the ring, as described
by Chen and Fried [13]. We have the periodic boundary
conditions

θ (2π, t ) = θ (0, t ) + 2π,

∂sθ (2π, t ) = ∂sθ (0, t ),

x(2π, t ) = x(0, t ), (13)

y(2π, t ) = y(0, t ),

Fx(2π, t ) = Fx(0, t ),

Fy(2π, t ) = Fy(0, t ), (14)

and initially the ring is stationary. The initial shape of the ring
is close to that of a circle of unit radius, although a small
amount of noise is added to initiate instability in our numerical
simulations.

B. Numerical analysis

Before looking for asymptotic solutions, we present nu-
merical solutions for the evolution of this elastic ring under
imposed pressure. We solve Eqs. (7)–(11) numerically by
using a finite-difference scheme in which we discretize the
system in space and time. This discretization produces a series
of nonlinear equations, which are solved by using Newton’s
method at each time step (see Appendix A for details). Note
that we do not use a time-splitting projection method to en-
force the inextensibility constraint; rather, our solution of the
nonlinear equations obtained by discretization ensures that the
geometrical relationships (7) and (8) are satisfied, and hence
that inextensibility is enforced at the same time. The initial
velocity is zero, and the initial shape of the ring is circular
with a uniformly distributed random number Ri ∈ [−ε, ε],
with ε � 1, added to the local radius of curvature at each
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FIG. 3. Dynamic evolution of an elastic ring subject to a constant, externally applied, pressure, determined from numerical simulations for
t > 0. Results are shown for different values of the dimensionless pressure P defined in Eq. (12). For each pressure, ring profiles are shown at
different dimensionless times (with the time coded by its color as in the color bar on the right-hand side). Note that, as the pressure increases,
(i) the observed mode number (the number of lobes) increases and (ii) the instability progresses more quickly (for the highest pressure, the
instability has progressed further, despite profiles being shown only for earlier times). These profiles are obtained by numerically solving the
governing equations (7)–(11) starting with an approximately circular initial condition and zero initial velocity. These simulations use N = 256
grid points, a time step �t = 10−3, and a random perturbation of the initial circular state with ε = 5 × 10−3. For a sense of the physical
time and pressure scales, recall that the experimental snapshots shown in Fig. 2 correspond to a physical pressure p ≈ 26.5 Pa, dimensionless
pressure P ≈ 105, and that the characteristic timescale there is t∗ ≈ 0.31 s.

point; in particular, the discretized initial state at arc length
si = (i − 1)�s is

θ (si, 0) = si,

x(si, 0) = (1 + Ri ) sin (si ), (15)

y(si, 0) = −(1 + Ri ) cos (si ).

Note that this initial condition is only consistent with the
geometrical constraint (7) and (8) to O(ε/(�s)). However,
after the first time step, our numerical scheme ensures that
the inextensibility constraint is satisfied subsequently (see
Appendix A for details). Snapshots of the evolution of the
ring profile for different values of the imposed pressure P are
shown in Fig. 3. These show two trends: First, the selected
mode number of the instability (defined as the number of
lobes) increases with the imposed pressure P. Second, the
instability develops notably faster for larger values of P. These
initial observations will motivate our asymptotic analyses of
the problem.

III. ANALYSIS

To facilitate the subsequent analysis, we first express the
governing equations in the moving frame of the ring (t, n, k),
which is a right-handed orthonormal frame attached to the
centerline of the ring at arc-length position s. We start by
eliminating the force F from Eq. (5) to obtain a single equa-
tion for the vector position r together with the inextensibility
constraint. The (dimensionless) bending moment is given by
the constitutive equation M = κ (s, t )k. Here, and henceforth,
we use a prime to denote derivatives with respect to the arc

length s and an overdot for derivatives with respect to time t .
Since κk = r′ × r′′, the resultant moment can be written

M = r′ × r′′. (16)

Substituting Eq. (16) into the dimensionless version of Eq. (6)
then gives

r′ × (r′′′ + F ) = 0, (17)

which immediately implies that

r′′′ + F = λr′ + βk (18)

for some unknown functions λ(s, t ) and β(s, t ). However,
since we restrict attention to planar deformations, we have
β = 0 and

F = −r′′′ + λr′. (19)

We note that, if redimensionalized, the term involving λ in
Eq. (19) would have the units of force and contributes to the
tangential component of the internal force [29]. Using the
expression for the force (19) in Eq. (5) gives

r̈ = −r(4) + (λr′)′ + Pn, r′2 = 1, (20)

where the last equation is the local inextensibility constraint.
The two equations (20) form a system for the two unknowns
r(s, t ) and λ(s, t ).

Since we are interested in the evolution of the ring
away from its initially circular configuration, we take ad-
vantage of the circular geometry to consider displacements
from this shape with respect to the polar vectors associated
with the circle. The curvature κ0 of the ring in its initial
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configuration, together with the initial tangential and normal
vectors (denoted t0 and n0, respectively), are

κ0 = 1, (21)

t0 = cos s ex + sin s ey, (22)

n0 = − sin s ex + cos s ey. (23)

Note that t ′
0 = n0, n′

0 = −t0, and the undeformed ring is
parametrized by r0 = −n0.

We denote the displacements in the normal and tangential
directions from the initial shape by u(s, t ) and v(s, t ), respec-
tively. The ring shape may then be written as

r = r0 + un0 + vt0. (24)

We introduce the angle φ(s, t ) between the tangent of the
deformed state and the tangent of the undeformed state by
t = (cos φ) t0 + (sin φ) n0. Taking the derivative of Eq. (24)
gives

r′ = t = (cos φ) t0 + (sin φ) n0

= [1 − u + v′]t0 + [u′ + v]n0. (25)

Hence, we have

cos φ = 1 − u + v′, sin φ = u′ + v. (26)

To relate the curvature to the angle φ we use t ′ = κn, where
n = −(sin φ)t0 + (cos φ)n0 so that

κ = 1 + φ′. (27)

We see that the curvature has two components: a contribution,
κ0 = 1, coming from the fact that the ring is initially curved,
and a contribution from the deformation of the ring relative to
its initial circular shape. Now taking the derivative of Eq. (20)
with respect to arc length gives

ẗ = −t (4) + (λt )′′ − Pκt . (28)

In the absence of pressure, namely P = 0, we recover
the equation obtained by Burchard and Thomas [30] for a
closed-loop elastica. (We note that, in this particular case,
local existence and uniqueness of the elastica solutions has
been established for initial data in suitable Sobolev spaces, but
that no global existence result exists [30]. Similarly, Caflish
and Maddocks [17] proved global existence for particular
initial data in a similar system that includes rotary inertial
terms, but again with P = 0.) We can resolve Eq. (28) into
tangential and normal components giving a complete system
of five equations for the five variables (u, v, λ, κ, φ) for the
shape of an elastic ring subject to a normal pressure P:

cos φ = 1 − u + ∂v

∂s
, (29)

sin φ = ∂u

∂s
+ v, (30)

κ = 1 + ∂φ

∂s
, (31)

∂2φ

∂t2
= −

(
∂3κ

∂s3
− 6κ2 ∂κ

∂s

)
+ 2

∂λ

∂s
κ + λ

∂κ

∂s
, (32)

(
∂φ

∂t

)2

=
[
κ4 − 3

(
∂κ

∂s

)2

− 4κ
∂2κ

∂s2

]
− ∂2λ

∂s2
+ λκ2 + Pκ.

(33)

We now make use of the formulation presented in Eqs. (29)–
(33) to perform a linear stability analysis of the problem; this
is followed by a multiple-scale analysis that allows us to ex-
amine the development of the instability beyond infinitesimal
deformations (linear stability).

A. Linear stability analysis

We begin by noting that Eqs. (29)–(33) admit as a solution
the undeformed circle: v0 = u0 = φ0 = 0, κ0 = 1, provided
that λ0 = −P − 1. Physically, this corresponds to the ring
having an internal compressive force, λ0 = −P − 1, which,
combined with its initial curvature, balances the external pres-
sure (via Laplace’s law). Our interest lies in determining the
stability of this equilibrium state. Letting u = u0 + εu1, v =
v0 + εv1, φ = φ0 + εφ1, κ = κ0 + εκ1, λ = λ0 + ελ1, with
ε � 1 arbitrary, we expand Eqs. (29)–(33) to first order in ε

to obtain

∂v1

∂s
= u1, (34)

φ1 = v1 + ∂u1

∂s
, (35)

κ1 = ∂φ1

∂s
, (36)

∂2φ1

∂t2
= (5 − P)

∂κ1

∂s
+ 2

∂λ1

∂s
− ∂3κ1

∂s3
, (37)

0 = (P − 2)κ1 + λ1 + 4
∂2κ1

∂s2
+ ∂2λ1

∂s2
. (38)

Seeking solutions of the form u1 = a1 exp (σ t + inθ ), v1 =
b1 exp(σ t + inθ ), κ1 = c1 exp(σ t + inθ ), φ1 = d1 exp(σ t +
inθ ), λ1 = e1 exp (σ t + inθ ), we obtain a homogeneous linear
system that has a nontrivial solution if and only if the associ-
ated determinant vanishes. This happens when

σ 2 = n2(n2 − 1)

n2 + 1
[P − (n2 − 1)]. (39)

This dispersion relation may be recovered from that obtained
previously by Wah [16] if one neglects rotational inertia in
their formulation (corresponding to the limit in which their
parameter μ ∝ a2/A× → ∞). We also note that, if P = 0,
then σ 2 is negative so that σ is imaginary and all the modes
oscillate with a frequency given by the imaginary part of σ ,
reproducing a result first obtained by Hoppe in 1871 [31].

Our main interest lies in the instability that may be ob-
served with positive external pressure, P > 0. In this re-
gard, note that σ = 0 when P = pn = n2 − 1, giving another
perspective on the nth static buckling load of a ring under
normal pressure [8,32]. For a given P > 0, all modes with n �
(P + 1)1/2 are unstable. However, the mode that is expected
to be most relevant in the development of instability from
arbitrary initial conditions is the most unstable mode (the
mode with the largest value of σ ) for a given P. Since the
mode number n is an integer, the calculation of the most

053002-5



KODIO, GORIELY, AND VELLA PHYSICAL REVIEW E 101, 053002 (2020)

FIG. 4. The mode number n selected for different imposed exter-
nal pressures P: large blue dots correspond to the mode observed in
numerical solutions of the full system (7)–(11). The mode number
observed numerically agrees well with the most unstable (integer)
mode predicted from a linear stability analysis (small red dots). This
analytical result is itself well approximated by the continuous pre-
diction (40) (solid black curve) in which n is treated as a continuous
variable, while for P � 1 all approaches tend to the simple scaling
nc ∼ (P/2)1/2, which is shown as the dashed line.

unstable mode number is obtained for a pressure interval as
shown in Fig. 4 (see red dots). This value agrees well with
the mode number observed in numerical simulations. Note
that the numerically determined mode number is determined
from the simulations at the point at which the instability is
first visible in the shape. For large n this appears to introduce
an error in n of 1, perhaps because one lobe disappears before
instability has become numerically observable. An alternative,
if approximate, approach is to treat n as a continuous variable
and obtain the value of n that maximizes σ in Eq. (39)
using standard methods. This calculation reveals that the most
unstable mode nc is a solution of

P =
(
n2

c − 1
)(

2n4
c + 3n2

c − 1
)

n4
c + 2n2

c − 1
. (40)

For P � 1, we find nc ∼ (P/2)1/2, which in practice gives
a very good account of the numerical results, and the more
detailed analytical calculation, as shown by the dashed line in
Fig. 4. Note that this result agrees to leading order with that
obtained by letting L = 2πa and F = pa in Eq. (4): for large
mode numbers (large dimensionless pressures) the most im-
portant role of the ring’s curvature is to convert the externally
applied pressure P into an in-plane compression λ within the
ring (corresponding to F in the introductory beam analysis).

B. Weakly nonlinear analysis

The predictions of the linear stability analysis hold only
for early times, t � 1. As the amplitude of the perturbation
to the circular state grows, various nonlinear terms compete
with the exponentially growing terms found by solving the
linear system; eventually, these nonlinearities can no longer

be ignored. As a simple illustration of the importance of
nonlinear effects, note that the linear theory predicts that the
area enclosed by the ring is constant to leading order: A(t ) ≈
1
2

∫ 2π

0 (1 + u)2 ds = π + O(ε2). Moreover, if one naively cal-
culates the correction at O(ε2) using the linear expansion,
one finds that the area enclosed should increase with time,
in clear contradiction to the numerical results of Fig. 3 and
experimental results [22]. This prediction is a result of the
inconsistency of using a result determined at O(ε) to make
predictions about a correction at O(ε2).

To go beyond the linear theory we perform a weakly
nonlinear analysis. From Eq. (39), we see that, as the external
pressure increases, the ring remains stable as long as σ 2 � 0
for all n � 0. Therefore, the ring is stable only when P � pn

for all n � 2 (with p2 = 3 the critical pressure above which
the circular solution of the ring becomes unstable [8]). We
are interested in the dynamic evolution of a critical mode
n when the imposed pressure slightly exceeds the critical
pressure pn. To find this evolution, we introduce a new small
parameter, ε = √

P − pn � 1 (distinct from the arbitrary ε

used previously), to measure how far the pressure is above
the critical pressure for a given mode. Therefore, we introduce
P = n2 − 1 + ε2 into the equations that now depend explicitly
on ε. Next, we expand all variables to third order in ε.
For example, we write u = u0 + εu1 + ε2u2 + ε3u3 + O(ε4)
with analogous expansions for the other variables v, κ , φ, λ.
These expansions are substituted into Eqs. (29)–(33) and the
resulting hierarchy of linear systems solved. Further details
are given in Appendix B.

At O(ε), the solution is given by

u1 = α1 sin (ns), v1 = −α1

n
cos ns, (41)

κ1 = −α1(n2 − 1) sin ns,

φ1 = α1(n2 − 1)

n
cos ns, (42)

λ1 = α1(n2 − 1)(4n2 − P + 2)

n2 + 1
sin ns, (43)

where we have an arbitrary amplitude α1, which evolves on
the long timescale t = O(1/ε).

At O(ε2), the solution is given by

u2 = α2
1 (n2 − 1)2

4n2
,

v2 = −α2
1 (n2 − 1)2

8n3
sin 2ns, (44)

κ2 = −α2
1 (n2 − 1)2

4n2
cos 2ns,

φ2 = −α2
1 (n2 − 1)2

8n3
sin 2ns, (45)

λ2 = 3α2
1 (n4 − 1)2

4n2(n2 + 1)
cos 2ns. (46)

Note that, in the above expressions, the O(ε2) radial dis-
placement u2 is uniform, independent of arc length s. This
is contrary to the first-order radial displacement u1, which
is oscillatory and, hence, does not contribute to a net radial
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displacement (once integrated over the whole ring). From this
finding, we conclude that the clear visual impression that the
ring shrinks radially (as seen in both the experiments [22]
and numerical simulations of Figs. 2 and 3, respectively) is a
second-order effect—this striking feature of the problem can
only be properly understood by going beyond the standard
linear stability analysis.

The value of the amplitude α1 as a function of time is
determined by a multiple-time expansion to derive the so-
called amplitude equation. This equation is obtained as a
compatibility condition for the existence of bounded solutions
by using the Fredholm alternative [23,33] for the linear system
to third order (see Appendix B for details). This condition
reads

d2α

dt2
= σ 2α − μα3, (47)

with

α = εα1, σ 2 = n2(n2 − 1)

n2 + 1
(P − pn), μ = 3

8

(n2 − 1)4

n2 + 1
.

(48)
If we neglect the nonlinear term μα3, we recover the results
of the linear stability theory, as expected, since Eq. (48) gives
the same linear growth rate σ as Eq. (39).

To gain analytical insight into the behavior of the solution
of the amplitude equation (47) we consider the particular
problem of introducing a finite perturbation of size α(0) from
rest, so that α̇(0) = 0. The solution of the linearized version
of Eq. (47) would then be simply α(t ) = α(0) cosh(σ t ). This
linear solution, together with the form of Eq. (47), suggests
that we first introduce the rescaled variables t̃ = σ t , α̃ =
α/α(0), which transform Eq. (47) to

d2α̃

dt̃2
= α̃ − 2μ̃α̃3, (49)

where

μ̃ = μ[α(0)]2

2σ 2
(50)

is the sole remaining dimensionless parameter and measures
the strength of the nonlinearity in the amplitude equation.

Equation (49) may readily be solved subject to the initial
conditions α̃ = 1 and dα̃/dt̄ = 0 at t̃ = 0 to give

t̃ = (μ̃ − 1)−1/2

[
IE

(
sin−1 α̃,

μ̃

1 − μ̃

)
− IE

(
π

2
,

μ̃

1 − μ̃

)]
,

(51)
where IE (φ, m) = ∫ φ

0 (1 − m sin2 θ )−1/2dθ is the elliptic in-
tegral of the first kind [34]. The solution in Eq. (51) holds
strictly only while α̃ < [(1 − μ̃)/μ]1/2, which in turn requires
t̃ < T̃ /2 where the period of the motion

T̃ = 2(μ̃ − 1)−1/2

{
IE

[
sin−1

(√
1 − μ̃

μ̃

)
,

μ̃

1 − μ̃

]

− IE

(
π

2
,

μ̃

1 − μ̃

)}
. (52)

This analytical solution allows us to discuss briefly the effect
of the nonlinearity. We can see in Fig. 5 the solution for

0 1 2 3 4 5 6
100

101

FIG. 5. The analytical solution of the amplitude equation (49),
plotted from Eq. (51) with three different values of the dimensionless
parameter μ̃, defined in Eq. (50). Results are shown for μ̃ = 10−3

(solid curve), μ̃ = 10−2 (dash-dotted curve), and μ̃ = 10−1 (dotted
curve) together with the prediction of the linear theory, α(t )/α(0) =
cosh(σ t ) (dashed curve). Larger values of the parameter μ̃ lead
to earlier divergence of the amplitude equation from the linear
prediction, i.e., earlier onset of nonlinear effects, even when time is
scaled by the linear growth rate σ .

three values of the parameter μ̃. As might be expected from
the rescaled amplitude equation (49), the results are closer
to the linear solution, α̃(t̃ ) = cosh t̃ , when μ̃ is small. More
quantitatively, the nonlinear term may be neglected while
α̃ � μ̃−1/2, i.e., while t̃ � cosh−1(μ̃−1/2) ∼ −(log μ̃)/2. In
particular, since for large n, σ ∼ n(P − pn)1/2 and μ ∼ 3n6/8
so that μ̃ ∼ 3n4[α(0)]2/[16(P − pn)], we expect that the role
of nonlinearities will become more important more quickly
for larger imposed pressures. (Note that this sense of “faster”
onset of nonlinearity is measured in the natural time variable
t̃ = σ t and so goes beyond the prediction of linear stability
analysis that the linear growth rate of instability also increases
with pressure.)

C. Applications of the weakly nonlinear analysis

Since the amplitude α may readily be computed as a
function of time (by either using the above expressions or by
direct numerical solution of the amplitude equation), we are
now in a position to compare directly the numerical solutions
of the full system with the postbifurcation solution to second
order that is provided by our weakly nonlinear analysis. We
study several aspects of the problem that are accessible in
the full numerical solutions to illustrate the application of
our weakly nonlinear analysis. Before doing so, we note that
the shape of the ring is related to the radial and tangential
displacements (u and v, respectively) via Eq. (24), which may
be written in component form as

x(s, t ) = [1 − u(s, t )] sin s + v(s, t ) cos s, (53)

y(s, t ) = [u(s, t ) − 1] cos s + v(s, t ) sin s. (54)
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FIG. 6. Comparison between the numerical solution (solid curves) and the weakly nonlinear solution (dotted curves) for (a) P = 3.5,
corresponding to mode 2, and (b) P = 8.7, corresponding to mode 3. Shapes are shown at instants of time that start with t = 0.5 and increase
at constant intervals of time δt ; in (a) δt = 0.5 while in (b) δt = 0.25.

As a result, the displacement field can easily be inferred from
the shape, and vice versa.

To facilitate the comparison between the prediction of the
weakly nonlinear analysis and our numerical solution of the
problem, we ensure that we use the same initial conditions in
both problems; in particular, we solve Eqs. (7)–(11) numeri-
cally with an initial condition seeded by the weakly nonlinear
analysis with a particular mode number, i.e., we use Eqs. (53)
and (54) with u, v being the perturbation solution provided by
Eqs. (41)–(46) at t = 0,

x(s, 0) = sin s − α(0)

(
sin s sin ns + cos s cos ns

n

)

− α(0)2

[
(n2 − 1)2

4n2
sin s + (n2 − 1)2

8n3
cos s sin 2ns

]
,

(55)

y(s, 0) = − cos s + α(0)

(
cos s sin ns − sin s cos ns

n

)

+ α(0)2

[
(n2 − 1)2

4n2
cos s − (n2 − 1)2

8n3
sin s sin 2ns

]
,

(56)

rather than the random initial condition (15) used for compu-
tations with fixed pressure, but n not known a priori. Here, we
choose α(0) = 0.01.

a. Shape. We compare the shape obtained by numerically
solving the governing equations with that predicted by the
weakly nonlinear analysis. The predicted shape is recon-
structed from the amplitude α(t ) and using the predictions
(41) and (44). In detail, the profile predicted by the weakly
nonlinear analysis may be constructed as follows: using
Eqs. (41) and (44), the displacement field (u, v) is given
by u = u0 + εu1 + ε2u2 and v = v0 + εv1 + ε2v2, which may
then be directly substituted into Eqs. (53) and (54). The results
of this reconstruction are shown in Fig. 6 together with the
numerical results for P = 3.5 and P = 8.7, which correspond
to the n = 2 and n = 3 modes, respectively. The results of this
comparison are very favorable.

b. Amplitude. We compare the amplitude α(t ) with that
obtained from the numerical simulations. To do so, we com-
pute numerically the function u(s, t ) and extract the amplitude
of its first Fourier component:

αnum(t ) = 1

π

[(∫ 2π

0
u(s, t ) sin ns ds

)2

+
(∫ 2π

0
u(s, t ) cos ns ds

)2
]1/2

. (57)

We see from Fig. 7 that the amplitude equation captures
quantitatively the evolution of the n = 2 mode but only quali-
tatively captures the evolution of the n = 3 mode.

FIG. 7. Evolution of the amplitude α(t ) determined as a function of time from full numerical simulations, using Eq. (57) (solid curves)
together with the corresponding prediction of the amplitude equation (47) (dashed curves). Results are shown for (a) n = 2 and (b) n = 3 with
pressures �P = P − pc(n) = 0.1, 0.25, 0.5, and 0.75 coded by color, as in the legend. [Recall that the critical pressure to excite mode n is
pc(n) = n2 − 1.]
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FIG. 8. Comparison of the change in area enclosed by the ring computed numerically and that predicted from the weakly nonlinear analysis
presented here. Throughout, results are shown for P = 3.5, corresponding to n = 2 (light/gold curves) and P = 8.7, corresponding to n = 3
(dark/blue curves). (a) The relative area change �A/A(0) = 1 − A(t )/A0 as a function of α(t )2 shows that, for early times, the results confirm
the behavior expected from Eq. (59), which become the dashed curves in this plot. Numerical results are shown as solid curves, together with
the prediction of the weakly nonlinear analysis (59) (dashed curves). (b) Plotting �A/A(0) as a function of t on semilogarithmic axes shows
that, at early times, the growth is exponential with growth rate 2σ where σ is as predicted from the linear analysis—�A/A(0) ∝ exp(2σ t )
as shown by the dotted lines. (Here times are shown relative to the time, t1%, at which the relative change in area is 1%.) (c) A plot of the
absolute numerical error, εr = |�A/A(0) − (n2 − 1)α2/2|, as a function of α(t ) shows that this error occurs at higher order in α(t )—most
likely εr (t ) ∝ α(t )4.

c. Area. From the postbifurcation solution to second order,
we can compute the area of the ring including a perturbation
with mode number n. We find that this area is

An(t ) = π − (n2 − 1)π

2
α(t )2. (58)

The change in area, �A(t ) = A(0) − An(t ) = π − An(t ) and
the relative change in area is

�A(t )

A(0)
= 1 − An

π
= n2 − 1

2
α(t )2. (59)

The plots in Fig. 8(a) show that the prediction of Eq. (59)
is in good agreement with the detailed numerical simulations
of the full problem for early times, while the plots in Fig. 8(b)
show that, at early times, the relative change in area grows
according to �A/A(0) ∝ exp(2σ t ) with σ being the growth
rate of the linear instability. Finally, Fig. 8(c) shows that the
error in the area change occurs at higher order in α than O(α2),
confirming that the weakly nonlinear analysis presented here
is correct to this order.

d. Compressive force λ. The amplitude equation can also
be used to study the evolution of the compressive force λ

within the ring: the predicted behavior of λ(s, t ) can readily be
computed once the amplitude equation for α(t ) (47) is solved
numerically.

The comparison between the prediction of the weakly
nonlinear analysis and full numerical simulations is shown
in Fig. 9. As with other variables, the comparison between
numerics and the weakly nonlinear analysis is very good,
particularly at early times. However, this plot of λ(s, t ) reveals
two features that are not so readily observed in other variables:
the oscillations in λ(s, t ) for a fixed time t are not up-down
symmetric and, in particular, the crest of these oscillations
splits in two, showing the importance of a higher frequency
oscillation in the arc length s. Both of these features can be
understood by observing from Eq. (44) that the prefactor of
λ2 ∼ n4α2

1 while Eq. (41) shows that the prefactor of λ1 ∼
n2α1. As a result, λ2 is able to compete with λ1 despite being

strictly at higher order in α: the cos 2ns term in the expansion
of λ(s, t ) can compete with the sin ns term, breaking up-down
symmetry and leading to the splitting of the crests. This is not
so apparent in other variables, since the higher-order terms
remain subdominant for longer; for example, κ2 ∼ α2

1n2 while
κ1 ∼ α1n2.

The appearance of second-order variables with frequency
2n might suggest this as a precursor of a secondary bi-
furcation with frequency doubling. Strictly speaking, this is
not a secondary instability because these higher modes are
present at the primary bifurcation but have very low ampli-
tudes. Furthermore, we note a competing effect that tends

FIG. 9. The evolution of the compressive stress within the ring,
λ(s, t ), for an applied pressure P = 8.7, corresponding to mode 3
[as seen in Fig. 6(b)]. The results of the numerical simulations (solid
curves) agree well with the prediction of the multiple-scale analysis
(dotted black curves). Note, in particular, that at times t = O(1) the
spatial oscillations with arc length s are not up-down symmetric
and that the peaks have a noticeable splitting. These two effects
are purely nonlinear effects and are predicted well by the weakly
nonlinear analysis presented here. (Results are shown for 1/2 � t �
2 at intervals of δt = 1/4.)
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to prevent frequency doubling. Indeed, in the last panel of
Fig. 3 (with P = 256), we observe several events in which
two crests merge into a single crest, which implies that lobes
progressively disappear with time. We hypothesize that this
merger occurs via the “snap-through” of the internal element,
as observed in a simple elastic arch [5].

IV. CONCLUSION

We have presented both linear and weakly nonlinear anal-
yses of the dynamic buckling of an elastic ring subject to
a suddenly imposed external pressure p. Returning to our
initial discussion of the dynamic buckling of a beam under
a compressive force F , we speculated that the same argument
might hold for a ring under pressure p = F/a and, further,
that this is the most important effect of the ring’s curvature.
This analogy is enough to reproduce the main results of
the linear stability analysis for sufficiently large pressures;
detailed calculations showed that the most unstable mode is

nc ≈
(

pa3

2B

)1/2

, (60)

which grows with dimensional growth rate

σmax ≈ 1

2

pa

(ρA×B)1/2
. (61)

These large pressure results are precisely the same as those for
a beam with F = pa. We note that, while inertia is required to
observe buckling at a high mode number, Eq. (60) shows that
the mode number selected is independent of the inertia of the
ring, ρA×. Rather, the inertia of the ring sets the timescale for
the growth of instability, as shown in Eq. (61). The apparent
contradiction that inertia is required to observe a high mode
number but is not involved in the selection of a mode number
is resolved [22] by varying the loading rate to be below that in
Eq. (61).

While a linear stability analysis is sufficient to understand
the early stages of the dynamics, it does not provide any
insight into how the instability develops further. In particular,
the linear stability analysis shows that the area enclosed by
the loop does not change to leading order; moreover, if one
attempts to use its results at higher order, one comes to
the obviously erroneous conclusion that the enclosed area
increases as instability proceeds. Therefore, we performed
a weakly nonlinear analysis that allows us to show that the
relative change in area, �A/A(0), grows exponentially in time,
with growth rate 2σmax. The weakly nonlinear analysis is
able to explain other features of our numerical simulations,
including an apparent frequency doubling of the compressive
force λ within the ring. While this might be expected to lead
to an increase in the mode number with time, we note that
our numerical simulations show that crests tend to merge with
time, presumably due to the increase in confinement that they
experience. The timescale of this coarsening remains to be
understood.

The dynamic buckling we have studied here may have
analogs in other systems of interest. For example, similar
dynamics may be relevant in the collapse of veins [35] for
which it is known that inertial effects due to the fluid-structure

interaction are important [36,37]; however, we also note that,
in these systems, axial modes of deformations often dominate
the radial modes considered here. Finally, we note that the ring
geometry we have studied may be a more promising paradigm
within which to understand dynamic buckling instabilities in
tissue and soft materials. While the uniaxial compression of a
rod has often been studied [21], it can be difficult to impose
a known force experimentally and the resulting instability is
sensitive to the imposed boundary conditions. The circular
symmetry of the ring problem renders the latter issue irrele-
vant while our analysis has shown that, up to the instability,
the ring curvature translates the normal force given by the
applied pressure into a uniform in-plane compression.
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APPENDIX A: DETAILS OF THE NUMERICAL SCHEME

In this Appendix we describe the numerical procedure
used to determine the evolution of an elastic ring subject to
a normal pressure; this motion is governed by the system
(7)–(15) and so it is a numerical solution of these equations
that we seek. We begin by discussing the discretization of the
equations used numerically, before turning to an examination
of the constraint associated with the ring’s inextensibility.

1. Discretization

Following Ref. [38] we discretize Eqs. (7)–(15) in time
t and in arc length s; this results in a system of nonlinear
equations that are solved by using Newton’s method. In
particular, we consider discrete time points t j = ( j − 1)�t ,
where typically �t = 5 × 10−3 in the simulations reported in
the main paper. The arc length along the ring is discretized on
N + 1 grid points at si = (i − 1)�s where �s = 2π/N , and
i ∈ [1, N + 1].

The system (7)–(15) does not involve any time derivative
of the forces Fx and Fy; we therefore cannot use a simple
forward-time-stepping scheme. Instead, we need to solve for
these forces and the rest of the equations together, in a single
time step. To do this we use a one-sided time derivative [39]
accurate to O(�t2); namely,

∂xi

∂t
= 3x j

i − 4x j−1
i + x j−2

i

2�t
= v

j
x,i, (A1)

∂yi

∂t
= 3y j

i − 4y j−1
i + y j−2

i

2�t
= v

j
y,i. (A2)
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FIG. 10. Evolution of the relative error in the total arc length of the ring, �(t j ), defined in Eq. (A11), as computed for the numerical
simulations presented in Fig. 3. Here, we plot the relative error, |(�(t j ) − 2π )/2π |, as a function of time for different driving pressures and
resolutions. (a) With fixed temporal and spatial resolution, �t = 10−3 and N = 256, results are shown for different pressures P = 8 (dots),
P = 32 (squares), and P = 128 (left-pointing triangles). (b) With fixed pressure P = 128, simulation results are shown with different spatial and
temporal resolutions as follows: N = 128 and �t = 5 × 10−3 (triangles), N = 128 and �t = 10−3 (squares), N = 256 and �t = 10−3(dots).
In all these simulations, the magnitude of the relative error remains below 10−12 throughout.

Derivatives with respect to arc length are discretized by
using central differences. The discretized versions of Eqs. (7)–
(11) read

x j
i+1 − x j

i

�s
= cos θ

j
i+1/2, (A3)

y j
i+1 − y j

i

�s
= sin θ

j
i+1/2, (A4)

θ
j

i+1 − θ
j

i

�s
= κ

j
i+1/2, (A5)

κ
j

i+1 − κ
j

i

�s
= F j

x, i+1/2 sin θ
j

i+1/2 − F j
y, i+1/2 cos θ

j
i+1/2, (A6)

v
j
x, i = 3x j

i − 4x j−1
i + x j−2

i

2�t
, (A7)

v
j
y, i = 3y j

i − 4y j−1
i + y j−2

i

2�t
, (A8)

F j
x, i+1 − F j

x, i

�s
− P sin θi+1/2

= 3v
j
x, i+1/2 − 4v

j−1
x, i+1/2 + v

j−2
x, i+1/2

2�t
, (A9)

F j
y, i+1 − F j

y, i

�s
+ P cos θ

j
i+1/2

= 3v
j
y, i+1/2 − 4v

j−1
y, i+1/2 + v

j−2
y, i+1/2

2�t
. (A10)

Note that here we use the notational convention that fi+1/2 =
( fi + fi+1)/2 for f ∈ {vx, vy, θ, κ, Fx, Fy}.

Given the values of the variables at times t j−2 and t j−1,
the system (A3)–(A10) can be solved at time t j by using a
Newton solver; we use the MATLAB routine fsolve to find
these solutions.

2. Inextensibility constraint

Here we discuss the constraint of inextensibility focus-
ing, in particular, on whether the total length of the ring is
preserved over time during the integration. Our approach is
intended to ensure that the inextensibility constraints (7) and
(8) are automatically satisfied; this is achieved by solving
Eqs. (A3) and (A4) together with the remaining equations
(A5)–(A10) at each time step.

In the following, we check that the inextensibility con-
straint is satisfied for the simulations reported in Fig. 3. To
do this, we numerically determine the arc length of the ring as

�(t j ) =
N∑

i=0

[(
x j

i+1 − x j
i

)2 + (
y j

i+1 − y j
i

)2]1/2
. (A11)

In Fig. 10, we plot the magnitude of the relative error in
the total arc-length of the ring, |(�(t j ) − 2π )/2π |, as a func-
tion of time for different values of the driving pressure and
for different spatiotemporal resolutions. Figure 10(a) shows
simulations for different values of pressures, P = 8, 32, 128,
at a fixed value of the time step and number of grid points
(�t = 10−3 and N = 256). In contrast, Fig. 10(b) shows the
relative error for simulations with a fixed pressure, P = 128,
but different spatial and temporal resolutions. We see here
that the ring does indeed maintain its length over time as
guaranteed by our numerical scheme—the magnitude of the
relative error in the total length for the simulations reported in
Fig. 3 remains less than 10−12 throughout.

Finally, we discuss two limitations of our numerical
scheme. First, the initial conditions we used, i.e., Eq. (15)
contains a random noise at each spatial grid point. This means
that the initial condition is mesh dependent. However, during
the simulations reported in Fig. 3 we noticed that, at the first
time step, the solutions initially converge to a circular ring
shape, and then the fastest growing modes start emerging. This
suggests that the observed instability is an intrinsic feature
of the solutions of Eqs. (7)–(11). Second, it is to be noted
that since we have used a backward differentiation formula
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(BDF2) in Eqs. (A1) and (A2), it follows that our scheme will
be dissipative, and only accurate at O(�t2). This limitation
implies that the solutions reported in this paper cannot be
expected to be accurate at very late time—a limitation that
might be overcome by using a symplectic integrator or, in
general, a geometric integrator [40].

APPENDIX B: DETAILS OF THE WEAKLY
NONLINEAR ANALYSIS

In this Appendix, we provide more details of the weakly
nonlinear analysis that is performed to describe the behav-
ior when the pressure is just above the critical pressure of
buckling of the nth mode. We introduce U = [u, v, φ, κ, λ]T

and linearize equations (29)–(33) around the static solution
U0 = [0, 0, 0, 1,−P − 1]T by computing U = U0 + εU1 to
first order. We obtain a linear homogeneous system of the
form

LPU1 = 0, (B1)

where LP is a linear differential operator in s and t with
constant coefficients and is dependent on the control param-
eter P. The solution of this equation is given by Eq. (41)
with α1(t ) = exp(σ t ). Here, the growth rate σ is given by
the dispersion relation depending on mode n and pressure P:
σ = σ (n, P). We define the critical pressure pn by the first
positive root of σ (n, pn) = 0, which leads to pn = n2 − 1.
The leading-order problem therefore precisely reproduces the
results of the linear stability analysis, as it must.

Next, we perform the weakly nonlinear analysis. We as-
sume that the pressure P = pn + ε2 is slightly above the
critical pressure pn. By doing so, we relate the distance to
the bifurcation to a small parameter ε. Furthermore, since we
place ourselves at the bifurcation, the only dependence on
time is through a slow timescale. An analysis of the dispersion
relation shows that the relevant growth rate is O(ε) and hence
we expect evolution to occur on a timescale τ = εt . This
motivates the expansion

U = U0 + εU1 + ε2U2 + ε3U3 + O(ε4), (B2)

where U0 is as before and U j = [u j (s, εt ),
v j (s, εt ), φ j (s, εt ), κ j (s, εt ), λ j (s, εt )]T . Substituting this
expansion into the governing equations (29)–(33) results in
a hierarchy of systems for the U j . To first order, the system
reads LpnU1 = 0 and due to the particular choice of P, we
obtain (41) where P = pn and α1(τ ) is now arbitrary.

To second order, we obtain a system of the form

LpnU2 = G2(U1), (B3)

whose unknown is U2 and where G2(U1) is a function of U1.
The solution of this system is

U2 = α2
1 (τ )

8n3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2n(n2 − 1)2

−(n2 − 1)2 sin(2ns)

−2n(n2 − 1)2 cos(2ns)

−(n2 − 1)2 sin(2ns)

2n (n4−1)2

(n+1)2 cos(2ns)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (B4)

To third order, the system for U3 reads

LpnU3 = G3(U1,U2, α1,ττ ), (B5)

where the extra dependence on the second derivative of α1(τ ),
α1,ττ , comes from the assumption of the long timescale.
In general, this system does not have a solution because
the inhomogeneous term is not in the image of the op-
erator Lpn . Therefore, a compatibility condition, the so-
called Fredholm alternative [25,33], needs to be used. Let
ξ be the solution of the homogeneous adjoint problem
L∗

pn
ξ = 0. The compatibility condition to third order simply

reads

ξ · G3(U1,U2, α1,ττ ) = 0. (B6)

This condition provides a differential equation for α1.
Taking into account the different change of variable
and defining α(t ) = εα1(εt ), we obtain the amplitude
equation (47).

Once U is known to second order, we may use the relations
(24) to express the position of the ring in Cartesian coordi-
nates. Accurate to O(ε2) we find that

x(s, t ) = sin (s) − α(t )

(
sin s sin ns + cos s cos ns

n

)

− α2(t )

[
(n2 − 1)2

4n2
sin s + (n2 − 1)2

8n3
cos s sin 2ns

]
,

(B7)

y(s, t ) = − cos s + α(t )

(
cos s sin ns − sin s cos ns

n

)

+ α2(t )

[
(n2 − 1)2

4n2
cos s − (n2 − 1)2

8n3
sin s sin 2ns

]
.

(B8)

We may use Eq. (27) to express θ (s, t ), which is

given by

θ (s, t ) = s + n2 − 1

n
α(t )(cos ns − 1)

− (n2 − 1)2

8n3
α2(t ) sin 2ns. (B9)

Similarly, the expression for the internal forces may be
expressed in Cartesian coordinates by using Eq. (19), which
is given component-wise as

Fx = ∂2θ

∂s2
sin θ +

(
∂θ

∂s

)2

cos θ + λ cos θ, (B10)

Fy = −∂2θ

∂s2
cos θ +

(
∂θ

∂s

)2

sin θ + λ sin θ. (B11)
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