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Low-frequency vibrations of jammed packings in large spatial dimensions
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Amorphous packings prepared in the vicinity of the jamming transition play a central role in theoretical
studies of the vibrational spectrum of glasses. Two mean-field theories predict that the vibrational density of
states g(ω) obeys a characteristic power law, g(ω) ∼ ω2, called the non-Debye scaling in the low-frequency
region. Numerical studies have, however, reported that this scaling breaks down at low frequencies, due to
finite-dimensional effects. In this study, we prepare amorphous packings of up to 128 000 particles in spatial
dimensions from d = 3 to d = 9 to characterize the range of validity of the non-Debye scaling. Our numerical
results suggest that the non-Debye scaling is obeyed down to a frequency that gradually decreases as d increases,
and possibly vanishes for large d , in agreement with mean-field predictions. We also show that the prestress is
an efficient control parameter to quantitatively compare packings across different spatial dimensions.
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I. INTRODUCTION

Amorphous solids represent a ubiquitous state of matter.
Despite their importance, understanding their properties has
been a challenge in condensed matter physics for a long
time. However, recent studies on the jamming transition have
opened the door to fundamental progress to understanding
the physics of glasses [1–10]. When a packing of athermal
particles interacting through a repulsive, finite-range potential
is compressed, particles start to overlap with each other at a
certain density, where the packing acquires a finite pressure
p and shear modulus G, i.e., it becomes a solid. This is the
jamming transition. Jammed systems can be considered as
a simple model system for glasses, and such models have
enabled the construction of sophisticated theories [4,5,8–10]
that rely on the specific critical properties of the jamming
transition.

Close to the transition, mechanical and geometrical observ-
ables display power-law dependencies on the distance to the
jamming transition point [1,2]. Usually, the pressure p or
the excess packing fraction �φ = φ − φJ are used to measure
the distance from the jamming transition, where φJ is the
packing fraction at the transition point. Both quantities are
easy to control in simulations and experiments, and they obey
the simple relation p ∼ �φ. The shear modulus G follows
instead the scaling law G ∼ p1/2 close to jamming [1,2],
and thus, the system gradually acquires rigidity as pressure
increases above jamming. The contact number per particle,
z, characterizes the geometrical properties of such packings,
and it becomes exactly twice the spatial dimensionality d
at the transition point, which can be understood from the
Maxwell criterion [11]. Defining the excess contact number as
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δz = z − 2d , the scaling relation δz ∼ p1/2 then holds [1,2]. In
addition to the above scaling relations, many other quantities
show power-law behaviors, such as the radial distribution
function and the force distribution [1,2,12–14], for which
accurate theoretical descriptions are now available [15,16].

In addition, the vibrational properties of jammed systems
have attracted intense attention. One motivation is that they
are expected to shed new light on the low-frequency vi-
brational properties of structural glasses, which govern their
low-temperature thermal properties [17–19], the structural
relaxation of supercooled liquids [20,21], and their mechan-
ical failure under load [22–24]. In particular, the vibrational
density of states (vDOS) g(ω), where ω is the frequency,
is a central quantity for characterizing the vibrational prop-
erties of a material. Near the jamming transition point, a
characteristic plateau g(ω) ∼ ω0 is observed [1–3,6]. The
onset frequency of the plateau is denoted by ω∗, and this
onset frequency goes to zero as the system approaches the
jamming transition, with a power-law dependence of ω∗ ∼
p1/2 [3,6]. Below ω∗, the vDOS shows a quadratic frequency
dependence g(ω) ∼ (ω/ω∗)2 [9,25,26]. Since this dependence
is independent of the number of spatial dimensions d , it is
different from the Debye law gDebye(ω) ∼ ωd−1 [17], except in
the important case where d = 3. Hence, this is called the non-
Debye scaling [25]. The non-Debye scaling does not seem to
extend to zero frequency. Instead, below a certain frequency,
spatially localized vibrations called quasilocalized vibrations
(QLVs) coexist with plane waves, or phonons [26–28]. These
QLVs obey a quartic power law [26–32], namely, gQLV(ω) ∼
(ω/ω∗)4 [26,31]. As a result, particularly in three-dimensional
space (d = 3), the non-Debye scaling manifests itself as a
peak in the reduced vDOS g(ω)/ω2, called the boson peak
[33–35]. We remark that since the Debye law is gDebye(ω) ∼
ω2 for d = 3, the reduced vDOS is g(ω)/ω2 ∼ g(ω)/
gDebye(ω).
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To explain these observations, two kinds of mean-field the-
ories have been developed: the replica theory for a perceptron
[10,36,37] and the effective medium theory (EMT) [8,9,38].
The former [10,36,37] addresses a perceptron model, which is
considered to belong to the same universality class as jammed
materials. The latter [8,9,38] maps a jammed solid onto a
disordered lattice and then considers the resulting equations of
motion. Both theories predict that the vDOS should become
flat for ω > ω∗ and should exhibit the non-Debye scaling
g(ω) ∼ ω2 for ω < ω∗. Both these theories obtain the non-
Debye scaling as a consequence of the marginal stability of
the system [9,10,39]. Mathematically, marginal stability trans-
lates into full replica symmetry breaking in the replica theory
and an elastic instability in the effective medium theory. In
particular, when the system is on the verge of instability,
the non-Debye scaling becomes gapless [9,10], namely, the
scaling g(ω) ∼ ω2 extends down to zero frequency and should
dominate (and replace) the usual Debye law for solids. These
theories therefore predict that for three dimensions, the boson
peak will not be a “peak” in a marginally stable glass but that
instead, the reduced vDOS g(ω)/ω2 should take at low ω a
constant value which is larger than the Debye prediction.

However, simulations of three-dimensional systems have
found that the boson peak is, perhaps unsurprisingly given its
name, just a peak. The non-Debye scaling does not extend to
zero frequency, and instead, QLVs appear at low frequency
and dominate the low-frequency behavior. This discrepancy
between the simulations and theories can be attributed to
either of two incompatibilities between them. (1) The theories
are of mean-field nature and are expected to work well only
in the infinite-dimensional limit, whereas the simulations are
performed in a finite number of dimensions (mostly, three).
Therefore, the breakdown of the non-Debye scaling and the
appearance of the QLVs may be due to finite-dimensional
effects. (2) Theories do not directly address the packing of
particles. The replica theory considers a perceptron model,
whereas effective medium theory focuses on a spring network
on a disordered lattice. The real packings of the particles may
not be similar to these models, even in the infinite-dimensional
limit.

To understand the discrepancy between the simulations and
theories, it is necessary to numerically access the full fre-
quency range of the non-Debye scaling for large-dimensional
systems, to see whether and how the vDOS converges to
the theoretical prediction in the large d limit. Previously,
Charbonneau et al. [25] studied vibrations in packings of
particles in d = 3–7 and provided evidence in favor of the
existence of a region of quadratic non-Debye scaling in these
dimensions. Kapteijns et al. [32] studied d = 2–4 and estab-
lished instead the existence of the quartic law due to QLVs
in these dimensions, using similar models and parameters to
those of Charbonneau et al. Therefore, the validity range of the
non-Debye scaling was not accessed in these earlier studies,
and the important question regarding the discrepancy with the
theory has not been addressed.

In this work, we study the vibrational properties of pack-
ings of up to N = 128 000 particles in dimensions d = 3–9
and answer the questions raised above. Before studying the
dependence of the vDOS on the spatial dimensionality, we
first consider the appropriate normalization of our control

parameter. Although the excess packing fraction �φ and the
pressure p are useful quantities in low-dimensional systems
for characterizing the distance from the jamming transition,
their complicated dependence on d makes it difficult to com-
pare different dimensionalities. Instead, we use the prestress,
e [5,9], which we define shortly. This quantity is more easily
normalized and handled in different spatial dimensions. By
analyzing the excess contact number and the onset frequency
for the characteristic plateau in the vDOS, we show that
this choice enables us to best compare packings in differ-
ent dimensions. We then extract the onset frequency of the
non-Debye scaling and study its dependence on the spatial
dimensionality. We find that the onset frequency decreases
with increasing d , suggesting that the non-Debye scaling
region extends to lower frequency with an increasing number
of dimensions, at least up to d = 9. Our numerical results
suggest that the vDOS converges to the predicted form and
that the non-Debye scaling becomes gapless even in real
particle systems in the infinite-dimensional limit.

In Sec. II we present the model and methods used in the
present study. In Sec. III we present the numerical results, and
we discuss them in Sec. IV.

II. MODEL AND METHODS

We generated monodisperse packings of particles of mass
m in a periodic cubic box. The particles interact via a finite-
range harmonic potential:

φ(r) = ε

2

(
1 − r

σ

)2
H (σ − r), (1)

where r is the distance between two particles; ε and σ are
the characteristic energy and length scales, respectively; and
H (x) is the Heaviside step function, i.e., H (x) = 1 for x � 0
and H (x) = 0 for x < 0. In this paper, we report the length,
mass, and time in units of σ , m, and

√
mσ 2/ε, respectively.

The considered spatial dimensionalities are d = 3, 4, 5, 6,
7, 8, and 9. For each d , we prepared packings of N = 8000,
16 000, 32 000, 64 000, and 128 000 particles. For each system
size, we prepared a single configuration. The mechanically
stable configurations (inherent structures) were generated via
quenching from random configurations using the FIRE algo-
rithm [40].

After obtaining the inherent structures and removing rat-
tlers (with a contact number of less than d), we carried out a
normal mode analysis. We calculated the dynamical matrix,
which is the second derivative of the system potential U =∑

i< j φ(ri j ) with respect to the particle positions {ri}N
i=1:

∂2U

∂ri∂r j
=

{
r̂i j r̂T

i jφ
′′(ri j ) − (

Id − r̂i j r̂T
i j

)[−φ′(ri j )

ri j

]}
δ〈i j〉

+
∑
j′( �=i)

{
r̂i j′ r̂T

i j′φ
′′(ri j′ )−

(
Id −r̂i j′ r̂T

i j′
)[−φ′(ri j′ )

ri j′

]}
δi j,

(2)

where r̂i j = ri j/ri j = (ri − r j )/|ri − r j | is the unit vector
along the direction of the vector joining particles i and j, Id

is the d × d identity matrix, and δ〈i j〉 = 1 when i and j are in
contact. We calculated all eigenvalues λk and the associated
eigenvectors ek = (ek

1 · · · ek
N ) of the dynamical matrix using
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LAPACK [41] for the configurations with N = 8000, where
the k = 1, . . . , dN are the labels of the eigenmodes. For
N � 16 000, it would be practically impossible to obtain all
the eigenmodes; therefore, we instead calculated the smallest
eigenvalues and the associated eigenvectors using ARPACK

[42].
Based on the vibrational eigenmodes, we define three

quantities. The first is the participation ratio [43–45]

Pk = 1

N

[
N∑

i=1

(
ek

i · ek
i

)2

]−1

. (3)

This is a measure of the degree of localization. When all
particles vibrate equally, Pk = 1, and when only one particle
vibrates, Pk = 1/N . The other quantities are the vDOS

g(ω) = 1

dN − d

dN−d∑
k=1

δ(ω − ωk ), (4)

where ωk =
√

λk is the eigenfrequency, and the associated
cumulative distribution (CD)

C(ω) =
∫ ω

0
dω′g(ω′) = 1

dN − d

dN−d∑
k=1

H (ω − ωk ). (5)

Note that in the definitions of the vDOS and the CD, we
exclude the d zero modes corresponding to global transla-
tions. Although the vDOS is sufficient for the study of the
non-Debye scaling region, the CD is free from binning errors
and thus is helpful for studying the lowest-frequency regime.
We calculated the vDOS and the CD for each N , and the
averaged results are presented.

Since we are mainly interested in the non-Debye scaling
g(ω) ∼ ω2, we define and study the reduced vDOS g̃(ω) =
g(ω)/ω2 and the reduced CD C̃(ω) = C(ω)/ω3 [46].

III. RESULTS

A. Scaling based on the prestress

To discuss the vibrational properties of jammed systems,
we first have to specify a control parameter to express the
distance from the jamming transition. Usual choices are the
excess packing fraction, �φ = φ − φJ or �φ/φJ , and the
pressure, p [1–3,6,7,25]. However, the excess packing fraction
is not convenient for our study because φJ depends on d and
on the preparation protocols in a highly nontrivial manner
[47,48], making it difficult to compare different dimension-
alities and different protocols [49]. The pressure is also not a
very convenient choice because it is equal to the total virial
divided by the volume of the system [50], and the volume of a
jammed system also depends on d in a very complicated way.
As a result, the pressure and excess packing fraction cannot
be well controlled for different dimensionalities.

A natural choice for the control parameter is found by
considering the dynamical matrix given in Eq. (2) [5,9,38].
In Eq. (2), there are two terms in curly brackets. The first
one is proportional to the second derivative of the potential
φ′′(r) = 1, and the second one is proportional to the force
−φ′(r) = 1 − r. The first term is always positive and can be
simply interpreted as the stiffness of the spring between i and

j. The second term is negative and destabilizes motions along
the d − 1 directions perpendicular to r̂i j . The competition
between these two terms is crucial for the stability of the
system. Therefore, we define the ratio of the second term
to the first term as e = (d − 1)〈−φ′(ri j )/ri jφ

′′(ri j )〉i j = (d −
1)〈1/ri j − 1〉i j , where 〈·〉i j is the average over all contacts.
This ratio is usually called the prestress [5,9,38]. Note that the
prestress is proportional to the pressure near the jamming tran-
sition with a fixed d . Since EMT predicts that ω∗ ∼ δz ∼ e1/2

[5,9], the prestress is a more fundamental quantity than the
pressure is for discussing the scaling relation. Furthermore,
the excess contact number is of order d , and thus, a suitable
normalization for it is δz/2d = z/2d − 1 [8,9,38].

Figure 1 shows (a) the excess contact number δz/2d and
(b) the onset frequency of the plateau in the vDOS ω∗ as
functions of e. The former is measured for N = 16 000, and
the latter is measured for N = 8000 [51]. Since ω∗ cannot
be defined far from the jamming transition, we do not have
data for e � 0.07 in Fig. 1(b). In both Figs. 1(a) and 1(b),
the data collapse to a single master curve. For e � 0.01, we
obtain δz/2d ≈ 1.8e1/2 and ω∗ ≈ 1.95e1/2 (solid lines), which
work almost perfectly in all dimensions. For e � 0.01, δz/2d
and ω∗ start to deviate from these power laws. However, the
data still collapse to a single master curve even in this region,
especially in large d . This suggests that our normalization
is valid even far from the jamming transition point, where
these quantities no longer follow a power-law scaling. At even
larger e, the excess contact number exhibits a kink: the most
visible case is at e ∼ 0.4 in d = 3. This kink corresponds to
the crossover to “deeply jammed” solids, in which particles
interact with their second-nearest neighbors [52,53].

From now on, we use e as the control parameter to discuss
the vibrational properties of jammed systems in various spa-
tial dimensions.

B. Vibrational properties

Having identified the appropriate control parameter e, we
then generate packings with identical prestress values, e =
0.25, 0.2, 0.15, 0.1, 0.05, and 0.01 for dimensions 3 � d �
9 and particle number 8000 � N � 128 000, and analyzed
their vibrational properties. To generate packings with a given
target prestress, we first obtain the mechanically stable con-
figuration at high density by quenching (see Sec. II), and
iteratively compressed or decompressed them until the target
prestress is reached [54]. Note that for the case N = 128 000,
we could prepare only packings of e � 0.15 in d = 6, e =
0.25 in d = 7, e = 0.25 in d = 8, and e = 0.2 in d = 9.

First, we plot the participation ratio Pk in Fig. 2. Since
the results are qualitatively the same for all e, we only show
the data for e = 0.1 in odd numbers of dimensions. From
this figure, we see that the vibrations in the high-frequency
regime have large Pk values, i.e., they are extended. On the
other hand, in the low-frequency regime, the participation
ratio gradually decreases, signaling the existence of QLVs.
As the dimensionality increases, the vibrations become more
extended, and the onset frequency where the vibrations start
to be localized decreases, as previously observed in Ref. [25].
This implies that the non-Debye scaling g(ω) ∼ ω2, which
consists of extended vibrations, may be obeyed over a broader
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FIG. 1. (a) The excess contact number δz divided by 2d as a function of the prestress e measured for N = 16 000. (b) The onset frequency
ω∗ as a function of the prestress measured for N = 8000. In both plots, the solid lines are proportional to e1/2, with the indicated numerical
prefactors.

range of frequencies towards small frequencies as the number
of spatial dimensions increases.

To quantitatively investigate the non-Debye scaling, we
calculated the vDOS and the CD. In Fig. 3, we plot
the reduced vDOS for all e in d = 6. In all cases, we observe
the plateaus g̃(ω) ∼ ω0, which correspond to the non-Debye
scaling g(ω) ∼ ω2. Interestingly, although the non-Debye
scaling was initially discussed in the context of the jamming
transition, it can be observed even for e � 0.01, where the
power-law relation between the excess contact number and the

10−3

10−2

10−1

100

10−1

P
k

ωk

d = 3
d = 5
d = 7
d = 9

FIG. 2. The participation ratio as a function of the frequency for
e = 0.1. Each point indicates an eigenmode. We show the data of
N � 128 000 for d = 3 and 5 and N � 64 000 for d = 7 and 9. We
used the data only in odd numbers of dimensions for visualization
purposes.

prestress no longer holds, as shown in Fig. 1. This suggests the
possibility that the non-Debye scaling of the vDOS is a robust
feature of amorphous solids, irrespective of the jamming
transition. We will further discuss this point in Sec. IV. From
the data for e � 0.1, we can appreciate the full frequency
dependence of the non-Debye contribution to the density of
states and estimate where it begins and where it ends. Thus,
in the following, we focus on the case e � 0.1 to discuss the
dimensional dependence of the frequency range where the
non-Debye scaling holds.

10−2

10−1

100

101

10−2 10−1 100

g̃
(ω

)

ω

e = 0.25
e = 0.2

e = 0.15
e = 0.1

e = 0.05
e = 0.01

FIG. 3. The reduced vDOS in d = 6 for e = 0.25, 0.2, 0.15, 0.1,
0.05, and 0.01. This was obtained by averaging over different system
sizes and for each system size, we prepared a single configuration.

052906-4



LOW-FREQUENCY VIBRATIONS OF JAMMED PACKINGS … PHYSICAL REVIEW E 101, 052906 (2020)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.5 1 1.5 2 2.5 3 3.5

(a)

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5

(b)

10−2

10−1

100

10−1 100

(c)

g(ω) ∝ ω2

g(ω) ∝ ω4

10−2

10−1

100

10−1 100

(d)

C(ω) ∝ ω3

C(ω) ∝ ω5

g
(ω

)

ω

C
(ω

)

ω

g̃
(ω

)

ω

d = 3
d = 4
d = 5
d = 6
d = 7
d = 8
d = 9

C̃
(ω

)

ω

FIG. 4. (a) The vDOS, (b) the CD, (c) the reduced vDOS, and (d) the reduced CD for e = 0.1. For the data for the other prestresses e, see
Sec. SI of the SM. The solid lines in (c) and (d) are the frequency dependence of the non-Debye scaling. The dotted lines in (c) and (d) have
slope 2 and 3, respectively, indicating the frequency dependence of the QLVs, g(ω) ∝ ω4. These were obtained by averaging over different
system sizes and for each system size, we prepared a single configuration.

In Fig. 4, we offer several data representations of the
density of states for various numbers of dimensions at a fixed
prestress of e = 0.1. The data for the other values of the
prestresses e are available in Sec. SI of the Supplemental
Material (SM) [55].

Figures 4(a) and 4(b) show the vDOS and the CD, respec-
tively. These plots indicate that as d increases at a fixed e, the
vDOS and the CD overall converge to dimension-independent
functions. This finding is consistent with the results for the
scaling behaviors of δz/2d and ω∗ in Fig. 1. We note that the
two peaks of the vDOS at ω ∼ 1.5 and 2.5 for d = 3 disappear
and merge to form a single broad peak in a large number of
dimensions.

To examine the non-Debye scaling in the low-frequency
regime, we plot the reduced versions of these functions for the
same prestress, e = 0.1, in Figs. 4(c) and 4(d). We can clearly
see that these functions depend on the dimensionality in the

lowest-frequency region. The results in d � 4 nearly collapse
for ω � 0.1, and a fit to the data to a plateau corresponding to
the non-Debye scaling is convincing, even on a logarithmic
scale. This implies that the prefactor of the quadratic non-
Debye scaling does not depend on d for d � 4, and is solely
controlled by the value of prestress e.

On the other hand, when we focus on ω � 0.1, we see that
the non-Debye scaling region extends to lower frequencies
with increasing d from d = 4 to 9. Since the quartic frequency
dependence of the QLVs gQLV(ω) ∼ ω4 has been reported in
a previous study [32], we show the corresponding dotted lines
of slope 2 in Fig. 4(c) and of slope 3 in Fig. 4(d). These fits
suggest that the QLVs survive up to dimension d = 9, but
appear at lower frequencies for larger d .

To quantitatively study this behavior, we measured the
frequency width of the non-Debye scaling region. We ex-
tracted the two frequencies at which the reduced distribution
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FIG. 5. (a) ωC
min, (b) ωC

max, and (c) ωC
max/ω

C
min as functions of d .

The data are connected by lines (this is not a fit). For the data for
ω

g
min and ωg

max, see Sec. SI of the SM.

is smaller than its maximum by 10%, which we denote by
ωmax and ωmin (with the convention ωmin < ωmax). We use a
superscript g or C to specify the function from which each
of these frequencies was extracted, i.e., four frequencies are
considered for each e: ω

g
min, ω

g
max, ωC

min, and ωC
max. In Fig. 5,

we plot (a) ωC
min, (b) ωC

max, and (c) ωC
max/ω

C
max as functions

of d for e � 0.1. The data for ω
g
min and ω

g
max, which exhibit

qualitatively the same behaviors as ωC
min and ωC

max, are shown
in Sec. SI of the SM. The value of ωC

min decreases with
increasing d for d � 4, whereas ωC

max increases at small d and
then quickly saturates for d � 5. These results are consistent
with the observations in Figs. 4(b) and 4(d). From these two

results, we conclude that the non-Debye scaling region applies
over a broader frequency range with increasing d . By dividing
ωC

min by ωC
max, we clarify this tendency in Fig. 5(c). This

plot shows that ωC
max/ω

C
min increases for all e as the number

of spatial dimensions increases. Therefore, we conclude that
the non-Debye scaling region becomes broader for larger
dimensionality.

Although our data are limited to d � 9, the non-Debye
scaling region continuously extends with increasing dimen-
sionality without any sign of saturation; thus, we expect that
the vDOS of a jammed particle system approaches the gapless
non-Debye scaling in the large-dimensional limit; namely, it
converges to the form predicted by effective medium theory
[9] and by replica theory for a perceptron [10]. We are not
aware of any theoretical prediction for how fast the large d
limit should be reached by increasing d , but the data presented
in this work suggest that the convergence, even if real, is
rather modest as the frequency width of the non-Debye scaling
seems to grow linearly with d . Similar convergences towards
the large d limit in the context of mean-field theory is not
infrequent [56,57].

IV. SUMMARY AND DISCUSSION

In this work, we have numerically studied the low-
frequency vibrational properties of jammed particles in d =
3–9 spatial dimensions. We first showed that the prestress e =
(d − 1)〈1/ri j − 1〉i j is an appropriate control parameter for
studying jamming scaling behaviors in different dimensions.
In particular, the excess contact number divided by 2d , δz/2d ,
and the onset frequency of the flat region of the vDOS,
ω∗, in various dimensions were shown to follow universal
functions of the prestress e; near the jamming transition,
δz/2d ≈ 1.8e1/2 and ω∗ ≈ 1.95e1/2 work almost perfectly in
any number of dimensions. Then, by comparing the vDOS in
different dimensions at the same prestress e, we studied the
dimensional dependence of the vDOS in the low-frequency
region. Our system sizes of N = 8000–128 000 enabled us
to capture the full frequency range of the non-Debye scaling
g(ω) ∼ ω2 in d = 3–9. We found that the non-Debye scaling
appears below ω∗ in all dimensions and that the frequency
width of the non-Debye scaling region grows with increasing
dimensionality without any sign of saturation. From these
findings, we expect that the vDOS of a real packing of
particles converges to the gapless non-Debye scaling in the
large-dimensional limit, thus fully supporting the prediction
of effective medium theory [9] and replica theory for a per-
ceptron [10].

Related to this finding, two comments are in order. The
first concerns the precise form of the dimensional dependence
of ωC

max/ω
C
min. A packing of particles in finite dimensions will

include rattler particles that do not contribute to the rigidity
[2]. The presence of rattlers is a kind of finite-dimensional
effect, and previous studies have established that the fraction
of rattlers decreases with increasing dimensionality [12]. This
decrease is very rapid, with the fraction following ∝e−αd with
a constant α [12]. Based on this observation, one might expect
that the finite-dimensional effect in the vDOS should also
vanish exponentially with increasing d , i.e., that ωC

max/ω
C
min

should increase exponentially. However, we found that the
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dimensional dependence of ωC
max/ω

C
min is not very dramatic,

at least in d � 9, and that the data are still compatible with a
linear dependence on d . It would be interesting to determine
whether ωC

max/ω
C
min ultimately grows exponentially at d � 10,

although the computational cost of such a study is beyond our
reach for the moment.

Second, our study established that the non-Debye scaling
holds even far from the jamming transition point, as shown
in Fig. 3 and discussed in the corresponding paragraph. This
result suggests that the non-Debye scaling may be more
universal than discussed so far in the context of the jamming
transition. In fact, not only the theories for jammed solids
[9,10,38] but also elasticity theory with a fluctuating elastic
modulus [58,59] predict a quadratic frequency dependence
of the vDOS near the BP frequency. The latter theory is not
rooted in jammed materials and regards glasses as elastic

continua with a spatially fluctuating elastic modulus to de-
scribe the universal behaviors of the low-frequency excita-
tions [58,59]. In this respect, it will be interesting to study
whether amorphous solids with other potentials, such as the
Lennard-Jones potential, also exhibit non-Debye scaling in
large dimensions. This topic will be addressed in future work.
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