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Stress transmission in cemented bidisperse granular materials

K. Heinze ,1,2,* X. Frank,1 V. Lullien-Pellerin ,1 M. George,2 F. Radjai,3 and J.-Y. Delenne 1,†
1IATE, Université de Montpellier, INRA, CIRAD, Montpellier SupAgro, Montpellier, France

2L2C, Université de Montpellier, CNRS, Montpellier, France
3LMGC, Université de Montpellier, CNRS, Montpellier, France

(Received 25 October 2019; revised manuscript received 20 February 2020; accepted 8 April 2020;
published 4 May 2020)

We analyze stress distributions in a two-dimensional bidisperse cemented granular packing for a broad range
of the values of particle-size ratio, the volumes of large and small particles, and the amount of cementing matrix.
In such textured porous materials, the stress concentration, which controls the fracture and fragmentation of
the material under tensile loading or in grinding processes, reflects not only the porosity but also the contact
network of the particle phase and the resulting stress chains. By means of peridynamic simulations under
tensile loading, we show how both the texture and stress distribution depend on size ratio, volume ratio, and
the amount of the cementing matrix. In particular, the volume fraction of the class of small particles plays a
key role in homogenizing stresses across the system by reducing porosity. Interestingly, the texture controls
not only the porosity but also the distribution of pores inside the system with its statistical variability, found
to be strongly correlated with the homogeneity of stresses inside the large particles. The most homogeneous
stress distribution occurs for the largest size ratio and largest volume fraction of small particles, corresponding
to the lowest pore size dispersion and the cushioning effect of small particles and its similar role to the binding
matrix for stress redistribution across the packing. At higher porosity, the tensile stresses above the mean stress
fall off exponentially in all phases with an exponent that strongly depends on the texture. The exponential part
broadens with decreasing matrix volume fraction and particle-size ratio. These correlations reveal the strong
interplay between size polydispersity and the cohesive action of the binding matrix for stress distribution, which
is significant for the behavior of textured materials in grinding operations.

DOI: 10.1103/PhysRevE.101.052901

I. INTRODUCTION

Cemented granular materials (CGM) consist of particles
that form a dense granular backbone consolidated by a ce-
menting phase. This class of materials includes some biomate-
rials such as wheat endosperm [1–3], sedimentary rocks [4,5],
and building materials such as concrete [6]. Their elastic and
failure properties are therefore of broad interest and raise at
the same time fundamental questions as to the combined ef-
fects of microtexture and cementing matrix on the mechanical
behaior.

The microtexture of a CGM can be described in terms of
the spatial organization of the particles and binding phase,
including possible empty spaces (voids) in the matrix. A key
feature of the microtexture is the granular contact network,
which leads to a strongly inhomogeneous distribution of
stresses, underlying the elastic properties and failure behavior.
Among various system parameters, the particle-size distribu-
tion (PSD) [7–11], particle shapes [12,13], and porosity and
pore shapes [2,3,14–16] have been at the focus of several
recent investigations, many of them based on simulations
by the discrete element method (DEM). Often, the effect of
each material parameter (particle shape, particle sizes, phase
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volume fractions, etc.) is considered independently of the
effects of other parameters. However, parameters such as
particle-size ratio, porosity, and cementing matrix volume are
linked to one another, and their influence on the mechanical
behavior can not be considered separately.

In this paper, we present a parametric study of the com-
bined effects of particle-size distribution and cementing phase
volume fraction on stress transmission in a CGM. The stress
transmission features are crucial as an intermediate informa-
tion between the microstructure and the mechanical behavior
in response to external loading. In other words, the elastic
properties and failure of a CGM are related to the distribu-
tion of stresses in the particle and matrix phases as well at
the contact zones between particles. The elastic properties
and failure CGMs will be at the focus of a forth-coming
paper. Here, we focus on stress transmission by considering
a two-dimensional CGM consisting of a dense packing of
spherical disks, whose interstitial space is partially filled with
a cementing matrix. The bidisperse-size distribution of the
spherical particles is described in terms of two parameters:
the size ratio and the volume ratio of large particles to small
particles. These parameters are varied independently within a
broad range of values.

With this broad array of samples, we construct a large
number of microtextures within the parameter range. In each
sample, a binding matrix is added to the particle assembly.
The amount of matrix is varied between the two extremes of
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FIG. 1. Successive steps of sample preparation procedure. A
zoom into a sample after (a) FPDS, (b) DEM compression, and
(c) addition of cementing matrix. (d) The voids in the partially
cemented sample and their sizes were identified by a floodfill routine.

very low and completely filling the interstitial space. For the
simulations, we use the peridynamic method, which makes it
possible to simulate both the matrix (as a continuous phase)
and the particles. We characterize the microtextures and stress
distributions under simple tensile deformation.

In the following, we first describe the numerical pro-
cedures, including sample preparation and the peridynamic
method in Sec. II. In Sec. III, we investigate the general
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FIG. 2. (a) Trapezoidal bridge between two disks (Only the dark
gray part is considered in the simulations). (b) The bonds of a central
node (in black) with the nodes located inside a horizon of h = 3δx

are shown, in different colors for a better visualization. A horizon of
h = 3δx was used throughout the study.

FIG. 3. Snapshots of samples for different values of the size and
volume ratios γ and θ , respectively, of particles and void fraction
ρv: (a) γ = 5.00, θ = 1.4, ρv = 0; (b) γ = 5.00, θ = 2.7, ρv =
0; (c) γ = 2.50, θ = 1.4, ρv = 0; (d) γ = 1.43, θ = 1.4, ρv = 0;
(e) γ = 2.50, θ = 1.4, ρv = 0.15; (f) γ = 1.43, θ = 1.4, ρv = 0.18.
Large particles are colored in light blue, small particles in dark blue,
the cement in yellow and the voids in red.

characteristics of the microtextures. Then, in Sec. IV, we
investigate the stress distributions. We conclude with the most
salient results of this work and its possible extensions.

II. NUMERICAL PROCEDURES

The samples are composed of disklike particles, a binding
matrix, and voids of their volume fractions ρp, ρm, and ρv ,
respectively. This section describes the sample generation pro-
cedure and the basics of the bond-based peridynamic method
used for the calculation of stresses under tensile loading.

A. Particle-size distribution

The particle phase consists of disks with a bimodal-size
distribution characterized by volume fractions ρL for large
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FIG. 4. The evolution of particle volume fraction ρp with (a) γ

and (b) θ . The data are the average values over 5 samples with their
standard deviations represented as error bars.

disks (of mean radius rL) and ρS for small disks (of mean
radius rS). With these notations, the total particle volume
fraction is ρp = ρL + ρS . To reduce local ordering of the
particles [12], a normal distribution with σrL = 0.25rL or
σrS = 0.25rS is introduced on the sizes of each of the two
particle types. Due to the finite resolution of the mesh used for
the peridynamics simulations, we only kept the particles in the
range of [rS − 1.5σrS , rL + 1.5σrL ]. With these cutoff values
the smallest disks were meshed by about 10 nodes along their
diameters.

The particle-size distribution depends on two parameters:
the ratio between the mean radii of large and small disks,

γ = rL/rS, (1)

and the ratio of volume fractions of large and small particles,

θ = ρL/ρS. (2)

FIG. 5. Partial coordination numbers as a function of volume
ratio γ for different values of size ratio θ . See Eq. (9) and text for
the definitions.

The variation of γ was controlled by keeping rL constant
while rS was varied from rS = 0.2rL to rS = rL. The resulting
values of γ were {5.00, 3.33, 2.50, 2.00, 1.67, 1.43, 1.25,
1.11, 1.00}. Five different values of θ were considered: θ =
[1.4(0.1), 1.6(0.1), 2.2(0.2), 2.7(0.3), 6.0(0.9)]. In this way,
45 different combinations of γ and θ were obtained. For
each combination, five statistically independent samples were
created. Note that we did not consider lower values of θ , since,
as we shall see below, the main results of this work depend
marginally on θ in this limit. The configurations considered in
this work are thus such that the small particles fill the pore
space between large particles. Lower values of θ represent
configurations in which the large particles are embedded in
a packing of small particles.

052901-3



K. HEINZE et al. PHYSICAL REVIEW E 101, 052901 (2020)

FIG. 6. Single-pore volume (inter-grain spaces) for θ = 1.4:
(a) pdfs of normalized single-pore volumes for selected values of
γ , (b) average normalized single-pore volume, and (c) standard
deviation of normalized single-pore volume versus small particle size
rs ∝ 1/γ . The points represent the average value over five samples.
Error bars in (b) show the standard deviation around the average data
point.

B. Sample construction

Sample construction proceeds by first introducing large
particles and then adding smaller particles in the remaining
free space. A square element of area Abox = 900πrL

2 was

filled with large disks of randomly attributed radius rL from
the normal distribution characterized by the mean radius rL

and standard deviation σrL , using fast Poisson disk sampling
(FPDS) [17]. FPDS consists of randomly placing a high
number of preliminary disks, each with a random radius from
within the normal distribution of radii, around a randomly
picked existing disk. The preliminary disks are consecutively
tested for overlap with existing disks and if no such overlap is
detected, are permanently added to the sample. These steps are
repeated until after a reasonable number of iterations no more
disks could be added. For more details, see the Appendix. We
applied a two-step FPDS, consisting of first placing large disks
and in the second step placing the small disks. A minimum
distance dmin(γ , θ ) � 0 between large disks was used to allow
for sufficient free space for the subsequent placement of small
disks, allowing us to achieve the desired values of θ . Once
the square element was filled with large disks, the small disks
were placed using the same FPDS method, but without a
minimum distance requirement.

This two-step FPDS assembly leads to a nearly dense
packing of disks [Fig. 1(a)]. To further increase the density,
we applied biaxial compression to the samples by means of
discrete element simulations. The samples were compressed
with a ratio of normal contact stiffness kn to confining pres-
sure kn/P = 104, which is large enough to verify the “hard
particle” approximation, and a Coulomb coefficient of friction
μ = 0.3 [Fig. 1(b)].

The matrix was added to the compacted samples by the
procedure described by Topin et al. [2]. Trapezoidal bridges
were created between all pairs of disks (disk i and disk j)
separated by a distance below or equal to a small length �

[Fig. 2(a)]. The width of the two bridge bases wi and w j are a
fraction η of the radius r of the corresponding disks: wi = η ×
ri and w j = η × r j . The matrix volume fraction was varied by
increasing η in 5 steps of 0.2 from 0.2 to 1.0. The resulting
overall porosity ranges from ρv = 0.0 to 0.97.

Square regions of fixed size were cropped out of the center
of the box and meshed onto a two-dimensional rectilinear
grid of 1024 by 1024 nodes. Each node was attributed to
a phase (particle, matrix, void). The phase volume fractions
were determined by counting the number of nodes within each
phase. The floodfill routine [18,19] was used to identify the
voids and interstitial spaces. Figure 1(c) shows an example of
a partially filled sample. As a result of space discretization and
cropping, the final values of θ vary slightly between samples.

C. Bond-based peridynamic method

Peridynamics is based on the integral formulation of the
equations of dynamics instead of partial differential equations
[20]. The equation of motion of a material point located at a
point x is given by

Pü(x, t ) =
∫
Hx

f (u(x′, t ) − u(x, t ), x − x′)dVx′ + b(x, t ),

(3)
where P is mass density, Hx is a neighbourhood around x,
u is the displacement field, and b is the body force. The
neighborhood is generally defined as a sphere of radius h,
called horizon, centered on x. f is a pairwise force between
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FIG. 7. For θ = 1.4: (a) The blue points show the average normalized single-void volume (with standard error of the mean) for samples
with different amounts of cementing matrix versus small particle size rs ∝ 1/γ . For comparison, the average normalized single-pore volume for
each particle-size configuration is shown in orange. (b) The mean normalized single-void volume versus matrix saturation Sm. (c) The standard
deviation of the normalized single-void volume versus matrix saturation and (d) the coefficient of variation of the normalized single-void
volume versus matrix saturation Sm. All points are the average values taken over 5 independent samples. The black symbols in (b), (c), and
(d) show the average normalized values for pores in the corresponding samples.

x′ and x. This force is a function of the distance ξ = x − x′
and the relative displacement η = u(x′, t ) − u(x, t ) [21]. The
interaction is represented by a bond and its elongation s is
defined by

s(ξ, η) = ‖ξ + η‖ − ‖ξ‖
‖η‖ . (4)

The micromodulus c and Young modulus E in two dimensions
are related via the following equation [22]:

cλxλx′ = 6E

πh3(1 − ν)
, (5)

with Poisson ratio ν = 1/3. In multiphase media, the pair-
wise force fxx′ depends on the materials forming the bond:

fxx′ =
{

cλxλx′ s(ξ, η) n ‖ξ‖ � h
0 ‖ξ‖ > h,

(6)

where λ(x) is the index of the phase to which belongs the
point x and n = (ξ + η)/‖ξ + η‖ is an orientated unitary
vector.

The simulated domain is discretized into a 1024 by 1024
rectilinear grid of spatial resolution δx. Each material point i
of position xi has a mass mi = (δx)2ρ(xi ). The system can be
viewed as a mass-spring lattice in which each bond (linear
spring) connects two points on the grid. The equation of
motion Eq. (3) is discretized on the grid:

miüi(t ) =
∑

x j∈H(xi )

kλiλ j s(ξi j, ηi j )
ξi j + ηi j

‖ξi j + ηi j‖
+ bi(t ), (7)

where ui(t ) = u(xi, t ), ξi j = x j − xi, ηi j = u j − ui, bi(t ) =
(δx)2b(xi, t ), k = c(δx)4, λi = λ(xi ), and λ j = λ(x j ).

Since no excluded-volume constraints are imposed on the
points, the strain should be kept small enough to avoid over-
lapping between neighboring bonds and ensure a macroscopic
linear behavior. The number of bonds interacting with each
grid point depends on h/δx. Figure 2(b) shows an example of
bond connectivity for the horizon radius h = 3δx used in this
study.

To compute the evolution of the system, we use an explicit
time integration scheme with a viscous force −νu̇i(t ) applied
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FIG. 8. The PDFs of single-void volumes in samples with θ =
1.4 for (a) γ = 5.00, θ = 1.4 and (b) γ = 2.50, θ = 1.4 and different
values of matrix saturation Sm.

to each material point to damp elastic waves. The viscosity
ν should be below the critical viscosity min{√2mik} to avoid
supercritical damping.

Finally, the stress tensor at each point i is computed by
summing all contributions of connected bonds using σi =

1
2Vi

∑
j fi j ⊗ ξi j , where fi j = fxx′ and Vi = δ2

x .

D. Mechanical parameters

The bonds connecting two nodes belonging to the same
particle are given the particle phase properties independently
of particle sizes. In the same way, the bonds connecting two
nodes both belonging to the matrix phase are given the matrix
phase properties. The bonds connecting two nodes belonging
to two different particles or connecting one particle node to
one matrix node are classified as interface bonds with their
specified properties. Hence, we have three types of bonds:
particle-particle p, matrix-matrix m and particle-matrix pm.
Each bond type is given an elastic modulus (Ep, Em, Epm)
and a toughness (Kp, Km, Kpm), summarized in Table I. In this
work, we assume that the pm bonds and m bonds have the
same properties. This choice does not affect stress transmis-
sion. But it can be important for fracture, e.g. if the interface
has a weaker strength compared to the particles and matrix.

TABLE I. The elasticity and toughness parameters for the three
bond types.

Matrix Particle Interface

Em Ep = 4Em Ei = Em

Km Kp = 3.5Km Ki = Km

The values of these mechanical parameters will be in the same
range as those used by Chichti et al. [3], who took into account
the measured values of starch granules and protein matrix in
wheat endosperm by atomic force microscopy [23,24]. Hence,
the results of this work apply directly to the wheat endosperm
microstructure although most conclusions are general.

The samples were subjected to quasi-static uniaxial tension
in the y direction. The lower boundary was fixed, the side
boundaries were mobile, while the top line of nodes was
displaced at a constant speed. The tensile deformation was
pursued for a few steps. All samples show linear elastic
behavior.

III. GRANULAR MICROTEXTURE

Several examples of packings with different particle-size
distributions (PSD) are displayed in Fig. 3. We clearly see that
the particle arrangements have qualitative differences accord-
ing to the values of size and volume ratio. When the binding
matrix is added in different proportions to these arrangements,
the resulting microstructure gets even more complex.

The particle volume fraction ρp varies in the range from
0.82 and 0.89. Its value is displayed in Fig. 4 as a function of γ

for different values of θ , and conversely. ρp increases rapidly
with γ except at low values of the latter. This observation
is in agreement with a number of studies that investigated
the packing density of two-dimensional (2D) bidisperse disks
[25–28] and three-dimensional (3D) binary assemblies of
spheres [29]. According to these studies, the densest packing
is expected when large particles constitute about 70% of the
particle fraction, corresponding to θ ≈ 2.3. For this value of
θ , the amount of small particles would be just high enough to
fill in most of the available space between large particles. In
our case, the value for the highest observed particle volume
fraction is slightly higher at θ = 2.7. This is caused by the
normal distribution of particle sizes around the two defined
radii of the two types of particles. The real peak of ρp could,
however, also lie in between 2.7 and 6.0 since that region was
not sampled. From the peak toward higher values of θ , the
decrease in the number and volume of small particles leads
to more and more unfilled spaces between the large particles
[27]. In our samples, this influence of θ was clearly observed
only for γ = 5.00. For γ < 5, θ has little effect on ρp.

The coordination number gives the average number of
contacts that a particle has with its neighbors. This number
provides an important structural information for the distribu-
tion of stresses via the particle contact network. Two particles
are counted as being in contact if their distance is less or equal
to the size of the horizon, because this is the condition for
bond formation between the nodes of particles. The total and
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FIG. 9. Normalized vertical stress distributions σyy/σyy in full samples: (a) in different phases for γ = 5.00 and θ = 1.4, (b) in large
particles and, (c) in small particles, and (d) in matrix.

partial coordination numbers [26] are defined as follows:

Zλλ′ =
nλ∑

λi=1

n′
λ∑

λ′
j=1

δ

/
nλ, (8)

δ =

⎧⎪⎪⎨
⎪⎪⎩

1
√(

xλi − xλ′
j

)2 + (
yλi − yλ′

j

)2 � h,

0
√(

xλi − xλ′
j

)2 + (
yλi − yλ′

j

)2
> h,

0 λi = λ′
j .

(9)

Partial coordination numbers are denoted: Zll for contacts
between large particles, Zls for the large particle contacts
with small particles, Zl = Zll + Zls for all contacts of large
particles, Zsl for small particle contacts with large particles,
Zss for contacts between small particles and Zs = Zsl + Zss

for all contacts of small particles. The overall coordination
is Z = (Zl + Zs)/2.

The global coordination number Z increases with γ as
shown in Fig. 5(a), but the partial coordination numbers of
large and small particles show quite distinct behaviours. The
partial coordination number of large particles Zl is increas-
ing constantly with γ [Fig. 5(b)] for all values of θ . This
increase is caused by a strong increase of the number of
small particles around large particles [Zls, Fig. 5(f)], which
largely compensates the decrease in the number of large-large
particle contacts [Zll , Fig. 5(d)]. This increase of Zls is almost
linear and most likely caused by the fact that the increase

in γ goes along with an increase in the absolute number of
small particles. The decrease of the number of large-large
contacts Zll with γ is barely affecting the overall number Zl ,
but highlights the shrinking of the large-large particle contact
network. For θ � 2.2 and γ > 2, Zll can drop to values below
1, showing that in these packings large particles are mostly
isolated from one another.

The partial coordination numbers of small particles also
show two opposite effects. As Zls, Zss increases with γ due
to the increase of the absolute number of small particles
[Fig. 5(g)]. However, as the size of small particles decreases,
they form patches rather than single small particles located
between large particles. This increasing structuring of small
particles into clusters causes Zsl to decrease [Fig. 5(e)], as
small particles are more likely to be surrounded by other small
particles than by large particles. In contrast to Zl , both effects
are of the same order, and they result together in an initial
decrease in Zs with increasing γ , followed by an increase
when a critical value of γ , depending on θ , is reached.

The overall variation of Zs [Fig. 5(c)] is quite small (3.1 �
Zs � 4.2) compared to the variation of Zl in the range 4 �
Zl � 14. For all values of θ , it first declines with γ before
increasing again for larger values of γ . This unmonotonic
variation reflects the variations of Zsl and Zss. At low values of
γ , Zsl declines rapidly whereas Zss increases slowly, leading
to a small decrease of Zs. At high values of γ , Zsl declines
less rapidly while Zss continues to increase at the same rate,
leading to an increase of Zs.
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FIG. 10. Zoom on one large particle, showing the distribution of
stresses from their low values (green) to high values (red) for (a) γ =
3.33 and (b) γ = 5.00.

In the following, the term “pore volume” describes the
interstitial space (all the space not occupied by particles): 1 −
ρp. A “single” pore is an interstitial space enclosed by a closed
chain of contiguous particles; see Fig. 1(d). Additionally, the
term “void volume” describes empty space: 1 − ρp − ρm. A
“single” void is an empty space enclosed by matrix or matrix
and particles. The single-pore volumes were normalized by
the volume of a large particle (Vpor/πrL

2) since the parameter
rL was kept constant between all samples. It was previously
shown that an increase of particle-size ratio γ results in a
higher particle volume fraction ρp, and therefore less overall
pore space. This does not, however, reveal any information
on the distribution of the individual pore sizes in the sample.
It has been shown that the spatial configuration of voids in
granular samples are crucial for the mechanical behavior [30].
Parameters such as void radius, void orientation, and distri-
bution in the sample affect the mechanical response [14–16].

FIG. 11. The mean stress in full samples in (a) large particles and
(b) small particles.

The pore volume defines the maximum void volume and is
therefore an important parameter.

Several examples of probability density functions (PDF) of
the single-pore volumes are shown in Fig. 6(a) for θ = 1.4 and
different values of γ . The single-pore volumes are distributed
over a broad range of values with a peak value centered on an
increasingly large value of pore volume for decreasing γ . The
peak value decreases as γ becomes larger. This means that the
samples are more homogeneous in pore distribution for higher
values of γ . Figure 6(b) shows that the mean value of the
normalized single-pore volume is a nearly linear as a function
of 1/γ , which is proportional to the size of small particles.
The small variability in this dependence is controlled by the
volume ratio.

The standard deviation of the normalized single-pore vol-
umes is rather large, as shown in Fig. 6(c), and increases with
1/γ in the same manner as the mean of single-pore volume.
This indicates inherent inhomogeneities of the packings due
to the existence of both densely and loosely packed zones
(see Fig. 3, for example). Laubie et al. [30] used the standard
variation of local porosity as a parameter for the disorder of
pore spaces. Even though not calculated in the same way, the
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FIG. 12. Variance σl
2 of stress PDFs of large particles in full

samples (no voids) versus (a) partial coordination number Zls, and
(b) standard deviation of single-pore volume, for selected values
of θ .

standard deviation of single-pore volumes may be considered
in a similar fashion as disorder parameter.

As mentioned previously, the void volumes, orientations
and spatial distributions have a significant effect on stress
transmission and other mechanical properties of a granular
material [14–16,30]. The void volumes depend on the amount
of matrix, filling method, and initially available pore space.

We saw that the size of the interstitial space between
particles directly depends on that of small particles rs ∝ 1/γ .
Therefore, due to the specific filling method used in our study
(bridges between particles within a certain distance), the void
size is expected to depend also strongly on the particle-size
distribution. For the interstitial spaces, a decrease in the small
particle size results in a decrease in the average single-pore
size. This is also true for the average single-void size shown
in Fig. 7(a). Obviously, the addition of any amount of matrix
into the pore spaces decreases the mean single-void volume.

The relation between the amount of matrix and the normal-
ized mean single-void volume, shown in Fig. 7(b), is however
less intuitive. The matrix filling ratio Sm = ρm

1−ρp
quantifies the

fraction of nonparticle space filled with matrix; Sm = 0 cor-
responds to a sample with no matrix and Sm = 1 to a sample

where all interstitial spaces are filled with matrix. Generally, a
decrease of the mean single-void volume with increasing Sm is
observed [Fig. 7(b)], with the mean single-void volume being
lowest for the highest values of matrix filling ratio. A striking
exception to this is that in all partially filled samples the mean
void volume is highest for the intermediate values 0.4 < Sm <

0.7, and not, as might be expected, for the lowest values of
Sm. To understand this, let us consider the PDFs of the void
volumes in Fig. 8. We see that for Sm < 0.5, a dominant peak
at small void volumes is present, while larger void volumes
are also present. The first peak shifts to smaller values as Sm

increases from 0 to Sm < 0.4. This shows that the addition
of more matrix reduces the void volumes, certainly due to
the specific matrix filling method used. However, once Sm is
larger than a threshold value ≈0.4, the peak at very small void
volumes shrinks and disappears. This indicates that beyond
this value the very small voids disappear, meaning that the
corresponding pores are completely filled with matrix. Due
to the lack of very small voids, the mean single void volume
suddenly increases. Beyond this threshold, the addition of
matrix continues to reduce the volume of the remaining voids
again, as observed by the shift of the highest peak toward
smaller values.

Interestingly, this behavior has a significant effect on the
coefficient of variation (CV) of the void volume shown in
Fig. 7(d). At low values of Sm up to a threshold of about
0.4, the CV of single-void volume increases. This is most
likely caused by the size reduction of the very small voids
while at the same time the larger voids are not affected by the
addition of matrix. The particles surrounding the largest voids
are too far away from each other to be connected by a matrix
bridge. This behavior is clearly an effect of the matrix filling
method. As the threshold value Sm ≈ 0.4 is reached, a sudden
decrease in CV down to values <1 is observed, indicating that
the void volumes of these medium filled samples are much
more homogeneous. Then again, as Sm increases further, the
CV increases too. The influence of the particle-size ratio γ

seems to be limited to its effect on the available pore volumes
and therefore on the maximum void volume. In similar ranges
of Sm, both higher and lower values of γ can lead to the same
value of CV.

IV. STRESS TRANSMISSION

A. Stresses in full samples

The stress fields in all phases of all samples were calculated
under tensile loading by means of the peridynamic method.
Figure 9(a) displays the probability density functions (PDF) of
vertical stresses normalized by the mean stress in all phases in
a filled sample (ρm + ρp = 1, ρv = 0). The PDFs reflect the
vertical stress values at the scale of the spatial resolution of
the peridynamic calculations. We see that the largest stresses
extend to two times the mean stress, but the ratio between
the largest and smallest stresses can be much higher. This
inhomogeneity arises from stress concentration due to pores,
stress chains along contiguous particles and arching effect
that tends to screen parts of the system. The statistics has
not exactly the same precision for all samples since the same
spatial resolution is used for all samples irrespective of the
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FIG. 13. The normalized vertical stress distributions in different phases for different amounts of matrix volume fraction for γ = 5 and
θ = 1.32: (a) very low Sm, (b) medium Sm, (c) high Sm, and (d) completely full.

value of γ . Hence, the precision for extreme values of the
stress is low in samples with γ = 5. In those samples, the
edges of small particles are not smooth enough to render
well-defined values. In particular, we observe a few spikes
on the distributions on Fig. 9(a), echoing such edge effects.
Nevertheless, up to such minor effects and even by keeping
the full range of stress values, all plots are smooth enough to
reflect the effects of the underlying microstructure on stress
transmission.

The stress PDFs show that the matrix carries lower stresses
whereas the small and large particles carry higher stresses.
This is clearly a consequence of the lower value of the matrix
Young modulus. The PDF in large particles is narrower than
that in small particles, and it shows a pronounced peak around
the mean stress. The PDFs in different material phases and for
different values of γ are shown in Figs. 9(b)–9(d). An increase
in particle-size ratio leads to increasingly pronounced stress
peak. However, the phases are affected differently. The stress
distribution in the matrix gets slightly narrower with increas-
ing γ as seen in Fig. 9(d). For the small particle phase a slight
shift toward lower stress values is observed with increasing
γ ; see Fig. 9(c). The particle-size ratio has the most signif-
icant effect on the stresses in large particles; see Fig. 9(b).
The higher the size ratio γ , the more homogeneously

the stresses are distributed in large particles, resulting in
a higher PDF peak. This behavior can be qualitatively un-
derstood from the observations in the previous section on
the partial coordination number of large particles Zl , which
constantly increases with γ , and implies a more homogeneous
distribution of stresses within the large particles as illustrated
in Fig. 10 for a particle having a small number of contacts and
a particle with large number of contacts.

In Fig. 11 we have plotted separately the mean stress in the
classes of large and small particles as a function of γ for three
different values of θ . Interestingly, the mean stress in large
particles is nearly independent of γ and slightly (about 7%)
above that in the whole sample. However, the mean stress of
small particles declines as γ increases and tends to a value
below the mean stress of the whole sample. This is consistent
with the shift of the PDF’s for small particles toward lower
stress values with increasing γ as observed in Fig. 9(c). This
trend is the same for all values of θ , and it implies that
an increasingly higher fraction of stress is transferred from
small particles to the matrix. This means that the matrix plays
a more active role in stress transmission when its effect is
mediated by the small particles.

To further characterize the effect of particle sizes on stress
transmission in large particles, we calculated the variance σ 2

l
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FIG. 14. Stress distributions normalised for each material phase separately σ phase
yy /σ

phase
yy with changing matrix saturation for γ = 5.00 and

θ = 1.32 in (a) large particles, (b) small particles, and (c) matrix. Panel (d) shows examples of the exponential fits performed on the distribution
tails.

of stresses. The variance reflects the degree of inhomogeneity
of the stresses. Figure 12(a) shows that the variance for
large particle stresses σ 2

l declines rapidly with increasing
partial coordination number Zls. More interestingly, Fig. 12(b)
shows that σ 2

l increases with the standard deviation of single-
pore volumes. This relation between the standard deviation
of single-pore volume and the variance of stresses in large
particles is linear and independent of θ . Previously, we argued
that the standard deviation of the distribution of single-pore
volumes may be interpreted as an indicator of disorder in the
sample. This argument is now supported by the strong cor-
relation between this standard deviation of pore volumes and
stress transmission in large particles. The standard deviation
of single-pore volumes is the best indicator of the variability
of stresses in large particles. The stresses are therefore more
homogeneously distributed in samples with pores more homo-
geneously distributed and in samples with more contact points
around large particles. This happens at larger particle-size
ratio γ and/or a higher volume fraction of small particles
(lower θ ); see Figs. 5(f) and 6(c).

The shapes of the PDFs in Fig. 9(b) cannot be fully and
exactly fitted by Gaussian functions. The behavior of the
statistics around the mean stress would be more adequately
fitted by a q-Gaussian distribution (not shown) [31]. The

q-Gaussian distribution was previously used by Combe et al.
to analyze the broad distributions of particle displacements
in sheared granular materials [32]. Our data indicate that the
value of the exponent q is an increasing function of γ , im-
plying the non-Gaussian broadening of the stress distribution
with size ratio. These features of stress distribution functions
will be analyzed in more detail in an upcoming paper.

B. Stresses in partially filled samples

The range of the stress values in partly cemented samples,
as shown in Figs. 13(a)–13(c) is significantly larger than in
full samples as observed in Fig. 13(d). In contrast to full
samples, the highest stresses are not shared between small and
large particles, but they are mostly carried by small particles.
Moreover, the lesser a sample contains matrix, the more this
matrix is involved in carrying stresses above the average
stress.

Figure 14 shows the evolution of the stress PDFs in the
different phases with increasing matrix saturation Sm. The
stress distributions are normalized separately for each phase.
All the PDFs are for the highest particle-size ratio γ = 5.00. It
is observed that the values of the highest stresses in each phase
decrease with increasing matrix filling. With increasing matrix
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FIG. 15. The slope of the exponential decay of the tail of stress
PDFs in (a) large particles, (b) small particles, and (c) matrix versus
the matrix saturation Sm.

filling, the stresses in all phases also become more homoge-
neous. The center of the PDF maintains its nearly Gaussian
shape while a marked exponential tail develops for lower
Sm. The stress distributions in small particles [Fig. 14(b)]

are broader than in large particles, as we already observed
in the case of full samples. For small particles, the expo-
nential tail also becomes more prominent with decreasing
matrix content. The stress distributions in the matrix phase
[Fig. 14(c)] undergo the greatest qualitative change between
low and medium matrix content. While the PDFs for medium,
high, and very high Sm are similar, at low and very low matrix
content, the distributions are wider, without a clear peak and
with a high number of very low stresses.

Very high stresses and the corresponding exponential fall-
offs are important for the mechanical behavior of a cemented
granular material. We previously showed that the highest
stresses occur at the particle contact points. In the matrix
filling method used in this work, the increase in the amount of
matrix is achieved by an increase in the matrix bridge width
between particles. Therefore less amount of matrix implies
narrower cementation regions between particles, and thus a
higher concentration of stresses.

The exponential decay of stresses can be used to quantify
the degree of stress inhomogeneity in different phases. By
fitting the PDF in the range of high stresses to a decreasing ex-

ponential form pdf = [ σyy

σyy
]0e[−s·( σyy

σyy
)], as shown in Fig. 14(d),

we obtain the exponent s, which is all the more small that the
stress distribution is more inhomogeneous. Figures 15(a) and
15(b) show s in samples with θ = 1.32 and different values of
γ as a function of matrix volume fraction Sm. We see that s
increases in large and small particles with increasing matrix
saturation. The particle-size ratio γ has less influence than
the amount of matrix for low values of Sm, but becomes more
influent for higher Sm. This effect is more pronounced in large
particles for γ = 5.00.

Laubie et al. [30] used the excess kurtosis of stress
PDFs in porous materials as a descriptor of the broadening
of stress distributions. They found that the excess kurtosis
grows quadratically with a disorder parameter calculated from
the local porosity. We calculated the excess kurtosis in our
different samples and in different phases. But the results
were more difficult to interpret. For example, the value of
the excess kurtosis in large particles was found to have its
highest value for the largest value of γ (not shown) despite
the aforementioned observation that larger values of γ lead
to more homogeneous stress distributions. This is also the
case for partially filled samples (graphs not shown). This
discrepancy can be explained by the fact that our distributions
are not symmetric around the mean stress. In particular, the
occurrence of very small stresses can be significant.

V. CONCLUSION

In this work, we showed the complex interplay between
particle-size distribution and matrix volume fraction for stress
transmission in bidisperse granular materials, representing the
simplest polydisperse system governed by only two param-
eters: size ratio and relative proportions of large and small
particles. When the size ratio is high, the small particles act
as a pore-filling material with respect to large particles if their
proportion is high. The mixture can then be thought of as an
assembly of large particles inside a matrix of small particles.
At lower size ratios, the small particles play a structural role,
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and together with large particles they control the properties
of the texture and force transmission. Therefore, the effect
of added cementing matrix on stress transmission depends
closely on the texture. For example, at high proportion of
small particles and high size ratio, the effect of the cementing
matrix on stress transmission and cohesion of the material
is amplified by the phase of small particles filling the space
between large particles.

In this paper, we quantified these features by systematic
simulations using the peridynamic method for a broad range
of particle-size ratios, volume fractions of large and small
particles, and the amount of the cementing matrix. This is
the first time the peridynamic method is applied to inves-
tigate cemented granular materials. It has the advantage of
providing access to stresses inside the particles and matrix.
As expected, the most homogeneous stress distribution occurs
for high size ratio and large volume fraction of small particles.
The tensile stresses show non-Gaussian distributions with
a width that increases with increasing porosity. At higher
porosity, a decreasing exponential distribution of strong ten-
sile stresses develops and replaces the Gaussian distribution.
This exponential fall-off of the probability density of strong
stresses is a hall-mark of granular materials, reflecting gran-
ular disorder. One important difference is that in the case
of granular materials the exponential distribution concerns
contact forces whereas we have here a similar behavior for
stresses everywhere in the system, inside both the particles
and the matrix. The exponential fall-off is a signature of the
presence of “stress chains,” i.e., nearly aligned sequences of
particles transmitting strong forces. The force chains are more
commonly known for cohesionless granular materials under
compressive confining pressure. However, similar chains of
tensile forces or stresses occur under tensile stress in both
cemented granular materials, as in our system, and in wet
granular materials [33–35]. The tensile force chains are char-
acterized by an exponential probability density distribution
as the compressive force chains. This local concentration of
stresses is not directly related to porosity but reflect rather
the contact network. The exponential part of the distribution
broadens with decreasing matrix volume fraction and particle-
size ratio, indicating higher structural disorder. The tensile
stress and force chains were previously studied for cemented
and wet granular materials.

Our results show that the role of porosity for stress trans-
mission is not as straightforward as in “unstructured” porous
materials, i.e., a simple distribution of pores in a matrix.
In granular materials, the distribution of pores reflects the
structure of the contact network. Our results clearly show
that stress inhomogeneity in full samples is controlled by
the standard deviation of pore-size distribution rather than
porosity. In general, the particle-size distribution controls
the stress transmission properties at low void volumes (high
matrix volume fraction).

This work can be extended along different directions:
(1) In this work, the matrix phase was distributed almost

homogeneously according to a well-defined protocol. More
work is necessary to consider more general distributions of
particle sizes and cementing matrix.

(2) The mechanical parameters Kp, Km, and Kpm were
fixed to their values for wheat endosperm obtained by means

of AFM and nanoindentation experiments while using a broad
range of values of γ and θ . Hence, the results can be more
specifically used for the prediction of the texture and stress
transmission in wheat endosperm for different values of γ and
θ , which can be genetically modified. Results on the effect of
the mechanical parameters can be found in Refs. [1–3].

(3) The 2D setting used in this paper made it possible to
perform extensive parametric studies. But it is obvious that
an extension to 3D simulations can provide a more realistic
description of stress transmission.

(4) Finally, a similar investigation can be performed un-
der different loading conditions, e.g., under shear stress or
compressive stress increments. The role of contacts between
particles becomes more prominent in compression and a
larger amount of stress will be transmitted through the particle
phase.

(5) The stress transmission as discussed in this paper
provides a general picture of the internal state of cemented
binary granular materials. In an upcoming paper, we will be
interested in the effect of the texture on the elastic moduli of
these materials.
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APPENDIX: SAMPLE CONSTRUCTION USING FAST
POISSON DISC SAMPLING

Poisson disk sampling is used in many computer graphics
applications. It is a geometrical approach which consists in
generating a collection of points (samples) that are at small-
est possible distance from one another. This specific spatial
distribution is considered ideal for image rendering [36].

The fast Poisson disk sampling (FPDS) algorithm used
in this paper was adapted from the note of Brisdon [17] for
the case of bidisperse samples. Although the method is not
capable to produce mechanically stable samples, it is used
as a first step to pack particles into dense samples. One
major feature is its ability to generate dense samples with a
homogeneous distribution of big particles with respect to the
small ones. This point is important to limit segregation effects
prior to dynamic compaction using DEM.

In this algorithm we assume N to be the total number
of particles. For each particle i, the radii ri are chosen ac-
cording to a truncated Gaussian distribution in the range ri ∈
[rmin, rmax]. We consider a list of so-called “active particles”
that are particles around which there is enough free space to
place a new particle in contact with them. A background grid
is created to ease the spatial research of particles. This grid
is similar to the a classical Verlet grid [37], but each cell is
supposed to contain at most one particle center. Moreover,
the cell size is bounded by rmin/

√
N in 2D so that the grid

can be implemented as a N-dimensional array containing the
particle indices. Before running the algorithm, an initial seed
particle is placed in the domain and the its index is added to
the active list.

(1) While the active list is not empty, randomly select a
particle j.
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(a) Randomly draw a radius rk and an angular position
of the center of the particle k under the constraint that the
distance d jk between the two centers is in the range [r j +
rk, r j + rk + δ], where δ is the gap between particles. Its
value can be set to 0 to have particles in contact or with
any arbitrary or random positive value.

(b) Using the grid to test the neighboring particles,
check if k is at a distance greater than δ of other particles.

(c) If this is the case, then add the particle to the sample
and the index k to the active list. Otherwise, repeat this
loop, and after a maximum number of trials, remove j from
the active list.

Any walls or periodic boundary conditions can easily be
taken into account by incorporating additional geometric con-
straints. In this case, the simulation will last until the domain
is fully filled with particles.

In our simulations, the big and small particles are packed
with the same algorithm in two steps:

(1) In the first step, the big particles are placed
by letting enough space between them using the
δ parameter.

(2) In the second step, the small particles are placed in
the remaining free space between the bigger discs by setting
δ = 0.
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