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Depinning regimes and contact angle hysteresis of a drop on doubly periodic microtextured surfaces

Stanimir Iliev* and Nina Pesheva †

Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev St. 4, 1113 Sofia, Bulgaria

Pavel Iliev ‡

ETH Zurich, Computational Physics for Engineering Materials, CH-8093 Zurich, Switzerland

(Received 3 February 2020; accepted 14 April 2020; published 11 May 2020)

We investigate numerically the drop shape evolution under quasistatic drop volume change on doubly periodic
microtextured surfaces in the framework of the capillary model. Taking into account the symmetries of the
periodic lattice of defects, we study the drop contact line (CL) motion along all lines of symmetry, allowing us
to get a more complete view of the CL behavior. Four CL depinning regimes for a liquid drop are distinguished
related to the stick, slip, and jump motion of the CL. The distinction of the different regimes is made based on
the region of the CL where the process starts and on whether the start of the depinning is related to detaching
from a defect or to the CL reaching a new row of defects. For every type of depinning regime we study the
advancing and receding apparent contact angles (CAs) as functions of the defect concentration. We established
a relation between the results for the CL depinning and the CA hysteresis (CAH) for a drop on hydrophilic and
hydrophobic heterogeneous surfaces. A comparison of the obtained numerical results for the CAH is made with
the existing theoretical, experimental, and numerical data.
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I. INTRODUCTION

The understanding of the contact characteristics of a liquid
drop placed on doubly periodic microtextured surfaces has
made significant progress during recent years [1–3]. The re-
lated studies are motivated by the desire of obtaining solid sur-
faces on which the drop starts rolling at low surface inclination
angles. These surfaces are characterized by a small contact
angle (CA) hysteresis (CAH). The latter is defined as the
difference between the advancing contact angle (ACA) and
the receding contact angle (RCA). Since the determination of
the CAH of a drop in contact with a rough surface, covered
with physical defects such as posts or holes, can be reduced in
most cases to the simplified problem of obtaining the CAH on
a smooth surface with chemical defects [4,5], investigations
of drops in contact with chemically heterogeneous surfaces
have intensified and advanced significantly in recent years.
The experimental studies are most often conducted on sur-
faces with periodically distributed defects, due to which the
theoretical analysis of CAH is also directed predominantly
to this case. For the latter case, the mechanism of a drop’s
contact line (CL) displacements (comprising slip, jump, and
stick motion) is studied. The result of this displacement is that
when the CL is in contact with one row of defects, it moves
as a whole to form a contact with the neighboring row of
defects, overcoming the pinning due to the elastic force [6].
The most studied case is that of a periodic CL whose period
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equals the distance between the centers of two neighboring
defects [5,7–14]. In this situation, the whole CL moves from
a contact with one row of defects to the next row, and this
is called block case [15] depinning. This behavior of the CL
is pertinent to the situation when a liquid in a vessel is in
contact with a partially immersed solid plate [16]. However,
it is questionable whether it is applicable to a liquid drop
whose CL forms a closed contour. For the RCA of a liquid
drop on a rough solid surface with posts, Raj et al. [12]
report the results of an experiment, supporting the prediction
of a block case depinning, while Dorrer and Rühe [17] and
Gauthier et al. [18] report that they observe a deviation from
this case experimentally. According to the latter authors, the
reason for the deviation of the RCA from the prediction of the
block case in the context of a drop geometry is that another
depinning regime, termed kink case [15] depinning, is taking
place. In this regime, the receding CL (RCL) passes from
one row of defects to another row through series of single
jumps (or depinnings) from one defect at a time, starting in
regions where the equilibrium CL crosses from one row of
defects to the next. Such transitions of the CL are observed
experimentally [18]. Moreover, a series of successive single
jumps, when passing from one row of defects to another, is
observed experimentally also for an advancing CL (ACL) in
the case when a liquid drop is placed on a flat surface with
chemical defects [19]. In contrast to the RCL case, in the
advancing regime the depinning starts at the middle section
of the CL, which is in contact with one row of defects.

The availability of alternative approaches for determining
the CAH, arising due to different scenarios and regimes of
CL depinning, makes it feasible to get a more complete
and precise understanding of the appearance of the CAH by
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explicitly analyzing the stick, slip, and jump motion of the
ACL and RCL for different physicochemical characteristics
of the defects. In this way, one can find out precisely which
depinning regime is responsible for the appearance and the
value of the CAH in every specific situation.

It is clear that in the case of a drop, the whole CL cannot
pass simultaneously from one row of defects to another.
However, for the determination of the CAH it is of interest
to know whether the predictions of the block depinning case
or the kink depinning case are applicable for the particular
situation under consideration. The above cited experimental
and analytical results do not give a clear indication of that.
Finding a solution to this problem requires one to study more
thoroughly and analyze the stick, slip, and jump motion of the
drop’s ACL and RCL for different possible realizations of the
physicochemical characteristics of the defects.

Taking into account the complexity of this problem, one
needs to perform numerical simulations of the behavior of a
drop on microtextured surfaces. Until now, only an isolated
solution for the RCL and the RCA has been obtained nu-
merically [20] (by the help of the SURFACE EVOLVER software
package) within the framework of the classical capillary the-
ory. The series of ACLs and RCLs, which appear when a small
quasistatic change of the drop volume is made, are obtained
by application of the lattice Boltzmann algorithm [21] and by
means of phase field theory [22]. In these studies, however,
an analysis of the depinning mechanisms of the CL and also
the appearance and the value of the CAH, which are related
to the depinning mechanisms, was not performed. Parametric
analysis of the kink case depinning was done numerically
only for a RCA in the Wilhelmy plate geometry [5,15,18].
However, the use of these results for the analysis of the kink
case depinning mechanism for a drop’s CL is questionable,
since in the case of the Wilhelmy plate geometry the elastic
force is acting to straighten the CL, while in the case of a drop
placed on a surface it is trying to lend it a circular form [17].

The main goal of the present work is to study these pro-
cesses by investigating the evolution of the CL of numerically
obtained equilibrium drop shapes within the framework of
the classical capillary model under varying (increasing or
decreasing) drop volume. We focus on the most studied case
when the drop is in contact with a heterogeneous solid surface
covered with regularly spaced circular defects, forming a rect-
angular lattice. The CL depinning is investigated for both ACL
and RCL. We also consider the cases of a drop in contact with
hydrophilic and hydrophobic heterogeneous solid surfaces.

II. PROBLEM DESCRIPTION

We consider a small three-dimensional (3D) equilibrium
liquid drop with volume V and free surface �, placed on
a flat, well-structured two-component chemically heteroge-
neous solid plate �s, forming with it a CL L = � ∩ �s. The
solid plate �s is composed of circular “mesa”-type defects [6]
with radius r, constituting a doubly periodic pattern denoted
by �d

s , and the homogeneous base, �b
s (the superscripts d

and b stand for defect and base, respectively). The rectangular
lattice of circular defects has spatial periods λ1 � λ2, λ2 � r.
The two materials, �d

s and �b
s , are characterized by their local

equilibrium CAs θd and θb, respectively, which the liquid
forms with the two surfaces.

Since gravity does not significantly influence the problems
under study here, we consider the case where the equilibrium
drop shape is formed solely by the balance of surface tensions.
In this case the metastable equilibrium drop shapes are ob-
tained through minimization of the functional [23] U (�) at
fixed drop volume V = V (�),

U (�) = S(�) − cos θd Sd (�) − cos θbSb(�), (1)

where S, Sd , and Sb are the liquid-air and the solid-liquid
interface areas in contact with �d

s and with �b
s , respectively.

We obtain numerically a sequence of equilibrium
drop shapes, �0, �1, �2, . . . , for different drop volumes,
V0,V1,V2, . . . ; Vi+1 = Vi ± �V, (�V � V ), where �V is the
drop volume change. For the initial volume V = V0, we obtain
the equilibrium drop shape �0, starting with the spherical cap
approximation of the drop shape with circular CL, having
radius R and forming with the solid plate �s a CA, equal to
the Cassie’s angle θC , on the two-component surface,

θC = cos−1(p cos θd + (1 − p) cos θb), (2)

where p is the defect surface concentration. Every next equi-
librium drop shape, �i, we obtain in the following two-step
process. First, we slightly deform the drop shape �i−1, but
keeping the drop’s CL unchanged so that the drop volume
V (encompassed between the drop surface � and the solid
plate �s) is increased or decreased by a small amount �V .
Second, starting with the so-obtained free surface, we apply
the numerical algorithm for minimization of the functional,
U [Eq. (1)], for the class of deformations which keep the
drop’s volume unchanged. The free surface obtained in this
way is the required equilibrium drop surface �i corresponding
to drop volume Vi.

The obtained results will be shown in the dimensionless
Cartesian coordinate system x/λ2, y/λ2, z/λ2, where the plane
z = 0 coincides with the heterogeneous solid surface on which
the drop is placed, and the center of the drop’s CL coincides
with the origin of the coordinate system. We assume that in
this system the defect centers are positioned on a rectangular
lattice with lines which are parallel to x and y axes with
spatial periods 1 and λ1/λ2, respectively. The so-defined two-
component chemically heterogeneous surface is characterized
by several planes of symmetry. Planes of symmetry are found
at angles ϕ = 0◦, tan−1 (λ2/λ1), 90◦ with respect to the prin-
cipal lattice axes. Thus rows of defects exist along all these
directions, however, characterized by different periods.

We are interested in determining the biggest (maximal) and
the smallest (minimal) CAs related to the local CL motion
as the drop recedes or advances across the rows of defects
along all of the above symmetry directions. For this purpose,
we calculate the CA on the macroscopic scale as defined
in Ref. [24] (termed apparent CA) along all directions of
symmetry of the defect lattice by using a modification of the
standard projection method [25].

To calculate this angle, we use a fit of the drop profile,
obtained in the side view of the drop (see Fig. 1). For the fitting
we use only points from the drop’s profile up to a distance
from the three-phase point bigger than the spread ls along
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FIG. 1. Schematic of the drop edge deformation, drop projection
profile fitting, and the apparent contact angle.

the drop-free surface of the perturbation of the CL, caused by
the presence of periodic defects on the solid surface. Previous
studies [26,27] estimate that distance ls to be of the order of
the defect’s lattice period.

We numerically obtain the equilibrium drop shape through
a minimization of the functional, Eq. (1), by applying a
numerical algorithm developed earlier [28]. The method and
the numerical algorithm are similar to those used in the pub-
lic domain software SURFACE EVOLVER [29]. Our numerical
algorithm was used previously for the study of a drop on
heterogeneous substrates, having radial symmetry, and also
for the dart board substrate [30]. In Ref. [23] it is shown
that the obtained solution for the equilibrium drop shape on
heterogeneous surfaces through the minimization algorithm
mentioned above satisfies the Laplace equation for the equi-
librium drop shape with high precision. In the present study,
the approximation of the drop surface, �, has a significantly
larger fixed number of nodes—approximately N > 103 000—
and the CL is approximated by 1080 line segments. The
approximation of the drop surface � in the neighborhood of
the CL is shown in Fig. 9(b) below.

III. NUMERICAL RESULTS AND DISCUSSION

For a more complete and in-depth study of the CL depin-
ning mechanisms and CAH in the drop geometry, we perform
numerical simulation and analysis of the drop shape evolution
on both hydrophilic and hydrophobic heterogeneous surfaces.
In addition, we also differentiate the cases when θd < θb and
θd > θb for both types of surfaces. Thus to get the whole

picture one needs to study the evolution of the drop shape in
four distinct cases when the drop volume is increasing and
similarly, in four cases when the drop volume is decreasing.

A. Hydrophilic surfaces

As a representative case for the hydrophilic surfaces we
choose the values of 30◦ and 80◦ for the pair of angles
{θd , θb}. Numerical simulations performed for different val-
ues of these angles show that the results obtained for the
pair {30◦, 80◦} reflect the typical behaviors of the CL, RCA,
and ACA for a drop on hydrophilic surfaces. We start the
numerical study with a spherical cap approximation of the
drop with circular CL with radius R = 14. This choice of drop
radius value allows one to study a drop CL, which passes
through a sufficiently large number of defects, ranging up to
80. Drop shape solutions are obtained also for different values
of the defects radius r so that the surface defect concentration,
defined by p = πr2/(λ1λ2), varies in the interval 0.1 � p �
0.55 and different values of the ratio of the lattice spatial
periods λ2/λ1 ∈ [1, 3].

1. Depinning regimes

The analysis of the numerical solutions for the CL evo-
lution under volume increase, obtained for different values
of the surface defect concentration p and different values of
the ratio λ2/λ1, show that one can distinguish four types of
depinning regimes (summarized below in Table I) when the
CL moves from one row of defects to another. The types of
depinning regimes do not depend on these parameters (p and
λ2/λ1); however, they depend on whether the CL is advancing
or receding and also on whether θd < θb or θd > θb. They
are the same for all displacements of the CL along the direc-
tions defined by the angles ϕ = 0◦, tan−1 (λ2/λ1), 90◦. These
depinning regimes are illustrated in Figs. 2–5 for defects
located on a square grid (λ2 = λ1) with defect concentration
p = 0.4, and also for both increasing and decreasing drop
volume cases. In the (a) panels of Figs. 2–5, parts of the
CLs are shown where one can observe the behavior of the
CL displacements along the 0◦ and 45◦ directions. Part of
these CLs are shown on a larger scale in the respective (b)
panels of Figs. 2–5, where one can observe the CL in more
detail, moving along the 0◦ direction. The equilibrium CL
L0, obtained at the start of the minimization algorithm using
the spherical cap approximation of the drop shape, is shown
in the figures with dotted (black) lines. The equilibrium CLs
immediately preceding the process of transition of the CL to
the next row of defects, and the resulting CLs after the depin-
ning, along directions ϕ = 0◦ and 45◦, are shown by bold and
thin solid (blue) and dash-dotted (red) lines, respectively. In

TABLE I. Types of depinning regimes and their correlation with the stick-slip behavior of the contact line. The depinning case is determined
based on the part of the CL where the process starts, and further distinction of the type of depinning is made by the way the depinning is started.

ACL depinning RCL depinning

Hydrophilic surface Case Type Label assigned Case Type Label assigned

θ d < θb Block (B) By reaching a defect (R) BR Kink (K) By detaching from a defect (D) KD
θ d > θb Block (B) By detaching from a defect (D) BD Kink (K) By reaching a defect (R) KR
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(a) (b)

FIG. 2. (a) Parts of advancing CLs of a drop on heterogeneous
surfaces when {θd = 30◦, θ b = 80◦} along directions ϕ = 0◦, 45◦.
L0 [short dashed (black) line] is the initial equilibrium CL; CLs
L45 [bold (blue) line] and L48 [thin (blue) line] are the equilibrium
CLs immediately preceding the process of transition of the CL to
the next defect row along directions ϕ = 0◦ and 45◦, respectively;
CLs L46 [bold (red) dashed-dotted line] and L49 [thin (red) dashed-
dotted line] are the resulting equilibrium CLs after the depinning.
(b) Blown-up image of the region in (a) (in the lower right corner)
where the CL detaches from one row of defects and moves to another
along direction ϕ = 0◦. CLs L31, L35 to L45 show few CLs from the
sequence of equilibrium CLs (generated by drop volume increase
�V ) before the CL depinning; the dashed (black) lines illustrate
some of the CLs in the sequence of the drop CL displacements
(from left to right) during the transition from the equilibrium CL
L45 towards equilibrium CL L46, appearing during the minimization
process of the energy Eq. (1).

(a) (b)

FIG. 3. Same as in Fig. 2, however, for a heterogeneous surface,
characterized by {θd = 80◦, θ b = 30◦}, i.e., when θd > θb. CLs L56

and L42 are the CLs just before the depinning in the ϕ = 0◦ and 45◦

directions, respectively; CLs L57 and L43 are the respective CLs after
the depinning (the blue lines show the CLs before the depinning and
the red lines after the depinning).

(a) (b)

(c)

FIG. 4. (a) Parts of the obtained RCLs for a drop on a heteroge-
neous surface {θd = 30◦, θ b = 80◦}. CLs L26 and L25 are the CLs
just before the depinning in directions ϕ = 0◦ and 45◦, respectively;
CL L27 is the CL after the depinning. (b) Enlarged view of the RCLs
displayed in (a) (in the lower right corner) showing the successive
small displacements of the CL during the transition from the outer
row of defects to the inner row along direction 0◦. (c) General 3D
view of the equilibrium drop with a CL L26 [shown also in parts
(a) and (b)] just before the CL depinning occurs.

Figs. 2(b)–5(b) with thin dashed (black) lines are presented
several intermediate (nonequilibrium) CLs which appear in
the CL depinning process during the transition from one
equilibrium drop state (which is driven out of equilibrium due
to the change in drop volume) to a new equilibrium drop state.
The analysis of the sequence of intermediate CLs appearing
between the two successive equilibrium drop states during the
minimization process shows that this sequence of CLs models
well the quasistatic relaxation of the contact line [31] within
the framework of the contact line dissipation approach (see
[32] and [33]).

Advancing CL. Figures 2 and 3 present our results for the
case of advancing CLs (i.e., when the sequence of the equilib-
rium CLs is generated by increasing the drop volume) when
θd < θb and when θd > θb, respectively. In this (advancing)
case, each subsequent CL, equilibrium or intermediate, is
either partially overlapping or enclosing the previous CL.
The sequence of dashed lines in Figs. 2(b) and 3(b), ordered
consecutively in a direction from the center to the outer part
of the drop, illustrates the CL jump process from the inner to
the outer row of defects in direction 0◦ (i.e., along the x axis).
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(a) (b)

FIG. 5. (a) Parts of the obtained RCLs when {θd = 80◦, θ b =
30◦}. CLs L32 and L28 are the CLs just before the depinning in
directions ϕ = 0◦ and 45◦, respectively; CLs L33 and L29 are the
respective CLs after the depinning. (b) Enlarged view of the CL
detachment along direction 0◦ from part (a) showing the successive
small displacements of the CL during the transition from one (outer)
row of defects to another (inner) row of defects.

When θd < θb, it starts from the equilibrium CL L45 and goes
to the equilibrium CL L46, and when θd > θb it is from L56 to
L57, respectively.

When θd < θb, as is seen in Fig. 2, the detachment of the
CL from the inner row of defects and its adherence to an
outer row of defects along direction ϕ = 0◦ is not realized
within a single small change �V in the drop volume. The
simulations indicate that when the CL L30 is reached after 30
droplet volume increases �V , it transforms to the depicted
section of the CL L31 [see Fig. 2(b)] of the new equilibrium
drop state, whose middle section is positioned only on the
base surface �b

s without touching the defects located there.
It can be observed that in the middle section of the CL,
L31, there is a detachment, which remains localized, i.e., it
does not propagate to adjacent defects and does not jump
to the outer row of defects. With the further increase in the
drop volume, the detachment expands smoothly, with the CL
forming a circular shape in the area, where it is detached
from the defects, and it approaches the outer row of defects.
This behavior is observed for the CLs between L31 and L45.
The jumping process starts when the detached part of the
CL reaches the defect border belonging to the outer row of
defects. In the case under consideration here, this is realized
after the volume increase at CL L45. Along the direction
defined by 45◦, the detachment of the CL from an inner row
of defects and its adherence to an outer row is realized in
a similar way; however, the detachment of the CL from the
defects and the establishment of a contact with the outer row
of defects is accomplished for smaller change of the drop
volume (even for just one �V ). The reason for this is that in
this direction (as seen in Fig. 2, from L48 to L49) the distance
between the neighboring rows of defects is very small or even
negative. The CL reaches an outer row of defects without the
need to detach from a defect first.

When θd > θb, the case shown in Fig. 3, the detachment
of the CL from the inner row of defects and its adherence to
the outer row is realized within a single volume increase �V .
This is valid for both considered directions (0◦ and 45◦) as
well as for different surface concentrations p. Along direction
0◦ [see Fig. 3(b)], the CL L56 detaches first from the row
of defects (with centers on line x = 14), then the CL jumps
to the next (outer) row of defects (with centers on the line
x = 15), and adheres to them. This happens when the elastic
force overcomes the stick force, which keeps the CL in contact
with the inner part of the defects. As illustrated in Fig. 3(b) by
the sequence of intermediate CLs, this process is realized as a
series of consecutive detachments of the CL from the defects,
starting from the central part (y = 0) of the CL.

In both cases (θd < θb and θd > θb) the CL detachment
starts from the middle section of the part of the CL which
is in contact with one row of defects. The displacements of
the CL along the considered directions are localized within
one row of defects. Therefore, this category of depinning can
be labeled as block (B) case depinning, but proceeding in
two different ways. In one realization (when θd < θb), it is
initiated by reaching (R) the border of a defect, belonging to
a new row of defects, and we abbreviate it BR-type depinning.
In the other realization (when θd > θb), it is initiated by
detaching (D) from the inner part of a defect and we call it
BD-type depinning (see Table I).

Receding CL. Figures 4 and 5 present our results for
receding CLs, i.e., when the sequence of CLs is generated
by decreasing the drop volume, when θd < θb and θd >

θb, respectively. In the receding case, each subsequent CL
(equilibrium or intermediate) is partially overlapping with the
previous CL or is inscribed in it. The numerically obtained 3D
equilibrium drop shape is shown in Fig. 4(c) with a contact
line L26—just before the depinning of the CL in direction 0◦
occurs.

When θd < θb (θd = 30◦, θb = 80◦), the case shown in
Fig. 4, the transition of the CL to the internal row of defects
along direction 0◦ occurs when the CL elastic force overcomes
the pinning force, keeping the CL attached to the last defect
(the defect with center at (13.5, 2.5), located on the row of
defects with centers on the line x = 13.5. In Fig. 4(b) this
precise moment occurs when a slight decrease in the volume
of the droplet is made when the drop CL is L26. As a result, in
the vicinity of this defect, the CL jumps, reaching the defect
with center at (12.5, 2.5) and forms a contact with it along
part of its boundary. This causes the CL to move along the
defect centered at (13.5, 1.5), related to an increase of the
elastic force and a decrease of the pinning force in that region.
The latter leads to the continuation of the cascading process of
depinning—the end result being the new equilibrium CL L27,
which is not in contact with the row of defects with centers
on the line x = 13.5. For the CL depinning along the 45◦
direction, one observes a specificity, as in the CL advancing
regime, due again to the closeness of the rows of defects along
the direction of the CL displacement. When decreasing the
drop volume, the CL reaches the inner row of defects without
detaching from the outer row of defects and a new CL is
formed, positioned on two neighboring rows of defects. An
example of such CL is the CL L25 shown in Fig. 4(a). With
further decrease of the drop volume, this CL, again due to
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overcoming of pinning force by the elastic force, jumps to the
inner row of defects. At small surface defect concentrations
this peculiarity is not observed and the CL depinning is similar
to that appearing along direction 0◦.

When θd > θb (θd = 80◦, θb = 30◦), as can be seen from
Fig. 5, the transition to the inner row of defects occurs when
the CL reaches and makes contact with a defect from the inner
row of defects due to the drop volume decrease, leading to a
cascade of CL displacements. This process is identical along
the two directions considered, 0◦ and 45◦, and starts when the
CL reaches a defect belonging to the inner row. This precise
moment occurs in Fig. 5 when a slight decrease in the volume
of the droplet is made when the drop CL is L32—when the
CL displacement along direction 0◦ and L28 along direction
45◦ are considered. As shown in Fig. 5(b), along direction
0◦ after the CL establishes a contact with the defect centered
at (13,3), during the minimization of the functional U [see
Eq. (1)] the nonequilibrium CL jumps to the other end of the
defect. In the course of CL displacement, CL breaks away
from the defect centered at (14,2), then touches the defect
centered at (13,2), after which a similar process is repeated
until the nonequilibrium CL is completely detached from the
row of defects with centers on the line x = 14.

From Figs. 4 and 5, it can be seen that in the case of a
receding CL, the depinning starts from the CL sections, where
the equilibrium CL passes from one row of defects to another.
In the receding mode, this situation gives grounds for the
depinning to be designated as a kink (K ) case depinning. But
again, as in the case of advancing CL, two different depinning
types are observed—one associated with a CL reaching (R)
the border of a new defect from the neighboring row and
making a contact with it and second one associated with a
CL detaching (D) from a defect, respectively. We call the
first realization a KR-type depinning and the second one a
KD-type depinning, similarly to the situation in the block-case
depinning (see also Table I).

Thus, the analysis of the CL depinnings for a drop, as
illustrated in Figs. 2–5, gives grounds to distinguish four
depinning regimes, presented in Table I. We find that the
following relation holds between the advancing and receding
modes on the same heterogeneous surface. If in advancing
mode one has a BR-type depinning, then in the receding
mode a KD-type depinning occurs, and vice versa, i.e., if in
advancing mode a BD-type depinning is occurring, then a
KR-type depinning takes place in receding mode.

The numerical studies for a rectangular grid of defects
with λ1 > λ2, λ1 � 3, show that the characteristics of the
CL depinning regimes, obtained for square lattice, remain
unchanged.

2. CAH

For a drop on the considered substrate, by utilizing the
existing symmetries of the system, as a first approximation
one can consider the CL displacements from one row of
defects to the neighboring row along the lines of symmetry.
The ACA and the RCA are the biggest (maximal) and the
smallest (minimal) among the equilibrium CAs, which are
formed between the drop surface and the substrate along
the lines of symmetry. Through the ACA and RCA one can

determine the CAH, defined as the difference between the two
angles.

For a square lattice it is sufficient to determine the maximal
and minimal apparent CAs along directions 0◦ and 45◦, i.e.,
θmax

0 , θmin
0 , θmax

45 , θmin
45 , respectively. The ACA θa is the bigger

angle of the pair θmax
0 , θmax

45 , i.e., θa = max {θmax
0 , θmax

45 }, and
the RCA θ r is the smaller angle of the pair {θmin

0 , θmin
45 },

i.e., θ r = min {θmin
0 , θmin

45 }. These angles are obtained through
the procedure (described in Sec. II) for determination of
the apparent CA for equilibrium drop shapes, having CLs
preceding the CL depinning along the respective direction (0◦
or 45◦). The numerical studies indicate that when fitting the
drop profile one has to consider points whose distance to the
CL is greater than the distance between the defect centers λ1.
That can be seen also from the parts of the 3D shape of a
droplet [shown in Figs. 4(c) and 9(b)] with a CL just before
the depinning begins by finding the distance (from the CL
along the drop profile) at which the local perturbation of the
CL spreads. All results reported below are obtained in this
way.

ACA. The obtained numerical results show that for
the whole range of investigated defect concentrations p ∈
[0.1, 0.55], the biggest CAs θmax

0 , θmax
45 for a drop coincide

with the predictions [12] for ACA, made by the block depin-
ning model of a CL, located on a single row of defects. For
a substrate where the pair of CAs {θd , θb} have values {30◦,
80◦}, the biggest CA coincides with the numerical results [13]
for the ACA in the Wilhelmy plate geometry.

In the case where the CL depinning is initiated by CL
making a contact with a new defect (when θd < θb), the ACA
θ̄a, as predicted by the block depinning model, is equal to the
angle characterizing the homogeneous base �b

s , i.e.,

θ̄a = θb. (3)

Thus one has θmax
0 , θmax

45 = θ̄a = θb. The reason for this result,
appearing in direction 0◦, is the observation made above for
the evolution of the CL [shown in Fig. 2(b)], that before the
CL reaches a defect from the outer row, much of it is already
detached from the inner row of defects. Due to the fact that in a
large area the CL is in contact only with the base surface with
local CA θb, it follows that in the central point in this area the
apparent CA is the same. These observations and reasoning
hold true also when considering the CL displacements along
the 45◦ direction, where almost the entire CL is positioned on
the base surface.

In the case where the CL depinning is triggered by a
detachment from a defect (when θd > θb), according to the
predictions of the block depinning model, the ACA θ̄a is
determined by the linearized Cassie equation [7,12,17],

cos θ̄a = pl cos θd + (1 − pl ) cos θb, (4)

where pl is the linear fraction [34] of the contact line that
resides on the defects, i.e.,

cos θmax
0 = 2r

λ2
cos θd +

(
1 − 2r

λ2

)
cos θb ;

cos θmax
45 = 2r√

2λ2

cos θd +
(

1 − 2r√
2λ2

)
cos θb. (5)
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FIG. 6. The cosines of the smallest CAs, θmin
0 and θmin

45 , θ̄ r

[Eqs. (6) and (7)], and Cassie’s angles θC as functions of the defect
surface concentration p when θd < θb and when θd > θb.

This is understandable, given that in this depinning regime
the elastic force overcomes the pinning force at the center of
the part of the CL located on one row of defects (as shown
in Fig. 3). The ends of this part of the CL introduce a small
correction to the total elastic force acting at the central portion
of this part of the CL. Therefore, this depinning regime is an
approximation of the situation of an infinite CL located on a
single line of defects, and this is the basic assumption of the
block depinning model leading to Eq. (4). Taking into account
that θd > θb, one has θmax

0 > θmax
45 , and therefore in this case

the ACA equals θmax
0 .

The analysis of the relationship between the numerically
obtained CL depinning and the ACA for a drop on a square
grid of defects shows that the biggest CA depends on the
linear fraction of defects along a direction perpendicular to
the direction of the CL motion. Therefore, one can deduce that
the ACA is defined by the row of defects with highest linear
fraction. The numerical studies confirm that these results are
valid even if the defects are located on a rectangular grid.

RCA. The analysis of the obtained numerical results for
a square lattice show that the results for the smallest CAs,
θmin

0 and θmin
45 , for CL motion along directions 0◦ and 45◦ as

a function of the defect concentration p significantly deviate
from the predictions of the RCA θ̄ r of the block depinning
model; in the last one for the RCA θ̄ r one has the following
relations:

cos θ̄ r = pl cos θd + (1 − pl ) cos θb when θd < θb, (6)

θ̄ r = θb when θd > θb. (7)

The reason for this is the essential role of the substrate region,
in which the CL passes from one row of defects to another row
in the process of CL depinning. The difference for the smallest
CAs, obtained numerically in both types of CL kink depinning
regimes from the predictions of Eqs. (6) and (7), can be seen
in Fig. 6. The numerical results for the smallest CAs, θmin

0 and
θmin

45 , are shown by circles (solid circles in direction 0◦ and
empty in direction 45◦) and a thin (black) line for θd < θb,
and by squares (solid squares in direction 0◦ and empty in
direction 45◦) and a bold (black) line for θd > θb. The results

FIG. 7. Parts of the RCLs of a drop on a substrate with {θd =
30◦, θb = 80◦} at defect surface concentration p = 0.2 on a rect-
angular lattice of defects with periods λ1 = 2, λ2 = 1. CLs L25, L13,
and L19 are the CLs just before the depinning in directions ϕ = 0◦,
63.5◦, and 90◦, respectively; CLs L26, L14, and L20 are the respective
CLs after the depinning.

for θ̄ r [Eqs. (6) and (7)] are represented by dashed (red)
lines, thin for θd < θb and bold for θd > θb, respectively. In
Fig. 6 Cassie’s angles θC [Eq. (2)] are also shown by dash-
dotted (blue) lines—thin for θd < θb and bold for θd > θb. As
expected, it can be seen that as a result of the kink depinning,
the smallest CAs along both studied directions, 0◦ and 45◦,
of CL displacements are closer to Cassie’s angle than to the
value for the RCAs θ̄ r from Eqs. (6) and (7), following from
the block depinning model. The deviations of the numerically
obtained smallest CAs for liquid drop, θmin

0 and θmin
45 , from

θ̄ r as a function of p are different when θd < θb and when
θd > θb. In the case when the KD-type depinning for a drop
is triggered by a detachment from a defect (θd < θb), as can
be seen from Fig. 6, the smallest CAs θmin

0 and θmin
45 along both

directions of CL displacement deviate from the predictions
for the RCA of the block depinning model θ̄ r [Eq. (6)] for
all defect concentrations studied, i.e., for 0.1 � p � 0.55. The
deviation is significant and depends to a certain degree on the
concentration. In the studied interval 0.1 � p � 0.55, θmin

45
is slightly bigger than θmin

0 ; the difference between them
practically does not depend on the defect concentration. Thus
in this case one gets that the RCA is θmin

0 .
The RCA in the case where the centers of defects are lo-

cated on a rectangular grid with λ1 > λ2 is the smallest angle
among the minimal CAs determined along the directions 0◦,
tan−1 (λ2/λ1), and 90◦. The numerical studies indicate that
the smallest CAs in directions 0◦, 90◦ are equal and depend
only on the defect surface concentration p (but not on the ratio
λ1/λ2). The obtained results for the CL displacements on a
rectangular lattice of defects is shown in Fig. 7 at defect con-
centration p = 0.2. The defect radius is the same as in Fig. 4
(at p = 0.4 and square defect lattice), but the distance between
the defects centers along the x axis is doubled (λ1 = 2λ2). The
CLs preceding the depinning and the CLs after the depinning
along directions 0◦, tan−1 (λ2/λ1), 90◦ in Fig. 7 are L25, L26;
L13, L14; L19, L20, respectively. The resulting smallest CAs
along directions 0◦, 90◦ are identical, and the obtained value
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is approximately equal to the value of θmin
0 in the case of a

square grid of defects at defect concentration p = 0.2 (shown
in Fig. 6). The smallest CA along direction tan−1 (λ2/λ1) is
significantly bigger. Therefore, the RCA is equal to θmin

0 ≡
θmin

90 , from which it follows that the RCA depends on the
surface defect concentration p but it is not a single-valued
function of the linear defect fraction, as predicted by the block
depinning model. This result was experimentally established
in Ref. [15] for drops on hydrophobic surfaces. In the case
when the kink depinning is initiated by a contact with a new
defect (θd > θb) (KR-type depinning), the transition of the
CL to a new row of defects is preceded by detachment of
the part of the CL from the outer row of defects. As a result,
long sections of the CL appear to be located solely on the
homogeneous base �b

s . As the surface defect concentration
decreases, the size of these sections increases and there the
CL converges towards a circular shape. Therefore, for small
defect concentrations (p � 0.2) at the bigger part of the CL in
this area, the local CA is equal to θb, and at the small parts of
the CL touching the defects, it is very close to it. This leads to
an apparent CA also close to θb, as predicted for the RCA θ̄ r

by the block depinning model. At higher defect concentrations
[e.g., at p = 0.4, see Fig. 5(b)] along the 0◦ direction the
CL before depinning is in contact with larger parts of the
defects in the outermost row, resulting in both a more wrinkled
drop interface and greater deviation of the local CA from
θb at these parts of the CL. By increasing the radius of the
defects (at a fixed distance between their centers), i.e., as p
increases, the CL more quickly touches a defect from the inner
row, leading to a cascading series of depinnings from single
defects. As a result, the shape of this CL is more wrinkled,
resulting in a greater deviation of the smallest CAs θmin

0 , θmin
45

from θb, which is the RCA θ̄ r of the block depinning model.
The results in Fig. 6 show that for p > 0.2, cos θmin

0 , cos θmin
45

as a function of p deviate from cos θb, with the differences
rapidly increasing with p; however, the deviation of cos θmin

45
is considerably larger than that of cos θmin

0 . Therefore the RCA
is θmin

0 . The numerical studies for a rectangular grid of defects
with λ1 > λ2, λ1 � 3 point once again (as in the preceding
case of θd < θb) to the dependence of the RCA on the surface
concentration p.

B. Hydrophobic surfaces

For the study of hydrophobic surfaces, as a representative
case we choose first the values of 180◦ − 30◦ and 180◦ − 80◦
for the pair of angles {θd , θb}, since for the hydrophilic sur-
face we have chosen 30◦ and 80◦ for the pair {θd , θb}. Here
again we perform a numerical study of the drop shape evo-
lution for both cases when θd < θb and θd > θb. Analysis of
the obtained results for these hydrophobic surfaces shows that
they are related to the results for the CL state evolution and
the CAH on hydrophilic surfaces, characterized by CAs 30◦
and 80◦. We named the obtained relations between the results
for hydrophilic and hydrophobic surfaces principles of “cor-
responding lines” and “complementary angles,” respectively.

1. Corresponding lines and complementary angles

The principle of “corresponding lines” finds expression in
the fact that for every equilibrium CL of a drop resting on

(a) (b)

FIG. 8. (a) Parts (in 3D subspace {x � 0, y � 0}) of the two
free drop shapes on solid substrates, characterized by CAs {θd =
30◦, θ b = 80◦} (z � 0) and CAs {180◦ − θb, 180◦ − θd } (z � 0),
respectively. The defect surface concentration is p = 0.4. Both drops
share a common CL, L27, resulting from the depinning of the CL
along direction 0◦, shown previously in Fig. 4. (b) A blown-up image
of the result shown in (a), in the vicinity of the common CL. The
dashed (red) line shows the fitting line of the free drop surface (some
distance away from the CL) in the plane y = 0, used to determine the
apparent CA.

a substrate, characterized by CAs {θd , θb}, there exists an
equilibrium drop resting on a substrate having the same defect
pattern, but characterized by CAs {180◦ − θb, 180◦ − θd },
and which has the same CL. The sum of the apparent contact
angles of both drops at every point of the CL is 180◦. We
call this property the principle of “complementary angles.” In
the context of the study of hydrophobic surfaces, these prin-
ciples manifest themselves in the fact that at the start of the
numerical investigation, with a spherical cap approximation
with circular CL having radius R = 14, on a substrate char-
acterized by CAs {180◦ − θb, 180◦ − θd } the sequence of
CLs generated by drop volume increase (decrease) coincides
with that obtained for a drop volume increase (decrease) on a
hydrophilic surface characterized by CAs {θd , θb} (the case
studied above in Sec. III A). In particular, for these cases the
initial CLs L0, the CLs immediately preceding the depinning
(in a given direction of a CL motion), and the CLs appearing
after the depinning coincide with each other. In addition to
that, the two equilibrium drops with one and the same CL
form at every point of the CL apparent CAs whose sum is
180◦. To illustrate the principle of complementary angles in
Fig. 8, quarters (in 3D subspace x � 0, y � 0) of the two
drops resting on hydrophilic and hydrophobic surfaces are
represented in the regions z � 0 and z � 0, respectively. The
hydrophilic solid substrate is characterized by CAs {θd =
30◦, θb = 80◦} and p = 0.4. For this case the CL L27, re-
sulting from the depinning of the CL along direction 0◦, is
shown previously in Fig. 4. It can be seen that the two drop
shapes form a continuous surface and the union of the two
surfaces is very close to a sphere, but having a deformation in
the vicinity of the z = 0 plane. In Fig. 8(b) a blown-up image
is presented of the result shown in Fig. 8(a), in the vicinity of
the area where the CL depinning occurs. The dashed (red) line
shows the fitting line of the free drop surface (some distance
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away from the CL) in the plane y = 0, used to determine the
apparent CA. One can see that the sum of the apparent CAs
θ1 (in the case {θd = 30◦, θb = 80◦}) and θ2 (in the case
{θd = 100◦, θb = 150◦}) is indeed 180◦.

2. Depinning regimes and CAH

The principles of corresponding lines and complementary
angles allows one to use the results obtained for the drop CL
depinning regimes and the CAH, results from Sec. III A for
a drop on hydrophilic surfaces, and apply them to the drop
resting on hydrophobic surfaces.

The CL depinning in the advancing regime (Figs. 2 and 3)
also represents the depinning of the drop ACL on substrates
with CAs {θd = 100◦, θb = 150◦} and {θd = 150◦, θb =
100◦}, respectively. Similarly, Figs. 4 and 5 describe the
depinning of the drop RCL on {θd = 100◦, θb = 150◦}
and on {θd = 150◦, θb = 100◦} substrates. Therefore, for
hydrophobic surfaces the ACA is again well described by the
predictions obtained in Ref. [12] (under the assumption that
the whole CL is positioned on one row of defects). Thus, when
θd < θb – the ACA equals θb, and when θd > θb the ACA is
given by the linearized Cassie equation [7].

The values of the drop ACA on {θd = 100◦, θb = 150◦}
and on {θd = 150◦, θb = 100◦} substrates are determined
from Eqs. (3) and (7), respectively. The values of the small-
est CAs in directions 0◦, 45◦ on the hydrophobic surfaces
{θd = 100◦, θb = 150◦} and {θd = 150◦, θb = 100◦} are
calculated from the results shown in Fig. 6 for the smallest
CAs in directions 0◦, 45◦ on the hydrophilic surfaces {θd =
30◦, θb = 80◦} and {θd = 80◦, θb = 30◦}, respectively. The
following relation holds for the above studied hydrophobic
and hydrophilic surfaces:

cos
(
θmin

0 ; θmin
45

)|hydrophobic surface

= cos
(
θmin

0 ; θmin
45

)|hydrophilic surface − 1. (8)

For hydrophobic surfaces, the RCA is bigger than the
prediction of the block depinning model, according to which
when θd < θb the RCA is described by the linearized Cassie
equation, and when θd > θb the RCA equals θb. The devia-
tions of the RCA from the predictions of the block depinning
model depend on the defect concentration p, and they are
different functions of p in the two cases θd > θb and θd < θb.
The type of deviation is illustrated well by the results shown
in Fig. 6. For an exhaustive numerical study of the RCA, one
needs to perform a three-parametric study of the RCA as a
function of θd , θb, and p, and this is beyond the scope of the
present work. Here, we limit our studies to the case where
for one of the phases the equilibrium CA is 180◦. For the CA
of the other phase we will use values which are found in the
experiments.

3. Physical defects

The analysis of the depinning regimes and the magnitude
of the CAH for a drop on smooth and chemically hetero-
geneous surfaces, as mentioned in the Introduction, is also
applicable to rough surfaces with pillars or with holes when a
liquid drop contacts the substrate in the Cassie-Baxter wetting
regime. If the angle θb, characteristic for the homogeneous

base, is increased to θb = 180◦, then the resulting heteroge-
neous surface describes the behavior of a drop on a surface
with pillars (having circular cross-section) in the place of the
chemical defects. If the defect-specific angle θd is increased
to θd = 180◦, then one can study the behavior of a drop on a
surface with holes at the defect location.

Thus we find that the start of the ACL depinning on a
surface with pillars (Fig. 2) and of the RCL depinning on a
surface with holes (Fig. 5) is initiated by reaching a defect
from a neighboring row. This realization of depinning is
accompanied by a quick transition of the CL through the new
defect whose border it has reached and is also accompanied
by a detachment of a big part of the CL from the previous
row of defects, and this part remains positioned between the
rows of defects. The start of the RCL depinning on a surface
with pillars (Fig. 4) and of the ACL depinning on a surface
with holes (Fig. 3) is initiated by detachment of the CL
from a defect. The CL detachment is not accompanied by a
transition of the CL through the whole surface of a new defect.
These kinds of identifying characteristics of the depinnings
are observed experimentally in Ref. [14] (see movies 1, 4, and
2, 3, respectively, in the Supplemental Information).

For both types of rough surfaces, we find that the depinning
is the block case in the advancing regime, and the ACA is
described by Eqs. (3) and (5), correspondingly. In the receding
regime, we find that the depinning is kink case; however, the
values of the RCA are not well described by the results of the
block case model of depinning. The RCA as a function of the
pillar or hole surface concentration has the behavior displayed
in Fig. 6.

In order to verify these results, the RCL and RCA on two
particular realizations of the rough surface were investigated
numerically for the case where the second angle of the hetero-
geneous surface is 90◦ (this angle characterizes the contact
with the surface on the top of the cylindrical pillars in the
experimental studies by Gauthier et al. [18]).

Pillars. Our numerical simulations confirm the experimen-
tal results of Gauthier et al. [18], indicating that for a drop
in the receding mode there is a kink depinning regime when
the CL moves along the 0◦ direction. Figure 9(a) presents
our numerical simulation results for the CL depinning for a
drop on the surface studied experimentally in Ref. [18] at
defect surface concentration p = 0.2. The notations in the
figure are the same as in Figs. 2–5. A part of the numeri-
cally obtained 3D equilibrium drop shape with a contact line
L127, just before the depinning of the CL in direction 0◦, is
shown in Fig. 9(b) in the vicinity of the area where the CL
depinning occurs. The enlarged view allows one to see the
triangulation mesh used to approximate the drop interface in
the numerical minimization algorithm. For this substrate the
RCA is determined. One can clearly observe that Fig. 9(a)
is very similar to Fig. 4(a). The depinning and the transition
of the CL L127 to L128 is realized in the same way as that
shown in Fig. 4(b) and observed experimentally by Gauthier
et al. [18]. Numerical studies showed that the values of the
RCA are in very good agreement with the experimental data
shown in Fig. 2 in Ref. [18] and in Fig. 3 in Ref. [15] for
pillar concentrations p � 0.2 considered there. For example,
at defect surface concentration p = 0.2, the experimentally
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(a) (b)

FIG. 9. (a) Parts of the numerically obtained RCLs of a drop on
an ultrahydrophobic pillar surface, characterized by CAs {θd = 90◦,
θ b = 180◦}. CL L127 is the CL before the depinning, and CL L128 is
the CL after the depinning. (b) Enlarged view of the 3D equilibrium
drop shape with CL L127 [shown in part (a)] just before the CL
depinning occurs. The triangulation net used to approximate the drop
interface is also shown.

established RCA is 126.0◦, while the numerical studies for a
square lattice of pillars give θ r = 126.2◦. They convincingly
show that the RCA is not described by the predictions of
the block depinning model. The numerical results strongly
support the Barthel group’s experimental data that RCA is
the result of a kink CL depinning, and its magnitude is much
larger than the predictions of the block depinning model. The
difference is practically the same as that shown in Fig. 6. In
Ref. [5] a formula was suggested for the size of the RCA as
a function of the parameters of the solid surface by fitting
experimental data, but without any theoretical argumentation.
The formula proposed in Ref. [20] by use of the differential
area method for doubly periodic defects lattice does not lead
to efficient prediction of the contact angles, as pointed out by
Gauthier et al. [18]. A challenge for further studies would be
to obtain such a dependence for both a pillar surface where
the RCA should be a function only of p and θd , and also for a
surface for which θb < 180◦.

Holes. In this case, the numerical studies show that in
the advancing and receding regime the CL depinnings are
similar to those shown in Figs. 3 and 5, respectively. The
results obtained for the RCA indicate that, at surface defect
concentration p � 0.2, its magnitude is not described well by
the block depinning model, according to which the RCA is
a constant equal to θb. The deviation from θb has the form
shown in Fig. 6 when θd > θb, i.e., the numerical simulations
predict that the CAH for a drop on a substrate with holes is
also smaller than that obtained within the block depinning
model at high surface concentrations. Therefore, in this case
it has to be modeled through the described specificity of the
kink depinning of the CL. The available experimental data
for the RCA of a drop on such a substrate as a function of
the hole surface concentration are presented in Fig. 4(a) in
Ref. [35], in Table 1 in Ref. [36], and in Fig. 2 in Ref. [14].
In Ref. [35] one can detect a trend of RCA increasing with
the hole concentration; however, the scatter of data is too
large in order to reliably confirm the RCA dependence on the
hole concentration. The results in Ref. [36] show increasing

RCA with hole concentration, as predicted by our results
displayed in Fig. 6, while the results for the RCA in Ref. [14]
do not imply dependence on the hole concentration. The
experimental data seem to point to a tendency of RCA increas-
ing with the hole concentration, but the data are insufficient
for a convincing support of the numerical results. Further
experimental investigation of this case is necessary at high
hole concentrations. As in the case of pillars, obtaining an
analytical dependence of the RCA on the surface parameters
is highly desirable.

IV. CONCLUSION

A precise numerical study of the evolution of an equilib-
rium liquid droplet in contact with doubly periodic micro-
textured surfaces under drop volume change is performed.
The process of stick, slip, and jump motion of the CL is
analyzed in detail. Four universal types of depinning regimes
are identified, and the distinction is based on the region of
the CL where the process starts (i.e., from regions where the
equilibrium CL crosses from one row of defects to the next
row or from the middle section of the CL, positioned on one
row of defects) and on what triggers the start of the depinning
(i.e., the CL reaching the border of a defect, belonging to a
new row of defects, or the CL detaching from the inner part of
a defect).

It is shown that in the case of ACL, the depinning process
always starts from the middle section of the CL, positioned on
one row of defects, and in the case of a RCL the depinning
process starts from the part of the CL where the CL crosses
from one row of defects to the next row. It is found that
the cause that triggers the depinning process (i.e., the CL
reaching or detaching from a defect) is altered by changing the
direction of motion of the CL and also by changing the surface
tensions of the materials, which form the heterogeneous solid
surface. The more detailed study of the CL depinning made
it possible to distinguish the existence of different depinning
mechanisms, determining the magnitude of the ACA and
RCA, and their dependence on the surface and linear fractions
of defects. It also gave an answer to which projection of
the drop interface, relative to the defect lattice, should be
used in the experiments to determine these two angles. Also,
a relationship between the results for the CL, ACA, and
RCA evolution on hydrophilic and hydrophobic surfaces is
established.

The results of our numerical simulations study of the RCL
of a liquid drop on a surface with pillars supports the experi-
mental results of Gauthier et al. [18] that the transition of the
CL to an inner defect row is realized by kink depinning and,
accordingly, the RCA value is different from the predictions
of the block depinning model. As our studies show, this
also holds true for surfaces with holes. The analysis of the
results for the ACA and RCA shows that ACA is always well
described by the existing predictions, given by Eqs. (3) and
(4), which are based on the assumption of block depinning
of the CL, located entirely on one row of defects. As for the
RCA, finding an analytical expression for the RCA in terms
of the surface parameters requires the development of new
approximations that determine the overcoming of the stick
force by the elastic force in the vicinity of a kink. The obtained
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results renew the question of whether it is possible to further
decrease the CAH for a drop on heterogeneous surfaces (or

rough surfaces with pillars or holes) by varying the design of
the defect pattern as well as the size and shape of the defects.
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