
PHYSICAL REVIEW E 101, 052706 (2020)

Field-triggered vertical positional transition of a microparticle suspended in a nematic
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In this paper, based on the numerical calculation of total energy utilizing the Green’s function method, we
investigate how a field-triggered vertical positional transition of a microparticle suspended in a nematic liquid
crystal cell is influenced by the direction of the applied field, surface anchoring feature, and nematic’s dielectric
properties. The new equilibrium position of the translational movement is decided via a competition between
the buoyant force and the effective force built on the microparticle by the elastic energy gradient along the
vertical direction. The threshold value of external field depends on thickness L and Frank elastic constant K and
slightly on the microparticle size and density, in a Fréedericksz-like manner, but by a factor. For a nematic liquid
crystal cell with planar surface alignment, a bistable equilibrium structure for the transition is found when the
direction of the applied electric field is (a) perpendicular to the two plates of the cell with positive molecular
dielectric anisotropy or (b) parallel to the two plates and the anchoring direction of the cell with negative
molecular dielectric anisotropy. When the electric field applied is parallel to both plates and perpendicular to
the anchoring direction, the microparticle suspended in the nematic liquid crystal tends to be trapped in the
midplane, regardless of the sign of the molecular dielectric anisotropy. Such a phenomenon also occurs for
negative molecular dielectric anisotropy if the external field is applied perpendicular to the two plates. Explicit
formulas proposed for the critical electric field agree extremely well with the numerical calculation.
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I. INTRODUCTION

Liquid crystals (LCs) are soft matter with anisotropic prop-
erties characterized by their long-range orientational order. In
a nematic liquid crystal (NLC) phase, for example, molecules
with molecular long axes possess a preferred orientation,
which drives them to align along a common direction, while
in a dispersed NLC, colloidal particles disturb the alignment
of LC molecules, inducing elastic distortions which give
rise to long-range anisotropic interactions and topological
defects. Generally, there are three widely accepted and con-
firmed possible types of topological defect, namely hedgehog,
Saturn-ring, and boojum defect [1–3]. Typically, the gener-
ated topological defects are usually determined by boundary
conditions like surface anchoring features, particle size and
shape, LC elasticity, and external fields, etc. [4–8]. In addition,
very recently, the so-called elastic hexadecapole caused by
the conically degenerated boundary condition [9] has been
reported, and the dipole-hexadecapole transformation can be
achieved via tuning the preferred tilt angle of LC molecules
anchored on colloidal particle surface [10].

Since the early 2000s, the properties and behaviors of
colloid-suspended NLC have attracted an increasing amount
of interest and triggered a wide range of promising prac-
tical applications in new display and topological memory
devices [11–13], new materials [14], report external triggers
and release microcargo [15], and biological detectors [16,17].
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Efforts using experiment, theoretical modeling, and computer
simulation [4,18–29] have been devoted to getting a better
understanding of the physics hidden behind colloidal particles
embedded in an NLC cell. Experimentally, breakthroughs in
versatile methods and techniques have enabled the measure-
ment of the interaction force between particles in NLC in a
direct manner [18,30–33]. It has been found that a number of
factors, such as interparticle distance, geological confinement
[19], and shape of particles [4], play a prime role in determin-
ing the pair interaction and aggregation of spherical particles
suspended in NLC. In addition, fascinating physical phenom-
ena such as levitation, lift, bidirectional motion, aggregation,
andelectrokinetic superdiffusion have been found for colloids
dispersed in NLCs in the presence of an external electric
field [29,34–36]. For example, the transition between elastic
dipole and quadrupolar configuration, a phenomenon depend-
ing on particle size and surface anchoring strength [37–39],
has been realized in experiments by applying an external
field.

On the other hand, theoretical modeling and computer
simulation provide a useful complement to experimental in-
vestigations. The system of colloidal particles dispersed in
NLCs are typically modelled via Landau-de Gennes (LdG)
theory and elastic free-energy method. Furthermore, Monte
Carlo simulation [28,40], lattice Boltzmann method [41,42],
and finite element method [19,43–46] are commonly adopted
to minimize the LdG free-energy functional. Except for the
methods mentioned above, recently the method of Green’s
function has been proposed to study the interaction between
colloidal particles in NLCs near one wall and in an NLC cell
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FIG. 1. Sketch of a microparticle suspended in a nematic cell
with (a) homeotropic anchoring and (b) planar anchoring in the
presence of an external field. The five cases of external fields applied
are shown by red arrows in the two coordinate frames.

with or without an external field [47–49]. In the liquid crystal-
particle coexisting system, it is found that an external field
applied is able to drive particles apart [18], rotation [23], and
realignment [50] and even trigger a positional transition [51],
which can be used to manipulate the suspended microparticle.
Despite the fact that the interaction of two particles and the
particle-wall interaction for the particle-LC cell systems have
been widely studied either via experimental or theoretical
approaches [48,52,53], the properties of a single particle in
such an NLC cell in the presence of an external electric field
have not been fully theoretically addressed, partly due to the
difficulties in mathematics involved in analyzing such kind
of confined systems. However, it is of crucial importance to
investigate, analytically if possible, the single microparticle-
suspended NLC cell if one wants to find the corresponding
applications of such kind of manipulations as demonstrated in
experiments.

II. THEORETICAL MODELING

We begin our investigation by considering a system of a
spherical microparticle of radius r suspended in a NLC cell
with L-thick spacers in the presence of an external electric
field. For simplicity, the polarization of the microparticle is
neglected compared to the influence of external field on the re-
alignment of liquid crystal molecules. Figure 1 schematically
illustrates two systems under an external field respectively
with (a) a homeotropic anchoring and (b) a homogeneous
planar anchoring at the two cell walls. The suspended mi-
croparticle induces a director distortion from the undeformed
director field n0 = (0, 0, 1), expressed by a two-component
deviation field nμ (μ = x, y), both small at regions far away

from the microparticle. Here we deliberately use two different
coordinate frames, as shown in Figs. 1(a) and 1(b), so that
the same set of symbol subscripts [nμ (μ = x, y)] can be
usable under approximations for the two surface anchoring
conditions throughout this paper. Assuming n ≈ (nx, ny,1)
with one Frank constant approximation, the effective elastic
energy for the system reads [49]

Ue = K
∫

d3x

[
(∇nμ)2

2
− k2

2
(e · n)2 − 4πP(x)∂μnμ

− 4πC(x)∂z∂μnμ

]
, (1)

where K is the Frank constant; nμ (μ = x, y) represents the
components of the director field n perpendicular to n0; P(x)
and C(x) denote the dipole- and the quadrupole moment
densities as functions of position x, respectively; and k2 =
(4πK )−1�εE2 with �ε = ε‖ − ε⊥ the dielectric anisotropy
of the NLC, which can be positive or negative with both cases
considered in this paper. Here ε‖ and ε⊥ are the dielectric
susceptibilities of the liquid crystal molecule parallel and
perpendicular to the molecular long axis, respectively. For
homeotropic anchoring, when an electric field is applied along
the z axis [Fig. 1(a)], the Euler-Lagrange equations are given
by [49]

�nμ − k2nμ = 4π [∂μP(x) − ∂z∂μC(x)]. (2)

On the other hand, for planar (homogeneous) anchoring, as
shown in Fig. 1(b), when an external electric field is applied
parallel to the x axis, we have the Euler-Lagrange equations
written as [49]

�nμ + k2δxμnμ = 4π [∂μP(x) − ∂z∂μC(x)]. (3)

If the applied electric field is parallel to the y axis [Fig. 1(b)],
then the Euler-Lagrange equations are [49]

�nμ + k2δyμnμ = 4π [∂μP(x) − ∂z∂μC(x)]. (4)

With Dirichlet boundary conditions nμ(s) = 0 on the two
walls, the solution to Euler-Lagrange equations can be written
as [49]

nμ(x) =
∫

V
d3x′Gμ(x, x′)[−∂ ′

μP(x′) + ∂ ′
μ∂ ′

zC(x′)], (5)

where Gμ is the Green’s function for nμ. Please note that here
μ in the integral does not follow Einstein summation notation
and only dipolar contribution P(x′) is considered in this paper.

III. RESULTS AND DISCUSSIONS

Given the Green’s functions and the total energies in the
Appendix for five different cases, we can plot the energy
profiles as a function of microparticle position for different
electric fields. The occurrence of positional transition trig-
gered by an external electric field shall also be discussed.

A. Homeotropic boundary condition

1. External field perpendicular to the two plates

Now we first consider an electric field applied perpen-
dicular to the two plates of the NLC cell with homeotropic
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FIG. 2. Dependence of Ec and
√

K/L for different densities of
microparticle (0.99, 1.0, and 1.03 g cm−3).

anchoring condition, i.e., E‖z in Fig. 1(a), and �ε > 0, a
Fréedericksz-like positional transition is found and the effects
of cell thickness, Frank elastic constant, and microparticle
size on the threshold value triggering the positional transition
have been discussed in our previous paper [51]. Furthermore,
in order to study the effect of microparticle density on the
critical electric value, we plot the threshold value against√

K/L for different microparticle densities (0.99, 1.0, and
1.03 g cm−3) in Fig. 2, where a Fréedericksz curve (black) is
shown as well. It is clearly seen that the critical electric field
for positional transition for different microparticle densities
shows a Fréedericksz-like behavior, exhibiting straight lines
nearly parallel to each other yet with a different slope from
the Fréedericksz transition curve (black). A further calculation
shows that such a Fréedericksz-like linear master curve of
critical electric field does not depend or negligibly depend
on the density of the microparticle, and the proposed formula
for the critical electric field in Ref. [51] gives a prefactor of
3
√

π in comparison with the Fréedericksz transition threshold
expression. In the case when �ε < 0, it is found that the
microparticle is trapped at the midplane of the NLC cell,
indicating that an application of external electric field does not
trigger a positional phase transition. This is because when E‖z
and �ε < 0, the realignment of liquid crystal molecules with
the increase of the electric field narrows down the interaction
potential well rather than flatten it, which creates a force di-
recting toward the midplane much larger than the gravitational
contribution and thus denies any positional transition.

2. External field parallel to the two plates

In the case when the external field is parallel to the two
plates, i.e., E‖x in Fig. 1(a), surprisingly, the microparticle
is trapped in the midplane of the NLC cell regardless of the
sign of the molecular dielectric anisotropy, indicating that
an application of external electric field, however large it is,
cannot trigger a positional transition. This can be understood
by considering the fact that the molecular long (short) axes
tend to align along the direction of applied electric field
as �ε > 0 (�ε < 0). As we increase the field applied, the

FIG. 3. Total energy profile as a function of the suspended mi-
croparticle position for an NLC cell with planar anchoring in the
presence of different electric fields perpendicular to the two plates.

interaction potential is found to be narrowed down, cor-
responding to a strong midplane-directing restoring force.
Therefore, for the homeotropic boundary condition, the po-
sitional transition occurs only in an NLC cell with positive
molecular dielectric anisotropy when the external electric field
is applied along the undeformed director field.

B. Planar boundary condition

1. External field perpendicular to the two plates

When LC molecules are horizontally anchored on the two
cell walls, as depicted in Fig. 1(b), let us first consider a
positive dielectric anisotropy case �ε > 0 when an electric
field is applied vertically to the two plates, i.e., along x
axis in the figure. Intriguingly, a significant feature is ob-
served regarding the profile of total energy as a function
of microparticle position for four different electric fields, as
illustrated in Fig. 3. In the presence of small field (below
the critical electric value), Figs. 3(a) and 3(b) show that the
interaction potential well around the midplane tends to be
flattened in this region due to the realignment of liquid crystal
molecules made by the increment of external electric field.
However, when the electric field rises beyond the threshold
value, there exists two symmetric equilibrium positions for the
suspended microparticle [see Figs. 3(c) and 3(d)]. Which one
the microparticle shifts to is decided by the perturbation stem-
ming from the asymmetric buoyant force, i.e., by the density
difference between NLC and microparticle (ρLC − ρmp). No-
tably, the total energy now is almost equal to the elastic energy
due to the fact that the gravitational contribution is much
smaller in contrast to the elastic one, generating the depths
of the two local minimums in Fig. 3(c) [and Fig. 3(d)] nearly
equal to each other.

To probe the influence of cell thickness and Frank constant
on the critical field value, we plot the equilibrium position
of the suspended microparticle against the applied electric
field for different cell thicknesses (8, 9, 10, and 11 μm)
and Frank elastic constants (8, 9, 10, and 11 pN), as shown
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FIG. 4. Equilibrium position x0 in response to electric field for
different (a) cell thicknesses (8, 9, 10, and 11 μm) with Frank elastic
constant K = 7 pN and the radius of microparticle r = 2.2 μm, and
(b) Frank elastic constants (8, 9, 10, and 11 pN) with cell thickness
L = 10 μm and radius of microparticle r = 2.2 μm.

in Figs. 4(a) and 4(b), where a positional transition occurs
at some electric field threshold values and there exist two
equilibrium positions when the external field applied exceeds
the critical value. A more deeper investigation, as shown in
Fig. 5, exhibits that the critical value of the external electric
field is inversely proportional to L and linearly proportional to√

K , a Fréedericksz-like behavior.
As a following step, we examine whether the critical

electric value is correlated with the size and density of
the microparticle. Surprisingly, Figs. 5(a) and 5(b) show
that the plots of the equilibrium position of suspended
microparticle against the applied electric field for different mi-
croparticle sizes and densities overlap each other, suggesting
that the critical electric value is independent of or negligibly
depends on microparticle size and density. To gain more
insight into the dynamic behaviors of the microparticle, we

FIG. 5. Equilibrium position x0 for different (a) radii (2.2, 2.35,
2.5, and 3.0 μm) and (b) densities (0.99, 1.0, and 1.04 g cm−3) of
a microparticle with K = 7 pN and L = 7 μm, showing the same
critical value Ec of electric field triggering positional transition. The
dependence of Ec on

√
K/L for different (c) radii (2.2, 2.35, 2.5,

and 3.0 μm) and (d) densities (0.99, 1.0, and 1.04 g cm−3) of the
microparticle, obeying strictly a master curve which can be given by
the theoretical prediction Eq. (6).

further plot the threshold value against
√

K/L in Figs. 5(c)
and 5(d), where a Fréedericksz curve (black) is shown as
well. It is interesting to find that the critical electric field to
trigger a positional transition for a microparticle suspended in
an NLC cell follows a Fréedericksz-like linear master curve
with slightly different slopes, a universal one also valid for
different microparticle sizes and densities.

By comparing the numerical calculation results with the
Fréedericksz transition (π

√
4π/|�ε|√K/L) in Figs. 5(c) and

5(d), we found that the slope difference between them is
by a prefactor of ∼0.915 and that enables us to propose a
theoretical prediction for the critical electric field

Ec 	 0.915F , (6)

where F denotes the Fréedericksz effect. Such a prediction,
as shown by a straight line (red) in Figs. 5(c) and 5(d), agrees
very well for different radii (2.2, 2.35, 2.5, and 3.0 μm) and
densities (0.99, 1.0, and 1.04 g cm−3) of microparticle. Due to
the mathematical difficulty, we still do not know how to derive
0.915 analytically.

In the case when �ε < 0, it is found that the suspended mi-
croparticle is trapped at the midplane of the NLC cell, which
can be predicted by the profile change of the total energy
potential well due to application of an external electric field
in the vertical direction [x direction in Fig. 1(b)]. The short
axes of liquid crystal molecules tend to align along the electric
field, a result leading to the narrowing of total potential well
and thereby generating strong restoring force acting on the
suspended microparticle. Thus, in the case of a microparticle
suspended in an NLC cell with planar anchoring condition in
the presence of an external electric field applied perpendicular
to the two plates, the positional transition triggered by the
electric field may occur only under the condition of positive
molecular dielectric anisotropy.

2. External field parallel to the two plates but perpendicular
to the anchoring direction

Now let us consider the case when the electric field is
applied parallel to the two plates but perpendicular to the
anchoring direction, i.e., along y axis in Fig. 1(b). It is found
that no matter �ε > 0 or �ε < 0, the microparticle is always
trapped at the midplane of the NLC cell regardless of the
magnitude of the electric field applied, indicating that no
positional transition occurs. The reason lies in that the realign-
ment of the liquid crystal molecules in the presence of the
external electric field does not flatten the interaction potential
well substantially enough so as to decrease its corresponding
equivalent restoring force on the microparticle to a small
magnitude, with which the asymmetric gravitational force
becomes competitive.

3. External field parallel to the two plates and the
anchoring direction

Finally, we consider an NLC cell in the presence of an
electric field parallel to the two plates and the anchoring
direction as well, i.e., E‖z in Fig. 1(b). If given a positive
molecular dielectric anisotropy, namely �ε > 0, then we can
plot, as shown in Fig. 6, the total energy profile as a func-
tion of the suspended microparticle position for four chosen
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FIG. 6. Total energy profile as a function of the suspended mi-
croparticle position for an NLC cell with planar anchoring in the
presence of four chosen electric fields parallel to the two plates and
the anchoring direction as well.

electric fields. In the presence of a small external field, the
total energy profile remains symmetric, indicating that the
elastic interaction among LC molecules dominates the LC
alignment, especially in the region close to the midplane. Thus
the contribution made by asymmetric gravitational potential is
trivial if compared with elasticity and the suspended micropar-
ticle will be trapped within its midplane, as demonstrated in
Figs. 6(a) and 6(b). While as the electric field is increased,
it is found that it tends to widen and flatten the bottom of the
elastic potential well, which equivalently by contrast amplifies
the relative contribution made by the asymmetric buoyant
force to the total energy of the NLC cell. As a result, the
buoyant force will drive the microparticle with ease from the
midplane to a new equilibrium position [see Figs. 6(c) and
6(d)]. It is apparent that the sign of ρLC − ρmp determines
the direction of the microparticle displacement. The bottom of
the interaction potential well around the midplane is flattened
due to the realignment of liquid crystal molecules made by
the applied external field, which decreases the corresponding
elastic restoring force built by the realignment. Once such a
restoring force (corresponding to the elastic energy gradient)
tuned by the external field in the cell is exceeded by the
asymmetric buoyant force, it triggers a positional transition
for the suspended microparticle from the midplane to its new
equilibrium position.

In order to study the influence of cell thickness and Frank
constant on the critical value of electric field, plots for the
equilibrium position for the suspended microparticle against
the applied electric field for different cell thicknesses (8, 10,
12, and 15 μm) and Frank elastic constants (8, 10, 12, and
15 pN) are presented in Figs. 7(a) and 7(b), where it is
found that a positional transition occurs when the external
field applied exceeds a threshold value. It is also shown that
the thinner the cell thickness L is and the larger the Frank
elastic constant K is, the larger the critical electric field is
needed to trigger the positional transition.

FIG. 7. Equilibrium position x0 in response to electric field for
different (a) cell thicknesses (8, 10, 12, and 15 μm), where the Frank
elastic constant and the radius of microparticle are set as K = 7 pN
and r = 2.5 μm, and (b) Frank elastic constants (8, 10, 12, and
15 pN), where the cell thickness and the radius of microparticle are
set as L = 10 μm and r = 2.5 μm.

In a similar way to the previous sections, the dependence
of the threshold value on microparticles size and density is
also investigated. Figures 8(a) and 8(b) depict the equilibrium
position against the applied electric field for different mi-
croparticle sizes and densities, where the overlapping of equi-
librium position in Fig. 8(a) suggests that the critical electric
value is almost independent of microparticle size. Whereas the
symmetry of the equilibrium position of microparticle with
density equal to 0.99 g cm−3 and 1.03 g cm−3 in Fig. 8(b)
indicates that the slope of the master curve of critical electric
value is nearly independent of the magnitude of equivalent
microparticle density. To gain more insight into the dynamic
behaviors of the microparticle, the threshold value is plotted
against

√
K/L in Figs. 8(c) and 8(d), where a Fréedericksz

transition curve (black) is shown as well. The existence of
slight difference instead of overlapping each other for the
equilibrium position of microparticle with density equal to

FIG. 8. (a) Equilibrium position x0 for different radii of mi-
croparticle with K = 7 pN and L = 8 μm, showing the same critical
value Ec of electric field triggering positional transition. (b) K = 8
pN and L = 10 μm. The dependence of Ec and

√
K/L for different

(c) radii (2.2, 2.35, 2.5, and 3.0 μm) and (d) densities (0.99, 1.0, and
1.03 g cm−3) of microparticle, obeying strictly a master curve given
by theoretical prediction Eq. (7).
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FIG. 9. Total energy profile as a function of the suspended mi-
croparticle position for different external electric fields.

0.99 g cm−3 and 1.0 g cm−3 in Fig. 8(b) leads to different
intercepts of the Fréedericksz-like linear master curves for
critical electric field in Fig. 8(d). Further study of electric
field threshold shows that it seems to be inversely proportional
to cell thickness L and proportional to the root square of
the Frank elastic constant K , a behavior similar to the field
threshold of Fréedericksz phase transition. As before, the
critical electric field for a positional transition to occur for a
microparticle suspended in a NLC cell remains unchanged for
different microparticle sizes and densities.

Similarly, a contrast between the numerical calculation
results and the traditional Fréedericksz transition curve
(π

√
4π/|�ε|√K/L) in Figs. 8(c) and 8(d) shows that the

slope difference between them is by a prefactor of ∼5.8. More
specifically, an explicit expression

Ec 	 5.8F − 0.08 = 5.8π

√
4πK

|�ε|L2
− 0.08 (7)

for critical electric field can be proposed as a theoretical
prediction. Such a prediction, as shown by straight line (red)
in Figs. 8(c) and 8(d), agrees very well for different radii
(2.2, 2.35, 2.5, and 3.0 μm) and densities (0.99, 1.0, and
1.03 g cm−3) of microparticle. This once again verifies the
conclusion that the critical electric field is independent of
microparticle size, of which the reason might lie in that in the
present theoretical model, the microparticle is approximately
treated as a dipole in the far-field expansion.

As for the case �ε < 0 when the external field applied
parallel to both the two plates and the anchoring direction,
i.e., E‖z in Fig. 1(b), a bistable equilibrium state structure
is found as the electric field exceeds a threshold value, as
illustrated in Fig. 9. In the small-field region, the external
field applied tends to, first, flatten the bottom of potential well,
as shown in Figs. 9(a) and 9(b). Further increase of external
field will change the one-state potential structure to a bistable
one. As the gravitational contribution to the total energy is
still negligibly small compared to the elastic one, one sees no

FIG. 10. Equilibrium position x0 in response to electric field for
different (a) cell thicknesses (7, 8, 9, and 10 μm), where the Frank
elastic constant and the radius of microparticle are set as K = 7 pN
and r = 2.5 μm, and (b) Frank elastic constants (8, 9, 10, and 11
pN), where the cell thickness and the radius of microparticle are set
as L = 10 μm and r = 2.5 μm.

involvement of gravitational force to the determination of the
critical value of positional transition for the microparticle in
the NLC cell. Thus, the positional transition in this case does
not come from the competition between the gravitational force
and the equivalent elastic force but rather purely from the
bistable local minimum of the elastic potential, as shown in
Figs. 9(c) and 9(d). Nevertheless the asymmetric gravitational
force still plays a very important role in determining the
direction of microparticle motion (up or down) by acting as
a small but significant perturbation, or more precisely, by the
sign of buoyant force (the sign of ρLC − ρmp). Therefore, the
magnitude of the asymmetric gravitational force in this case
is trivial but not its sign.

In order to understand how cell thickness and Frank elastic
constant affect the critical value of electric field, we plot
equilibrium position against the applied electric field for dif-
ferent cell thicknesses (7, 8, 9, and 10 μm) and Frank elastic
constants (8, 9, 10, and 11 pN), as shown in Figs. 10(a) and
10(b), where a bifurcation of equilibrium position is found
due to the bistable state structure of elastic potential and a
positional transition occurs when the external field applied
reaches a threshold value.

Finally, in order to gain more insights into the physics
hidden behind the dynamic behaviors of microparticle, it is
worthwhile to evaluate whether the critical electric value is
correlated with the size and density of the microparticle. The
dependence of the equilibrium position on the applied electric
field for different microparticle sizes and densities is shown
in Figs. 11(a) and 11(b), where the strict overlapping of
equilibrium position in the figures implies that the critical
electric value is, as shown in the previous section, independent
of microparticle size and density. For a better understanding
of the dynamic behaviors of the microparticle, we further plot
the threshold value against

√
K/L in Figs. 11(c) and 11(d),

with a Fréedericksz transition curve (black) shown as well. It
is found that the critical electric field triggering a positional
transition for a microparticle suspended in a NLC cell follows
a Fréedericksz master curve irrelevant to microparticle size
and density.

More precisely, by comparing the numerical calculation re-
sults with the Fréedericksz effect curve (π

√
4π/|�ε|√K/L)

in Figs. 11(c) and 11(d), it is found that the slope difference
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FIG. 11. Equilibrium position x0 for different (a) radii (2.2, 2.35,
2.5, and 3.0 μm); (b) densities (0.99, 1.0, and 1.02 g cm−3) of
microparticle with K = 8 pN and L = 10 μm, showing the same
critical value Ec of electric field triggering positional transition.
The dependence of Ec and

√
K/L for different (c) radii (2.2, 2.35,

2.5, and 3.0 μm) and (d) densities (0.99, 1.0, and 1.02 g cm−3) of
microparticle, obeying strictly a master curve given by theoretical
prediction Eq. (8).

between them is by a prefactor of ∼3/π , leading to a proposed
theoretical prediction

Ec 	 3

π
F = 6

√
πK

|�ε|L2
(8)

for the critical electric field. Such a prediction, as shown by
the straight line (red) in Figs. 11(c) and 11(d), agrees very well
for different radii (2.2, 2.35, 2.5, and 3.0 μm) and densities
(0.99, 1.0, and 1.02 g cm−3) of microparticle.

Based on the discussions in the sections above, it is quite
obvious that the external electric field applied enhances the
existing anisotropy of distortion generated by the boundaries
of the NLC cell shaped by the the movable suspended mi-
croparticle and the two parallel walls. The LC molecules
surrounding the suspended microparticle together with the
boundary conditions create a potential trap for the micropar-
ticle, with its depth and width tuned by the external field
applied. The net restoring force on the microparticle along

the vertical direction, which is determined by the gradient
of the potential well, becomes tunable by the external field.
Due to the steepness of the potential well near the midplane
in the absence of external field, such a net force is usually
very large in comparison with the gravitational force of the
microparticle and thus traps the microparticle in the midplane
of the NLC cell. However, there exists a possibility that the
gravitational force can come into play when the external
field applied reaches a critical value, triggering the motion of
the microparticle, which proved to be a positional transition
[51]. It looks like that the electric field threshold is a signal
to realign the surrounding LC molecules to such an extent
that a fast track is constructed along the vertical direction,
enabling the sudden motion of the microparticle driven by
the gravitational force. After a thorough discussion on such
a translational transition in a microparticle-suspended NLC
cell in the presence of an external electric field, we come up
with a table of all the conditions combined for a positional
transition to occur in such a system, as shown in Table I. It is
found in the Table that of the 10 combinations of field direc-
tion, molecular dielectric anisotropy, and anchoring feature,
only 4 combinations demonstrate the possible occurrence of
positional transition. Moreover, for a nematic liquid crystal
cell with planar surface alignment, a bistable equilibrium
structure for the transition is found when the direction of
applied electric field is (a) perpendicular to the two plates of
the cell with positive molecular dielectric anisotropy or (b)
parallel to both the two plates and the anchoring direction of
the cell with negative molecular dielectric anisotropy.

IV. CONCLUSION

In summary, using the Green’s function method, the total
energy for a microparticle suspended in an NLC cell in
the presence of an external electric field is calculated. The
external electric field applied, which has been widely accepted
to be able to realign LC molecules surrounding the micropar-
ticle, can be used to tune the position of the microparticle
in the cell. It is found that the vertical translational motion
from the midplane to a new equilibrium position is triggered
by a threshold value of electric field tuning (decreasing) the
net restoring force so as to let the gravitational force come
into play. The new equilibrium position is decided via a
competition between the buoyant (gravitational) force and the

TABLE I. Combined conditions for positional transition to occur (+) and not to occur (−) for a microparticle suspended in an NLC cell in
the presence of an external electric field.

Anchoring

Molecular
dielectric
anisotropy Field direction

E ⊥ plates E ‖ plates

Homeotropic �ε > 0 + —
�ε < 0 — —

E ⊥ anchoring E ‖ anchoring
Planar �ε > 0 +/bistable — +

�ε < 0 — — +/bistable
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effective force built on the microparticle. The threshold value
of external field, which triggers positional transition under
appropriate combined conditions of surface anchoring feature,
field direction and molecular dielectric anisotropy, depends
on thickness L and Frank elastic constant K and slightly
on the microparticle size and density, in a Fréedericksz-like
manner as coined by the authors before, but by a factor.
For an NLC cell with planar surface alignment, a bistable
equilibrium structure for the transition is found when the
direction of the applied electric field is (a) perpendicular to
the cell wall with positive molecular dielectric anisotropy or
(b) parallel to the undeformed director field n0 of the NLC cell
with negative molecular dielectric anisotropy. Except for the
positional transition, when the electric field applied is parallel
to the two plates and perpendicular to the anchoring direction,
the microparticle suspended in NLC will be trapped in the
midplane, regardless of the sign of the molecular dielectric
anisotropy. Explicit formulas proposed for the critical electric
field agrees extremely well with the numerical calculation.
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APPENDIX: GREEN’S FUNCTIONS AND
TOTAL ENERGIES

1. Homeotropic boundary condition

Here we first consider an NLC cell sandwiched between
two parallel plates, where LC molecules are homeotropically
anchored and the coordinate z axis is chosen along the normal
direction of the two plates, as shown in Fig. 1(a).

a. External field perpendicular to the two plates

In this case, when an electric field is applied perpendicular
to the two plates, i.e., E‖z in Fig. 1(a), the correspond-
ing Euler-Lagrange equations are written as Eq. (2). With
Dirichlet boundary conditions nμ(z = 0) = nμ(z = L) = 0,
the Green’s function can be derived as [49]

Gμ(x, x′) = 4

L

∞∑
n=1

∞∑
m=−∞

eim(ϕ−ϕ′ ) sin
nπz

L

× sin
nπz′

L
Im(λnρ<)Km(λnρ>), (A1)

where ϕ and ϕ′ are the azimuthal angles, z and z′ are the po-
sitional coordinates, Im and Km are modified Bessel functions,
ρ< is the smaller one between

√
x2 + y2 and

√
x′2 + y′2 , and

λn = [(nπ/L)2 + �εE2/4πK]1/2 with L the thickness of the
NLC cell. Using the definition of self-energy given in terms
of Green’s function [49],

U self
dd = −2πK p2∂μ∂ ′

μHμ(x, x′)|x=x′ , (A2)

where Hμ(x, x′) = Gμ(x, x′) − 1/|x − x′|, we obtain the elas-
tic energy U I

e for a microparticle suspended in an NLC cell in
the presence of an electric field. Besides the elastic energy,
the gravitational potential Ug due to buoyant force should be

considered as well, leading to a total energy written as

U I
total = U I

e + Ug

= −2πK p2

[
− 4

L

∞∑
n=1

λ2
n sin2

(
nπz

L

)
K0(λnρ)

+ 1

ρ3

]
ρ→0

− 4

3
πr3(ρLC − ρmp)gz, (A3)

where r is the radius of microparticle, p = 2.04r2 is the mag-
nitude of the equivalent dipole moment for P(x′) in Eq. (5), as
in the previous literature [3,47–49], ρLC − ρmp is the density
difference between liquid crystal and microparticle, and g =
9.8 m/s2 is the gravitational acceleration.

b. External field parallel to the two plates

For the case of an electric field parallel to the two plates,
i.e., E‖x in Fig. 1(a), the Euler-Lagrange equations for nx and
ny are written as Eq. (3). With Dirichlet boundary conditions
nμ(z = 0) = nμ(z = L) = 0, the related Green’s functions Gx

and Gy are given by

Gx(x, x′) = 4

L

∞∑
n=1

∞∑
m=−∞

eim(ϕ−ϕ′ ) sin
nπz

L

× sin
nπz′

L
Im(νnρ<)Km(νnρ>),

Gy(x, x′) = 4

L

∞∑
n=1

∞∑
m=−∞

eim(ϕ−ϕ′ ) sin
nπz

L

× sin
nπz′

L
Im(μnρ<)Km(μnρ>), (A4)

where νn = [(nπ/L)2 − �εE2/4πK]1/2 and μn = nπ/L.
Analogously to the previous case, we can obtain the elastic
energy U II

e and the total energy U II
total is written as

U II
total =U II

e + Ug

= − 2πK p2

[
− 2

L

∞∑
n=1

sin2

(
nπz

L

)
(αn + βn)

+ 1

ρ3

]
ρ→0

− 4

3
πr3(ρLC − ρmp)gz, (A5)

where αn = ν2
n K0(νnρ) + μ2

nK0(μnρ) and βn = ν2
n K2(νnρ) −

μ2
nK2(μnρ).

2. Planar boundary condition

a. External field perpendicular to the two plates

When an electric field is applied vertically to the two plates,
i.e., E‖x in Fig. 1(b), the Euler-Lagrange equations are given
by Eq. (3), and the corresponding Green’s functions Gx and
Gy read as [49]

Gx(x, x′) = 4

L

∞∑
n=1

∞∑
m=−∞

eim(ϕ−ϕ′ ) sin
nπx

L

× sin
nπx′

L
Im(νnρ<)Km(νnρ>),
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Gy(x, x′) = 4

L

∞∑
n=1

∞∑
m=−∞

eim(ϕ−ϕ′ ) sin
nπx

L

× sin
nπx′

L
Im(μnρ<)Km(μnρ>), (A6)

with νn and μn identical to those in Eq. (A4). Similarly, the
elastic energy U III

e can be obtained and the total energy U III
total

can be derived as

U III
total =U III

e + Ug

= − 2πK p2

(
4

L

∞∑
n=1

μ2
n

{
cos2

(
nπx

L

)
K0(νnρ) − 1

2

× sin2

(
nπx

L

)
[K0(μnρ) − K2(μnρ)]

}
+ 1

ρ3

)
ρ→0

− 4

3
πr3(ρLC − ρmp)gx, (A7)

where x denotes the vertical position of the microparticle.

b. External field parallel to the two plates but perpendicular to the
anchoring direction

When the electric field applied is parallel to the two
plates but perpendicular to the anchoring direction, i.e., E‖y
in Fig. 1(b), the Euler-Lagrange equations can be given by
Eq. (4), with their corresponding Green’s functions Gx and Gy

written as

Gx(x, x′) = 4

L

∞∑
n=1

∞∑
m=−∞

eim(ϕ−ϕ′ ) sin
nπx

L

× sin
nπx′

L
Im(μnρ<)Km(μnρ>),

Gy(x, x′) = 4

L

∞∑
n=1

∞∑
m=−∞

eim(ϕ−ϕ′ ) sin
nπx

L

× sin
nπx′

L
Im(νnρ<)Km(νnρ>), (A8)

with the same νn and μn as those in Eq. (A6). In a similar way,
the total energy U IV

total is given by

U IV
total =U IV

e + Ug

= − 2πK p2

{
4

L

∞∑
n=1

μ2
n cos2

(
nπx

L

)
K0(μnρ)

− 2

L

∞∑
n=1

ν2
n sin2

(
nπx

L

)[
K0(νnρ) − K2(νnρ)

]

+ 1

ρ3

}
ρ→0

− 4

3
πr3(ρLC − ρmp)gx, (A9)

where U IV
e is the elastic energy.

c. External field parallel to the two plates
and the anchoring direction

Finally, if an electric field is applied parallel to the two
plates and the planar anchoring direction as well, i.e., E‖z in
Fig. 1(b). Given the corresponding Euler-Lagrange equations
Eq. (2), the Green’s functions are [49]

Gμ(x, x′) = 4

L

∞∑
n=1

∞∑
m=−∞

eim(ϕ−ϕ′ ) sin
nπx

L

× sin
nπx′

L
Im(λnρ<)Km(λnρ>), (A10)

with the same λn as that in Eq. (A1). Similarly, the total energy
U V

total can be derived as

U V
total =U V

e + Ug

= − 2πK p2

{
4

L

∞∑
n=1

(
nπ

L

)2

cos2

(
nπx

L

)
K0(λnρ)

− 2

L

∞∑
n=1

λ2
n sin2

(
nπx

L

)
[K0(λnρ) − K2(λnρ)]

+ 1

ρ3

}
ρ→0

− 4

3
πr3(ρLC − ρmp)gx, (A11)

with U V
e the elastic energy.
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