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Dynamics of hard colloidal cuboids in nematic liquid crystals
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We perform dynamic Monte Carlo simulations to investigate the equilibrium dynamics of hard board-like
colloidal particles in oblate and prolate nematic liquid crystals. In particular, we characterize the particles’
diffusion along the nematic director and perpendicularly to it, and observe a structural relaxation decay that
strongly depends on the particle anisotropy. To assess the Gaussianity of their dynamics and eventual occurrence
of collective motion, we calculate two- and four-point correlation functions that incorporate the instantaneous
values of the diffusion coefficients parallel and perpendicular to the nematic director. Our simulation results
highlight the occurrence of Fickian and Gaussian dynamics at short and long times, locate the minimum
diffusivity at the self-dual shape, the particle geometry that would preferentially stabilise biaxial nematics, and
exclude the existence of dynamically correlated particles.
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I. INTRODUCTION

Colloids are systems of macromolecules or nanoparticles
dispersed through a continuous medium. If the dispersed
phase consists of solid particles and the continuous phase
is a liquid, like an ink or a paint, then they are referred to
as colloidal suspensions. The particles’ ability of remaining
suspended in the liquid stems from a thermal energy that
must overcome the gravitational potential energy, which, by
contrast, promotes sedimentation. Colloidal suspensions of
anisotropic particles are complex fluids that display a partic-
ularly rich phase behavior, with liquid crystals (LCs) forming
between the isotropic and the crystal phase. LCs are states
of matter with intermediate features between those of a sim-
ple, disordered liquid and those of a crystalline solid. More
specifically, they flow like liquids, but their building blocks
are able to orient along one or more spatial directions, thus
closely reproducing the internal ordering of molecular crystals
and their optical properties.

A renewed interest has been recently devoted to colloidal
suspensions of anisotropic particles with a biaxial geometry,
such as board-like and bent-core particles, whose orientation
in space is fully identified by two independent orthogonal
axes. Biaxial particles are, in principle, excellent candidates to
form biaxial nematic (NB) LCs, whose existence, predicted by
a generalized Maier-Saupe theory proposed by Freiser exactly
half a century ago [1,2], is still the object of a fervent research
interest among experimental, computational and theoretical
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groups [3–16]. This interest is rooted in the captivating idea of
manufacturing biaxial LCDs, by many envisaged as the next-
generation fast display technology, but still at an embryonic
stage due to the difficulty of unambiguously identifying stable
molecular NB phases. By contrast, stable colloidal NB phases
have been observed for the first time approximately ten years
ago in systems of polydisperse prolate goethite particles [3].

Despite such an intense research activity aiming at fully
unveiling the phase and aggregation behavior of biaxial par-
ticles [17], much less attention has been devoted to their dy-
namics. On one hand, this is not surprising as, apart from the
especially successful case of the Gay-Berne fluid [18] and the
purely orientational pair potential proposed by Straley [19],
most of the model particles with a biaxial geometry lack a
suitable interaction potential to compute time trajectories and
are often modelled as arrays of spherical beads [20]. On the
other hand, it is not an easy task to predict how and, especially,
over what time scales the NB phase would respond to exter-
nal stimuli and hence quantify the advantages of employing
them in LCDs, if an insight into their dynamical behavior is
missing. For instance, it is relevant to know how the shape
anisotropy of biaxial particles determines their ability of dif-
fusing in a crowded and ordered mesophase, such as a nematic
LC; it is also important to know whether these particles are
dynamically correlated as this would influence the response
time of the whole phase to applied forces. In this context, the
dynamic Monte Carlo (DMC) simulation method plays a very
important role as it provides a theoretical framework to mimic
the dynamics of colloidal particles of any possible shape
without integrating stochastic or deterministic differential
equations as done, respectively, in Brownian dynamics (BD)
or molecular dynamics (MD) simulations [21–23]. The DMC
method, which shows excellent quantitative agreement with
BD simulations and can be between 10 and 20 times faster
than BD [23], is especially useful to mimic the dynamics of
hard-core particles, which cannot be straightaway reproduced
by MD or BD simulations. Consequently, the dynamics of
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FIG. 1. Model HBPs with thickness T , length L = 12T , and
width W . The particle width is a simulation parameter with values
between W = T (rod-like particles) and W = L (disk-like particles).

biaxial particles interacting via a mere steric repulsion can be
analysed by DMC simulations. The main goal of the present
work is therefore investigating the equilibrium dynamics of
prolate and oblate hard board-like particles in nematic LCs
and characterize their structural relaxation decay.

This paper is organized as follows. In Sec. II, we introduce
the model and simulation methodology, referring the reader
to our previous contributions for specific details on the im-
plementation of the DMC technique. The relevant correlation
functions to assess the dynamics are also discussed in this
section. In Sec. III, we discuss the main features of the
equilibrium dynamics of HBPs and, finally, in Sec. IV, we
draw our conclusions.

II. MODEL AND SIMULATIONS

The colloidal particles studied in this work are modelled
as hard board-like particles (HBPs), whose main geometrical
features are shown in Fig. 1. They are rectangular prisms of
thickness T , length L = 12T , and width T � W � L. The
particle thickness, T , is our unit length and is kept con-
stant, while the particle width, W , is a simulation parameter
that varies between T and L in order to reproduce prolate
(rod-like) and oblate (disk-like) particles, respectively. At
W = √

LT , HBPs are not oblate nor prolate, but display an
ambivalent nature that can produce nematic LCs with oblate,
prolate or biaxial symmetry. This special geometry is referred
to as self-dual shape.

The width-to-thickness ratio, W ∗ ≡ W/T , and the sys-
tem packing fraction, η ≡ Npv0/V , completely determine the
phase behavior and dynamics of these systems. In the latter
definition, V is the volume of the simulation box, Np = 2000
the number of HBPs, and v0 = 12W T 2 the particle volume.
The phase diagram of monodisperse HBPs, studied by Monte
Carlo (MC) simulations, reveals the existence of oblate and
prolate nematic and columnar liquid-crystalline phases as well
as biaxial smectics [13]. More recently, simulations of espe-
cially large systems suggested that the prolate columnar phase
might actually be metastable with respect to either a smectic
phase or a crystal phase, depending on the system density
[24]. Over the last ten years, the quest for the elusive biaxial
nematic (NB) phase has produced a number of theoretical
[4], simulation [10,14,15] and experimental [8] studies that
confirm the difficulty of obtaining a stable NB phase of HBPs.
The focus of the present contribution is investigating and
characterizing the relaxation dynamics of prolate (N+) and

oblate (N−) uniaxial nematic phases of HBPs. To this end,
we first performed standard MC simulations in the canonical
ensemble to equilibrate the systems at the packing fraction,
η = 0.34, at which N+ and N− phases are known to be stable
over the full set of aspect ratios studied here, namely 1 �
W ∗ �

√
L∗ ≈ 3.46 for N+ and 3.46 � W ∗ � 12 for N−[13],

where L∗ ≡ L/T . To study the relaxation dynamics of these
systems, we performed dynamic Monte Carlo (DMC) simula-
tions in the canonical ensemble. Details of the DMC method
are available to the interested reader in our former works
[21–23]. Here, we briefly summarize the main points that are
essential to gain a general insight.

DMC simulations are performed in cubic boxes with peri-
odic boundaries and, since our intention is to mimic the time
evolution of physical systems, no unphysical moves, such
as cluster moves or particle swaps, are allowed. One DMC
cycle consists of Np attempts of simultaneously displacing and
rotating randomly selected HBPs. These combined moves are
accepted or rejected according to the standard Metropolis al-
gorithm, that is with probability min[1, exp(−β�E )], where
�E is the energy difference resulting from the particle’s
move and β the inverse temperature. Because the interactions
between HBPs are modelled by a hard-core potential, moves
are always accepted unless an overlap is produced. Overlap
tests are based on the separating axes algorithm proposed by
Gottschalk et al. [25] and later adapted by John and Escobedo
to investigate the phase behavior of colloidal HBPs with
square cross section [26]. The position of the center of mass
of a given particle j is updated by decoupling the displace-
ment into three contributions: δr j = XT û j + XW v̂ j + XLŵ j ,
where û j , v̂ j , and ŵ j are unit vectors parallel to the particle
thickness, width and length, respectively. The magnitude of
displacements along the three particle axes is selected within
uniform distributions that depend on the particle translational
diffusivities at infinite dilution, Dtra

α, j , with α = T , W , or L. In
particular,

|Xα| �
√

2Dtra
α, jδtMC, (1)

where δtMC is the timescale for a single DMC cycle. As
far as the rotations are concerned, we attempt to reorient
the particle’s axes ŵ j , v̂ j , and û j by three consecutive rigid
rotations around L, W , and T , respectively. These rotations
must satisfy the following condition:

|Yα| �
√

2Drot
α, jδtMC, (2)

where Drot
α, j are the particle rotational diffusivities at infinite

dilution. The diffusion coefficients Dtra
α and Drot

α have been
estimated by employing HYDRO++, a program that calcu-
lates the solution properties of macromolecules and colloidal
particles by approximating their shape and volume with an
array of spherical beads of arbitrary size [27,28]. Numerical
values of the translational and rotational diffusion coefficients
used in this work are given in Table I in units of D0 ≡ T 2τ−1,
where τ is the time unit. In order to compare the dynamics of
the systems listed in Table I, it is crucial to recover the actual
timescale of the Brownian dynamics (BD), δtBD [21–23]. To
this end, one needs to rescale the DMC time scale, which has
been set to δtMC = 10−2τ for all the systems studied, via the
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TABLE I. Infinite-dilution translational and rotational diffusion coefficients of HBPs with different width-to-thickness ratios, W ∗, as
obtained from HYDRO++ [27,28].

W ∗ Dtra
T /D0 Dtra

W /D0 Dtra
L /D0 Drot

T /D0 Drot
W /D0 Drot

L /D0

1 2.2 × 10−2 2.2 × 10−2 3.1 × 10−2 1.1 × 10−3 1.1 × 10−3 2.3 × 10−2

2.5 1.7 × 10−2 1.9 × 10−2 2.4 × 10−3 7.9 × 10−4 7.1 × 10−4 5.8 × 10−3

3 1.6 × 10−2 1.8 × 10−2 2.2 × 10−2 7.3 × 10−4 6.5 × 10−4 4.2 × 10−3

3.46 1.5 × 10−2 1.8 × 10−2 2.1 × 10−2 6.7 × 10−4 6.0 × 10−4 3.2 × 10−3

4 1.4 × 10−2 1.7 × 10−2 2.0 × 10−2 6.2 × 10−4 5.6 × 10−4 2.5 × 10−3

6 1.2 × 10−2 1.5 × 10−2 1.7 × 10−2 4.6 × 10−4 4.4 × 10−4 1.1 × 10−3

8 9.4 × 10−3 1.4 × 10−2 1.5 × 10−2 3.5 × 10−4 3.6 × 10−4 6.3 × 10−4

12 6.5 × 10−3 1.2 × 10−2 1.2 × 10−2 2.1 × 10−4 2.6 × 10−4 2.6 × 10−4

acceptance rate A:

δtBD = A
3

δtMC. (3)

This result has been applied to rescale the dynamical proper-
ties that characterize the structural relaxation of our systems,
namely (i) the mean-square displacement; (ii) the self-part of
the van Hove function; (iii) the self-intermediate scattering
function; and (iv) the dynamic susceptibility.

The mean square displacement (MSD) is the ensemble
average of the particles’ displacement from their position over
a given time window and is defined as

〈�r2(t )〉 = 1

Np

〈 Np∑
j=1

(r j (t ) − r j (0))2

〉
, (4)

where r j is the position vector of particle j and the angular
brackets indicate ensemble average over all the HBPs and at
least 100 independent trajectories. The self-part of the van
Hove function (s-VHF) provides the probability distribution
of the HBPs’ displacements at time t0 + t , given their position
at time t0 and reads

Gs(r, t ) = 1

Np

〈 Np∑
j=1

δ(r − |r j (t0 + t ) − r j (t0)|)
〉
, (5)

where the symbol δ is the Dirac delta. If the distribution of
the displacements over time is Gaussian, then Gs(r, t ) can be
approximated by a Gaussian function that reads

G′
s,d (r, t ) = (4πDtt )−d/2 exp

(
− r2

4Dtt

)
, (6)

where Dt is the instantaneous diffusion coefficient and d the
dimensionality of the system dynamics. In particular, G′

s,1
and G′

s,2 are the Gaussian approximations of the parallel
and perpendicular s-VHFs. As far as G′

s,3 is concerned, we
have recently shown that it would not correctly determine the
Gaussianity of the displacements in anisotropic systems, and
thus proposed a Gaussian distribution that has an ellipsoidal,
rather than spherical, symmetry [29]. More specifically, for
prolate particles, the Gaussian approximation of the s-VHF
function takes the following form:

G′
s,3(r, t ) = 	

(4πt )3/2
exp

(
− r2t−1

4Dt,‖

)
F

(
r�1/2

p

)
r�1/2

p

(7)

and for oblate particles

G′
s,3(r, t ) = 	

√
π

2(4πt )3/2
exp

(
− r2t−1

4Dt,⊥

)
erf

(
r�1/2

o

)
r�1/2

o

, (8)

where Dt,‖ and Dt,⊥ are, respectively, the instantaneous values
of the diffusion coefficients in the direction parallel and per-
pendicular to n̂, respectively, F (· · · ) is the Dawson’s integral,
erf(· · · ) the error function, 	 = 1/(D2

t,⊥Dt,‖)1/2, and �p =
−�o = 1/(4Dt,⊥t ) − 1/(4Dt,‖t ).

The self-intermediate scattering function (s-ISF) is useful
to gain an insight into the timescales associated to the system’s
structural relaxation occurring over a length 2π/|k|, where k
is a wave vector that corresponds to the location of the relevant
peaks in the static structure factor. It is defined as

Fs(k, t ) = 1

Np

〈 Np∑
j=1

exp[ik · (r j (t + t0) − r j (t0))]

〉
. (9)

The fluctuations of the self-intermediate scattering function
define the so-called dynamical susceptibility, χ4(k, t ), which
provides useful information on the extent of dynamic het-
erogeneities or, equivalently, on the number of dynamically
correlated particles:

χ4(k, t ) = Np
[〈

f 2
s (k, t )

〉 − F 2
s (k, t )

]
, (10)

where fs(k, t ) = ∑Np

j=1 cos(k[(r j (t + t0) − r j (t0))]/Np is the
real part of the instantaneous value of the s-ISF.

III. RESULTS

In this section, we analyze the main features of the equilib-
rium dynamics of HBPs in N− and N+ phases by DMC sim-
ulations. All the results shown here have been rescaled with
the acceptance rate to recover the time scale of the Brownian
dynamics [21–23]. We stress that this is an essential step in
order to correctly compare the dynamic properties of different
systems. The typical behavior detected in dense colloidal LCs
generally consists of a short-time diffusive regime, where the
MSD depends linearly on time, followed by an intermediate
regime where the particles’ motion is slowed down by the
surrounding neighbours, referred to as caging effect, and a
long-time diffusion regime controlled by the collisions be-
tween particles [30–39]. The intermediate regime becomes
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FIG. 2. Mean square displacement of oblate and prolate HBPs
with width-to-thickness ratio indicated in the legend. Frames (a) and
(b) refer to the directions parallel and perpendicular to the nematic
director, respectively. The vertical dashed lines correspond to t/τ =
0.1, 3.3, and 2400. The solid lines highlight the linear dependence of
the MSD on time at short and long timescales.

more and more relevant at increasing densities, with the MSD
developing a plateau that can extend several time decades in
especially dense colloidal suspensions, such as columnar LCs
[31]. Nematic LCs of uniaxial particles usually show a very
short, almost evanescent, intermediate regime, especially at
densities very close to the isotropic-nematic phase transition.
Similar tendencies are also noticed here in N− and N+ phases
of biaxial HBPs. In particular, the MSD in the direction of
n̂, shown in Fig. 2(a), reveals a relatively smooth transition
from short-time to long-time diffusion in systems of prolate
geometries (1 � W ∗ � 3.46). Oblate HBPs show a slightly
different behavior that suggests a more pronounced caging
effect as compared to that of their prolate counterparts. In
this case, the inset of the long-time diffusive regime, where
the effect of caging vanishes completely and 〈�r2

‖ 〉 recovers
its linearity with time, occurs between t/τ ≈ 2 × 103 and
3 × 103, depending on the particle’s anisotropy.

By contrast, the perpendicular MSD, 〈�r2
⊥〉, reported

in Fig. 2(b), is not especially influenced by the particle
anisotropy, although it can be observed that, at long time-
scales, the MSD of oblate HBPs is slightly larger than that
of prolate HBPs. To clarify the role of the shape anisotropy
on the particles’ ability of diffusing in nematic LCs, we
have calculated the translational diffusion coefficients as D =
limt→∞〈�r2〉/2dt , where d = 1, 2, or 3 for parallel, perpen-
dicular, or total MSD, respectively. The resulting diffusivities
are reported in the top frame of Fig. 3 as a function of W ∗.
It is interesting to notice that at the prolate-oblate crossover,
indicated by the vertical dashed line W ∗ = √

L∗ ≈ 3.46, the
parallel diffusivity, D‖, drops abruptly by a factor of 7,
from approximately 6.5 × 10−3D0 at W ∗ = 3.46 to 10−3D0

at W ∗ = 4. An opposite tendency is detected in the perpen-
dicular diffusivity, D⊥, which increases from 2.5 × 10−3D0 at
W ∗ = 3.46 to 7 × 10−3D0 at W ∗ = 4. The combined effect of
parallel and perpendicular diffusion results in a total diffusion
coefficient, DT OT = (2D⊥ + D‖)/3 in Fig. 3(a), that displays
a minimum exactly at the self-dual shape. Despite being the
geometry that would more easily stabilise the biaxial nematic

0

5×10-3

1×10-2

2×10-2

D/D0

DTOT/D0
D||/D0
D⊥/D0

1 2 3 4 5 6 7 8 9 10 11 12
W*

10-4

10-3

Drτ

DL
rτ

DW
rτ

DT
rτ

(a)

(b)

FIG. 3. (a) Total (•), parallel (�), and perpendicular (�) dif-
fusion coefficients of oblate and prolate HBPs in nematic LCs.
(b) Rotational diffusion coefficients corresponding to the rotation of
the axis parallel to L(©), W (�), and T (�). The vertical dashed line
at W ∗ = √

L∗ ≈ 3.46 indicates the transition from prolate to oblate
particle shapes. The solid lines are a guide for the eyes.

phase, the self-dual shape delays diffusion, at least for the
range of particle anisotropies explored in this work.

To gain an insight into the particle orientational relaxation,
we have also calculated the rotational diffusion coefficients,
which are reported in Fig. 3(b). Given the biaxial geometry of
the particles, there are three independent rotational diffusion
coefficients, corresponding to the rotation of the three particle
axes ŵ, v̂, and û. These coefficients have been calculated via
the orientational time-correlation functions that read [40,41]

Cα = 〈P1[ê(t ) · ê(0)]〉 (11)

with α = T, W , or L and ê = û, v̂, or ŵ, respectively. P1

is the first Legendre polynomial, and the brackets indicate
ensemble averages over particles and time origins. For each of
the orientations, the corresponding relaxation time have been
calculated as follows:

τα =
∫ ∞

0
Cαdt (12)

and the three different long time rotational diffusion coeffi-
cients are given by Dr

α = τα/2. One would expect the rotation
of the axis aligned with the nematic director to be more
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FIG. 4. Total (•), parallel (�), and perpendicular (�) self-part of
the van Hove correlation function of prolate HBPs with W ∗ = 1. (a),
(b), and (c) refer, respectively, to t/τ = 0.1, 3.3, and 2400. Dashed
lines are Gaussian distributions obtained from Eqs. (6) and (7).

difficult than those around it and thus to take longer. This
is indeed observed in N+ phases (W ∗ < 3.46), where the
rotational diffusivity Dr

L, corresponding to the reorientation of
the unit vector parallel to L, is about one order of magnitude
smaller than Dr

W and Dr
T . By contrast, in N− phases (W ∗ >

3.46) this difference is less significant, suggesting a relatively
stronger coupling of the rotational dynamics.

The effect of shape anisotropy is not limited to the single
particle ability to diffuse, but extends to the whole system by
contributing to determine the degree of Gaussianity of its dy-
namics as well as the decay of its structural relaxation. More
specifically, eventual deviations from Gaussian dynamics are
estimated by computing the self-van Hove correlation func-
tions, while the long-time relaxation of the system’s density
fluctuations is assessed via the self-intermediate scattering
function. The self–van Hove correlation functions for nematic
LCs of HBPs with W ∗ = 1 and 12 are shown, respectively,
in Figs. 4 and 5. Each frame in the two figures portrays
the total (circles), parallel (squares), and perpendicular (tri-
angles) s-VHF at a specific time: t/τ = 0.1 (left frame)

FIG. 5. Total (•), parallel (�), and perpendicular (�) self-part of
the van Hove correlation function of oblate HBPs with W ∗ = 12. (a),
(b), and (c) refer, respectively, to t/τ = 0.1, 3.3, and 2400. Dashed
lines are Gaussian distributions obtained from Eqs. (6) and (8).

represents a generic instant within the short-time diffusion;
t/τ = 3.3 (middle frame) approximately indicates the cross-
over from the short-time diffusion to the long-time diffusion,
and matches the beginning of the caging effect for the parallel
diffusion of oblate HBPs; finally, t/τ = 2400 (right frame)
is a representative time within the fully developed long-time
diffusive regime.

The Gaussianity of the parallel and perpendicular s-VHFs
has been estimated by comparing the simulation results with
the Gaussian distribution of Eq. (6), with d = 1 and 2,
respectively. By contrast, the Gaussianity of the total s-VHFs
has been assessed with Eqs. (7) (prolate HBPs) and (8) (oblate
HBPs). The agreement between DMC simulations and theory
is excellent, with almost insignificant deviations from a pure
Gaussian distribution of displacements detected in systems
of prolate HBPs. These tiny deviations, predominantly ob-
served at long distances, suggest the existence of a number
of fast particles that are able to displace longer distances
than those normally expected. By contrast, at short distances,
no significant deviations between simulation and theory are
noticed, thus indicating an unambiguous Gaussian behavior
and the absence of particularly slow particles. The s-VHFs of
HBPs with 1 < W ∗ < 12 (not shown here) display a similar
Gaussian behavior, the main differences being the shift of
the peak towards larger distances and the gradually lower
probability of observing fast particles at increasing W ∗. It
should also be noticed that the essentially Gaussian nature of
the s-VHFs excludes, at both short and long times, where the
MSD is a linear function of time, the occurrence of Fickian yet
non-Gaussian (FNG) dynamics, as we had already observed
in nematics of uniaxial particles [29]. This finding further
confirms that not all soft-matter systems, now also including
complex fluids of biaxial particles, necessarily exhibit FNG
dynamics.

In the light of these considerations, we now discuss the
decay of the density fluctuations in the N+ and N− phases by
examining the self-intermediate scattering functions, Fs(k, t ),
shown in Fig. 6. The s-ISFs of oblate and prolate HBPs
have been calculated by randomly selecting 5 × 104 wave
vectors k = (2π i1/l, 2π i2/l, 2π i3/l ) with i1, i2, and i3 integer
numbers and l the side of the cubic simulation box, whose
magnitude is |k| = 2π/T . All curves in Fig. 6 display a
single-step decay, which can be closely reproduced by a
stretched exponential function of the type exp [−(t/tr )α )],
with tr the relaxation time of the system’s structural decay
and α the stretching exponent, which ranges between 0.82
at W ∗ = 1 and 0.88 at W ∗ = 12. The former corresponds to
the time the s-ISF takes to decays to e−1 and it is reported in
the inset of Fig. 6 as a function of the particle reduced width.
The latter provides an insight into the nature of the long-time
relaxation dynamics. In particular, α < 1 would indicate the
emergence of separated domains of particles with different
relaxation dynamics, usually referred to as dynamic hetero-
geneity. This behavior, often detected in supercooled liquids,
glasses and gels [42–44], it is generally attributed to particles
that either (i) relax exponentially at different time rates or (ii)
relax nonexponentially at the same time rates [45,46].

To assess the origin of dynamic heterogeneity in nematic
LCs of HBPs, we calculated the dynamic susceptibility,
χ4(k, t ), which is proportional to the number of dynamically
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10-3 10-2 10-1 100 101 102 103 104
t/τ

0.0
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0.5

0.8

1.0

F s
(k

, t
)

2 4 6 8 10 12
t/τ

1

2

3

t r/
τ

FIG. 6. Self-intermediate scattering functions calculated at |k| =
2π/T for oblate and prolate HBPs, respectively. The particle width-
to-thickness ratio is reported in the legend. The solid lines are
stretched exponential fits of the form exp [−(t/tr )α )], with tr the
relaxation time and α the stretching exponential (see text for details).
The inset shows the relaxation time as a function of the particle
anisotropy at |k| = 2π/T . The solid lines are guides for the eye and
the vertical dashed lines correspond to t/τ = 0.1, 3.3, and 2400.

correlated particles over a time t and a distance ≈2π/k. This
function hence ponders the presence of clusters that, if existed,
would be formed by particles relaxing at the same time rate,
thus corroborating scenario (ii). The dynamic susceptibility of
N+ and N− phases of HBPs, reported in Fig. 7, shows a peak
at t/τ ≈ 3.3, at the crossover from short-time to long-time
diffusive regime. The magnitude of this peak is not significant
and, as expected by the relatively large value of the stretching
exponent α, which is not much lower than 1, excludes the
occurrence of HBPs that are dynamically correlated. In other
words, in agreement with uniaxial disks and rods [39], there
is no evidence of clusters of particles moving collectively
and consequently the structural relaxation of both oblate and

10-2 10-1 100 101 102 103
t/τ

10-3

10-2

10-1

χ 4
(k

, t
)

FIG. 7. Dynamic susceptibility in N+ and N− LCs of HBPs at
|k| = 2π/T . The particle width-to-thickness ratio is reported in the
legend. The vertical dashed lines correspond to t/τ = 0.1, 3.3, and
2400.

prolate nematics of HBPs is entirely determined by the single-
particle dynamics.

IV. CONCLUSIONS

In summary, we have studied the equilibrium dynamics of
prolate and oblate HBPs in nematic LCs. To this end, we
have employed the DMC simulation technique, which can
accurately reproduce the Brownian dynamics of colloids. In
particular, we find Fickian and Gaussian dynamics at both
short-time and long-time scales, which are separated by a very
smooth crossover indicating an almost completely negligible
caging effect. The HBPs’ anisotropy (precisely, their
width-to-thickness ratio) plays a relevant role in the parti-
cle’s ability to diffuse along the nematic director, n̂, and
perpendicularly to it. Prolate and oblate HBPs diffuse faster
in the direction parallel and perpendicular to n̂, respectively.
Interestingly, despite being indicated as the most appropriate
geometry for the formation of the elusive biaxial nematic
phase, the self-dual shape reduces the particles’ total diffusiv-
ity, which displays a minimum exactly at W ∗ = √

L∗. Addi-
tionally, the dual shape marks a frontier between the behavior
of prolate and oblate particles. This change is reflected in the
different nematic symmetry, different direction of the faster
component of the transnational diffusion, and for a qualitative
change in the relative magnitude of the rotational diffusivi-
ties. The analysis of the self–van Hove correlation functions
reveals the full Gaussianity of the distribution of displace-
ments over time. Very small deviations are actually observed
in N+ phases at large distances, suggesting the existence of
few fast particles that are not found in N− phases. Finally,
the structural relaxation decay, investigated with the self-
intermediate scattering functions, exhibits a stretched expo-
nential behavior with a relaxation time that approximately
increases by a factor 2 with increasing particle width-to-
thickness ratio from W ∗ = 1 to 12. The stretched exponential
nature of the structural relaxation of dense systems, such as
supercooled liquids, glasses, and gels, usually suggests the
occurrence of particles dynamically correlated and eventu-
ally displaying collective dynamics [42–44]. To assess the
emergence of this phenomenon, we calculated the four-point
dynamic susceptibility, which measures the magnitude of the
dynamic correlations. However, as also noticed for uniaxial
particles in nematic LCs [39], no sign of dynamic clusters
and collective dynamics has been detected. Their occur-
rence in positionally ordered LC phases is currently under
investigation.
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