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Boids in a loop: Self-propelled particles within a flexible boundary
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We numerically explore the behavior of repelling and aligning self-propelled polar particles (boids) in two
dimensions enclosed by a damped flexible and elastic loop-shaped boundary. We observe disordered, polar
ordered, jammed, and circulating states. The latter produce a rich variety of boundary shapes, including circles,
ovals, irregulars, ruffles, or sprockets, depending upon the bending moment of the boundary and the boundary
to particle mass ratio. With the exception of the circulating states with nonround boundaries, states resemble
those exhibited by attracting self-propelled particles, but here the confining boundary acts in place of a cohesive
force. We attribute the formation of ruffles to instability mediated by pressure on the boundary when the speed
of waves on the boundary approximately matches the self-propelled particle’s swim speed.
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I. INTRODUCTION

Active systems are nonequilibrium collections of self-
propelled particles that exhibit a number of striking patterns
including flocking, spontaneous aggregation, and formation
of vortex or ringlike collective motion (e.g., Refs. [1–7]). In-
spired by biological systems exhibiting collective phenomena
such as flocking [8], artificial systems have been designed
[9–12] that inject energy at the microscopic level and emulate
the unique properties of their biological counterparts.

Collective behaviors can also emerge in confined geome-
tries due to interactions with the boundary or the surrounding
fluid (e.g., Refs. [12–14]). Confining walls may promote the
creation of microscale patterns, for example, wavelike cell
migration modes [15]. Active particles can interact collec-
tively with movable rigid or flexible objects. For example, the
fluctuations in active medium can affect the folding config-
urations of a flexible polymer [16] while the self-propulsion
energy can be harnessed to power microscopic rotating gears
[17,18]. Boundaries can be incorporated into the design of
active matter based devices, for example, to generate fluid
flow from confined bacteria [19]. For a review of active
particles in crowded environments, see Ref. [20]. We focus
here on self-propelled particles that are confined by a flexible
loop-shaped boundary (e.g., Refs. [21–25]).

Soft boundaries, including loops, membranes, thin elastic
rods, and plates, are interesting potential components for de-
sign. Pressure exerted by the active units can drive immersed
objects to move directionally [18,26]. Soft boundaries can
influence collective motion in active matter due to the “swim
pressure” exerted by the particles on a boundary [22,27–29].
Flexible materials can dynamically respond with more de-
grees of freedom than rigid bodies such as walls, wedges,
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or ratchets. Such systems may have practical applications
in microbiomechanics, where flexible synthetic autonomous
mechanisms can be used as drug-delivery agents, as passible
cargo transport, or for mechanical actuation, as suggested by
Paoluzzi et al. [23].

In this study, we numerically explore the behavior of self-
propelled particles in two dimensions (2D) that are enclosed
within a flexible circular boundary. We search for forms of
collective behavior involving motions in the boundary, such
ovals or dumbbell shapes [23,25], or wavelike instabilities on
the boundary [22]. We are interested in complex interactions
between the particles and the boundary that can lead to new
types of artificial mechanisms that harness collective motion.

We work with the class of dry aligning dilute active matter,
which is called DADAM (see Ref. [30]). Discrete time polar
self-propelled particle models [1,2] come in deterministic
or stochastic varieties (e.g., Refs. [4,30–34]) and the self-
propelled particles within them are sometimes called “boids,”
following Reynolds [1]. We focus here on the deterministic
variety. Our study is most similar to the numerical work by
Nikola et al. [22], Paoluzzi et al. [23], and Wang et al. [25]
and experimental study of vibrating robotic rods by Deblais
et al. [24], who also studied repulsive active particles in two
dimensions that interact with a flexible boundary. However,
our simulations lack stochastic perturbations and particles
within our simulations align their direction of motion with
the direction of nearby particles, as in simulations of flocking
(e.g., Refs. [1,2,4,32]). Prior simulations of self-propelled par-
ticles within a flexible loop have focused on nonaligning self-
propelled particles with stochastically perturbed directions of
motion (e.g., Refs. [23,25]).

In Sec. II, we describe our numerical model of self-
propelled particles that are enclosed inside a flexible bound-
ary. In Sec. III, we illustrate the phenomena seen with our
simulations and discuss collective behavior and the nature of
instability on the boundary. Summary and discussion follow
in Sec. IV. Additional details for the numerical model are
included in the Appendix.

2470-0045/2020/101(5)/052618(13) 052618-1 ©2020 American Physical Society

https://orcid.org/0000-0003-1280-2054
https://orcid.org/0000-0002-9558-0065
https://orcid.org/0000-0003-1209-8132
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.101.052618&domain=pdf&date_stamp=2020-05-27
https://doi.org/10.1103/PhysRevE.101.052618


QUILLEN, SMUCKER, AND PESHKOV PHYSICAL REVIEW E 101, 052618 (2020)

II. BOID AND BOUNDARY MODEL

We adopt a simplified model with pointlike particles whose
dynamics is described with effective forces [35]. This is in
contrast with a more fine-grained model where the particle
shape, the self-propulsion mechanism, the internal degrees of
freedom of microswimmers, and the hydrodynamics interac-
tions are also modeled (e.g., Refs. [13,14]).

Our two-dimensional model has two particle components,
a boundary that is composed of discrete mass nodes, and
a flock of self-propelled particles or boids. Both boundary
nodes and boids have mass and can move. We describe in de-
tail our numerical implementation as it contains more degrees
of freedom than simulations of unconfined self-propelled par-
ticles (e.g., Ref. [32]) or self-propelled particles with periodic
boundary conditions (e.g., Ref. [36]).

Both boundary nodes and boids can move and are massive;
however, boundary nodes remain in a linear chain. The coor-
dinates are in two dimensions only. The flexible boundary is
initially a circular loop and encloses the boids.

We first discuss the numerical description of the flock of
boids (Sec. II A), then the boundary (Sec. II B), and finally
the interactions between boids and boundary (Sec. II C).
Additional details on our numerical implementation can be
found in the Appendix. Initial conditions are described in
the Appendix, Subsec. A 1. The units and constraints on the
time step are discussed in Subsecs. A 2 and A 3. Additional
restrictions on parameter choices are discussed in Subsec. A 5.
The code repositories are given in Subsec. A 6.

A. The flock of boids

A boid particle with index i has position xn
i at time denoted

with index n. The particle velocity at the same time is vn
i and

its mass is mboid. The total number of boids is Nboids and the
total mass in boids is Mboids = Nboidsmboid. We update boid
positions and velocities using the first order (in time) Eulerian
method (as in Ref. [31]) and with a fixed time step dt

xn+1
i = xn

i + vn
i dt, (1)

vn+1
i = vn

i + dt

mboid
Fn

boid,i, (2)

Fn
boid,i = Fn

align,i + Fn
repel,i + Fn

interact,i, (3)

where Fn
boid,i is a sum of forces that depend on boid position

and velocity (xn
i , vn

i ), neighboring boid positions and veloci-
ties (xn

j , vn
j with j �= i), and nearby boundary node positions.

Hereafter, we will often omit the superscript n. It is useful to
define a vector between two particle positions ri, j ≡ xi − x j ,
its length ri, j = |ri, j |, and direction indicated by the unit
vector r̂i, j = ri, j/ri, j . Here we use ri, j for the vector between
two boid positions but below we will also use ri, j to describe
the vector between two node positions and the vector between
a node and a boid position.

For our self-propelled particles, we employ a Vicsek type
of model [2], causing nearby particles to align, but we lack
stochastic perturbations that would change the direction of
motion. We include an additional interboid repelling force
(e.g., as used by Refs. [4,22,23,25,32,33]) but no interboid
attractive or cohesive forces.

The repel force on boid with index i is a sum over repulsion
forces from nearby boids with index j

Frepel,i =
∑

i �= j,ri, j<2drepel

mboidUrepel

drepel
e−ri, j/drepel r̂i, j . (4)

Here Urepel has units of the square of velocity and drepel charac-
terizes the scale of the repulsive interaction. We only apply the
repel force for boid pairs separated by ri, j < 2drepel. The repel
force is applied equally and oppositely to boid pairs. This
repel force is exponential (as was that adopted by Ref. [32]).
We also explored a repel force inversely proportional to the
interboid distance and saw similar collective phenomena.

The alignment force also serves to propel the boids at a
speed that is approximately v0. The align or steer and self-
propelling force exerted on boid i is

Falign,i = αalignmboid(v0ŵi − vi ), (5)

ŵi = wi

|wi| . (6)

Here αalign has units of inverse time and v0 is the boid speed,
equal to the “terminal velocity” in the model by Touma et al.
[32]. The unit vector ŵi is multiplied by v0 so that the boid
accelerates if its speed is slower than v0 and it decelerates if
it is going faster than v0. A distance dalign characterizes the
scale of the alignment interactions. A boid lacking neighbors
that are within alignment distance dalign is propelled using
the boid’s own current velocity direction with wi = vi. For a
boid with near neighbors, the vector wi is computed from the
velocities of nearby boids, similar to prior numerical models
[2,4],

wi =
∑

i �= j,ri, j<dalign

v j . (7)

B. The flexible elastic boundary

The numerical description of our flexible boundary is
similar to that used by Nikola et al. [22] (see VI of their
supplements). The boundary is described with a chain of mass
nodes, each of mass mnode. Each node is separated from its two
nearest neighbors by a spring with rest length �s. The chain
is closed by connecting its two endpoints so that it forms a
loop. A node at position yi has neighbors yi+1 and yi−1 with
indices given modulo the total number of nodes in the chain,
Nnodes. The total mass in the boundary is Mnodes = Nnodesmnode.
The springs maintain the boundary length and have rest length
�s = 2πR/Nnodes, where R is the initial loop radius. To resist
bending, we apply forces to the nodes using a thin elastic
beam approximation.

We update node positions and velocities using equations
similar to Eqs. (1) and (2):

yn+1
i = yn

i + un
i dt, (8)

un+1
i = un

i + dt

mnode
Fn

node,i. (9)

Instead of Eq. (3), the sum of forces on node i at time step n is

Fn
node,i = Fn

bend,i + Fn
spring,i + Fn

interact,i + Fn
damp,i. (10)
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These forces depend on node position and velocity (yn
i , un

i ),
neighboring node positions and velocities (yn

j , un
j with j �= i),

and positions of nearby boids (xn
k with index k specifying

boids that are nearby). We first discuss the bending forces and
then the spring forces.

For the bending force, we use the Euler-Bernoulli theory of
thin elastic beams. The centerline of a beam is described with
a curve X(s) where ds gives length along the boundary. The
elastic potential energy depends on

Ubend =
∫

ds
αbend

2
[X′′(s)]2, (11)

where X′′ = ∂2X(s)
∂s2 is the curvature. The coefficient αbend =

EI , is known as the bending moment or flexural rigidity,
with E being the elastic modulus and I being the beam cross
section’s integrated second moment of area.

For a linear beam oriented on the x axis with linear mass
density μ, and displacement from the x axis w(x, t ), the above
potential energy gives equation of motion

μ
∂2w

∂t2
= −αbend

∂4w

∂x4
. (12)

We discretize our boundary by putting its mass into a
consecutive set of mass nodes yi, each separated by distance
�s and of equal mass. The curvature at a node

y′′
i ≈ (�s)−2(yi+1 + yi−1 − 2yi ). (13)

The potential energy for the discrete chain

Ubend =
∑

i

αbend

(�s)3
(3|yi|2 + yi · yi+2 − 4yi · yi+1). (14)

Taking the derivative of potential energy Ubend with respect to
node position yi gives the force on a node

Fbend,i = −∂Ubend

∂yi

= − αbend

(�s)3
(yi−2 − 4yi−1 + 6yi − 4yi+1 + yi+2). (15)

The equation of motion

mnode
d2yi

dt2
= − αbend

(�s)3
(yi−2 − 4yi−1 + 6yi − 4yi+1 + yi+2)

(16)

is a discrete approximation to the equation of motion from
Euler-Bernoulli elastic beam theory (e.g., Refs. [37,38]).

We insert a spring between each consecutive node on
the boundary. The springs are intended to maintain a nearly
constant length boundary. The total potential energy due to
springs is

Uspring =
∑

i

ks

2
(ri,i−1 − �s)2 (17)

where ri,i−1 = |yi − yi−1| is the distance between two con-
secutive nodes, �s is the rest spring length, and ks is the
spring constant. The force exerted on each node due to the

TABLE I. Common parameters for simulation series.

Nnodes 150
αaligntR 3

γdamptR 0.1

ksm
−1
nodet

2
R 2×104

FinteractM
−1
boidsv

−2
0 R 1.5

dinteract/R 0.02
dt/tR 0.005
tmax/tR 50
εks 0.03

The time tR is defined in Eq. (A1). The parameter εks is defined in
Eq. (A8).

springs is

Fspring,i = −ks
(yi − yi−1)

ri,i−1
(ri,i−1 − �s)

− ks
(yi − yi+1)

ri,i+1
(ri,i+1 − �s). (18)

This follows common implementations of N-body mass-
spring models (e.g., Ref. [39]).

To mimic an external viscous or friction-like boundary
interaction, we add a velocity-dependent damping force on
each boundary node

Fdamp,i = −mnodeγdampui, (19)

where damping parameter γdamp is in units of inverse time and
ui is velocity of the node.

C. Boundary node/boid interactions

We apply an equal and opposite repulsive force to each pair
of boundary and boid particles. The force on particle i (either
a boundary node or boid) from particle with index j (of the
opposite type) is given by

Finteract,i =
∑

j,ri, j<3dinteract

Finteracte
−ri, j/dinteract r̂i, j . (20)

Here ri, j is the distance between the node and boid and r̂i, j

is a unit vector pointing from one particle to the other. The
distance dinteract describes the range of the interaction. We only
apply the force at distances ri, j < 3dinteract. The parameter
Finteract determines the strength of the interaction. As long as
the interaction force causes accelerations that exceed those
from other forces and so causes reflection off the boundary
faster than interboid distance travel times, the collective be-
havior should not be sensitive to dinteract or Finteract.

III. COLLECTIVE PHENOMENA

In Fig. 1, each row shows a series of 11 simulations. Each
panel is a simulation snap shot that shows the boid distribu-
tion and boundary morphology at the end of a simulation.
Boundary particles are shown in red. Each boid is marked
with a navy blue isosceles triangle. The vertex with narrowest
angle marks the direction of motion. In each simulation series,
parameters are identical except for one parameter, which is
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FIG. 1. Montages of snap shots showing series of simulations with parameters listed in Tables I and II. Each panel shows a single simulation
snapshot. In each row, only a single simulation parameter is varied, keeping the rest constant. The varied parameter is printed on the top left
of the row increases from left to the right. (a) Varying the stiffness of the boundary αbend with a low value of boid repel distance drepel. Softer
boundaries have smaller wavelength corrugations. (b) Varying the stiffness of the boundary αbend with a higher value of the repel distance,
drepel. (c) Varying the boundary to boid mass ratio, Mnodes/Mboids. Higher mass boundaries show smaller wavelength corrugations. (d) Varying
the alignment distance dalign. A gaseous state is seen in the leftmost snapshot and a solidlike or jammed bullet state is seen on the far right. (e)
Varying the repulsion strength Urepel.

consecutively increased in each simulation. Common param-
eters for these simulations are listed in Table I. Additional
parameters for the series of simulations are listed in Table II.
These series have been done with Nboids = 400; however, we
saw similar phenomena with Nboids = 100, 200, and 800. A
live animation showing a circulating state can be seen in
Ref. [40]. This animation is part of the first series of simu-
lations and has bending moment αbend/(Mboidsv

2
0R) = 10−3.

The fifth panel (from the left) in Fig. 1(a), the seventh panels
in Figs. 1(c) and 1(d), and the fourth panel in Fig. 1(e) all have
parameters approximately the same as this animation.

We first describe the different types of boid and bound-
ary behaviors seen in our simulations. In Sec. III A, we
discuss divisions in parameter space that separate gaseous,
circulating, and jammed states. In Sec. III B, we discuss
the sensitivity of boundary morphology to simulation pa-
rameters. Finally, in Sec. III C, we discuss the nature of
the instability that causes the boundary to be ruffled or
corrugated.

We see three types of collective phenomena: a disordered
gaseous state, a solid-like state, and rotating or circulating
states.

TABLE II. Simulation series.

Bending Bending Boundary Align Repel Align+repel Align distance, Align distance,
Varying moment moment mass distance strength distances Boundary mass boid number

Figure 1(a) 1(b) 1(c) 1(d) 1(e) 2(a) 2(b) 2(c)
Factor 1.7 1.7 1.5 1.6 1.5 – – –
αbend/(Mboidsv

2
0R) [10−4, 0.01] [10−4, 0.01] 10−3 10−3 10−3 10−3 10−3 10−3

Mnodes/Mboids 10 10 [1,57] 10 10 10 [1,32] 10
dalign/R 0.2 0.2 0.2 [0.01,1.1] 0.2 [0.01,3.3] [0.01,3.3] [0.01,1.3]
Urepel/v

2
0 0.1 0.1 0.1 0.1 [0.03,1.6] 0.1 0.1 0.1

drepel/R 0.1 0.35 0.1 0.1 0.1 [0.04,0.4] 0.1 0.1
√

Nboids
400

Nboids 400 400 400 400 400 400 400 [100,800]
Initial conditions Rotating Rotating Rotating Not rotating Rotating Not rotating Not rotating Not rotating

The first row gives the parameter or parameters varied for the series. Each column gives parameters for simulations that are shown in the figure
listed in the second row of the table. Additional parameters for these simulations are listed in Table I. Numbers in brackets give the range
for the parameter that is varied. The third row, labeled “Factor,” gives the multiplicative factor used to increase the varied parameter for each
consecutive simulation in Fig. 1.
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In the disordered gaseous state, boids are not aligned with
each other, there is little circulation or rotation, and the boid
velocity dispersion is high. This state is characterized by a
weak or short-range alignment force. An example of this state
is in the leftmost panel of Fig. 1(d). This particular simulation
has a very short alignment distance, dalign = 0.01R. Numer-
ically, we find that dalignαalign/v0 � 0.01 gives a gaseous
state. Contrary to the classic polar self-propelled particles
[4,30,32,36], our boids exhibit a disordered stated without
stochastic perturbations. However, billiards within in a non-
round but convex boundary can be chaotic [41]. Even if our
boundary was smooth instead of composed of discrete nodes,
ergodic behavior can be introduced via boids reflecting off
the boundary. Ergodic behavior would also be introduced by
the interboid repulsion due to frequent interactions between
confined particles.

In the solid-like jammed bullet state, all boids are moving
in the same direction. Boid positions and velocities appear
frozen in a frame moving with along with them. The boid
velocity dispersion is low and boids do not move relative to
each other. This state is characterized by a strong or long-
range alignment force and a lower mass boundary that is easily
pushed by the boids. A low damping rate on the boundary
aids in forming this state. An example of this state is in the
rightmost panel of Fig. 1(d) (fourth panel from top) with
dalign/R = 1.1. Numerically, we find that this state is likely
when dalignαalign/v0 � 1. Even though our simulations lack an
interboid attractive force, confinement caused by the boundary
can cause a jammed state. This state is similar to the jammed
state seen previously in simulations of confined soft repelling
self-propelled particles at high density [33]. These simulations
also lack an alignment force; however, their boundary was
rigid instead of flexible. The jammed state is perhaps also
similar to moving cohesive groups or droplet states seen in
simulations of unconfined unipolar self-propelled particles
that attract each other (e.g., Refs. [32,36]).

Lastly, in the rotating or circulating states, the boids are
circulating within the boundary. The boundary can be rotating
but is usually moving more slowly than the boids, which all
circulate in the same direction. The boundary shape can be
circular, oval, irregular, or sprocket shaped. Oval loop-shaped
flexible boundaries were previously seen in simulations of
nonaligning self-propelled particles [23,25]. We use the word
“sprocket” rather than “gear” or “ratchet” to describe states
with more than a few radial projections.

For the irregular and sprocket shapes, the boundary is
deformed by groups of boids. As the boids circulate, bulges in
the boundary travel along the boundary. Irregular or sprocket
boundaries are more likely if the boundary mass exceeds
the total boid mass but the boundary is not so massive that
the boids cannot push it. Irregular or sprocket boundaries
are more likely with a more flexible rather than stiff bound-
ary. As is true for the bullet states, the circulating states
arise in the absence of interboid attraction. The confining
boundary serves in place of attractive forces that cause cir-
culating states in unconfined self-propelled particles (e.g.,
Ref. [32]). Because there is no attraction force between
boids, we do not see multiple separate flocks, though we
do see clumps of boids in divots or pockets moving along
the boundary.

Long-lived states can depend on the initial boid velocity
distribution. When alignment is strong and the boundary is
lower mass, initially rotating boids are less likely to go into
the bullet state. Once a system goes into a bullet state, we
find that it stays there. Circulating states can nevertheless be
long lived and even after long integrations, with integration
time tmax > 100tR, the simulation will not fall into a bullet
state even if a different initial velocity distribution would
put the system in such a state. Here tR = R/v0 is the time it
takes a boid to travel the boundary radius (see the Appendix,
Subsec. A 2).

The most interesting of the states seen in our simulations
are those where the boundary becomes corrugated. Sokolov
et al. [17] and DiLeonardo et al. [42] describe an asymmetric,
rigid, nanofabricated gear that is spun by bacteria. In con-
trast, here we find that a flexible loop-shaped boundary can
become corrugated and the corrugations can rotate because
of unipolar self-propelled particles that are moving within the
boundary. We could be seeing a modulational instability due
to swim pressure inhomogeneities near the boundary that was
predicted for nonaligning self-propelled particles [22].

Increased boid density near the boundary (bordertaxis) is
particularly noticeable in the simulation with higher repel
distance drepel [see Fig. 1(b)]. The interplay of self-propulsion,
confinement, and stochastic processes is often sufficient to
explain accumulation of self-propelled particles on or near
a boundary [23–25,43–46]. Here we lack stochastic pertur-
bations; however boundary-boid and boid-boid interactions
serve as a source of chaotic behavior that might aid in in-
creasing the boid density near the boundary via diffusive-like
behavior. Boids on the boundary only feel repulsion from
other boids on one side, allowing them to be closer together
than boids in the interior.

A. Phase diagrams

In Fig. 2, we show phase plots delineating gaseous, circu-
lating, and bullet states. Figure 2(a) shows phases as a function
of repel and alignment distances, drepel and dalign. Figure 2(b)
shows phases as a function of total boundary to boid mass
ratio and the align distance and Fig. 2(c) shows phases as a
function of the number of boids and the align distance. For this
last figure, we set drepel ∝ √

Nboids so that the repel distance
divided by mean boid number density remains constant in
the different simulations. Otherwise, the high number density
simulations would be at high pressure as boid repulsion would
be pushing them up against the boundary.

The parameters for the simulations shown in Fig. 2 are
listed in Table I and in the rightmost columns in Table II.
In Fig. 2, red circles represent simulations giving gaseous
states, green triangles represent those giving circulating states,
and blue squares are simulations that ended in bullet states.
Classification for this plot was done by eye from simulations
run in the browser. We have shaded the different regions to
show the locations of the different phases.

The transition between circulating and gaseous states is
primarily sensitive to the align force and the boid density.
The gas/circulating phases’ dividing line in Fig. 2(c) has
slope consistent with alignment distance proportional to the
mean distance between boids; dalign ∝ 1/

√
Nboids. If the boid
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FIG. 2. Dependence of the type of collective motion on align
distance and other parameters. (a) Phases are plotted as a function
of the repel and align distances. (b) Phases as a function of the
ratio of boundary and boid mass and the align distance. (c) Phases
as a function of the number of boids and the align distance. Red
circles represent simulations of gaseous states, green triangles are
circulating states, and blue squares are those that ended in jammed
or bullet states. We have roughly shaded the different regions. The
jammed bullet phase is present when the alignment is strong, whereas
the gaseous state is present when the alignment is weak. Circulating
states lie in between the gaseous and bullet states. The simulations
used to make this figure have parameters listed in Table I and the
rightmost columns of Table II.

density is higher, a smaller alignment distance allows them to
circulate.

The transition line between bullet and circulating states
is sensitive to a number of parameters. More flexible, less
damped, and lower mass boundaries are more likely to elon-
gate and trap boids, aiding in formation of a jammed state.
Confined self-propelled soft particles at high density jam [33],
and unconfined self-propelled particle with strong cohesion
can form moving solidlike droplets [32,36]. The sensitivity
of the bullet/circulating phase line to bending moment αbend,
damping parameter γdamp, and mass ratio Mnodes/Mboid would
be consistent with a picture where strong alignment pushes the
boids into the boundary, increasing their density, but where the
jammed state is only maintained when the boundary can fold
and trap them.

B. Sensitivity of boundary corrugations
on simulation parameters

We discuss the five series of simulations shown in Fig. 1
and with parameters listed in Tables I and II. In Fig. 1(a)
(top panel), we show a series of simulations, all with the
same parameters except that bending moment αbend increases
from simulation to simulation. The factors used to increase
the varied parameter in each series are also listed in Ta-
ble II. For example, the varied parameter for Fig. 1(a) is
computed as follows: The lowest value of αbend/(Mboidsv

2
0R)

in the first series is 10−4. The factor used to vary this
parameter is 1.7. The ith simulation has bending moment
αbend/(Mboidsv

2
0R) = 10−4 × (1.7)i−1. This set of simulations

has drepel = 0.1 and so has a short-range repulsive force.
With a very flexible boundary [on the left in Fig. 1(a)] and
small αbend, the boundary has many corrugations. As the
bending moment increases, the wavelength of the boundary
corrugations increases.

The second series of simulations shown in Fig. 1(b) is sim-
ilar to the first series except the repel distance drepel = 0.35 is
larger. The repel distance is large enough that boids are pushed
against the boundary by their repulsion alone. This differs
from the simulations at lower drepel, where only the centrifugal
force due to their circulation pushes them up against the
boundary. Despite being in a different regime, we also see
boundary corrugations in the series shown in Fig. 1(b), and
again with wavelength increasing with increasing bending
moment. In this regime, a single angular Fourier mode often
dominates, whereas at lower repel distance drepel the boundary
corrugations were more irregular. With higher drepel and lower
bending moment αbend, the boundary looks like a sprocket or
a gear.

We were most surprised by the third series of simula-
tions, shown in Fig. 1(c). In this series of simulations, the
boundary mass is increased, with low-mass boundaries on the
left and high-mass boundaries on the right. We had expected
that a lower mass boundary would show more corrugations
because it would be easier for the boids to push the boundary.
However, we find that the opposite is true; the higher mass
boundaries have boundaries with more corrugations.

In the fourth series, Fig. 1(d), we vary the alignment
distance dalign. This set of simulations shows the transition
from a gaslike state, at low dalign on the left to the jammed
bullet-like state at high dalign, on the right. In some of the
intermediate simulations, we saw a circulating flock of boids
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that moved back and forth from one side of a boundary to the
other.

Finally, in the fifth series, Fig. 1(e), we vary the repel force
strength Urepel. This parameter affects the boid density. We
find that the boundary is more likely to be corrugated when
the boid density is higher near the boundary and at lower repel
strength, Urepel.

C. Instability on the boundary

The most interesting phenomena illustrated by our dynam-
ical system is corrugations in the boundary that grew during
the simulations. The dynamics of the boundary is coupled to
the collective motions. In this section, we examine the nature
of the instability leading to the growth of corrugations on the
boundary.

Hydrodynamic analogies for our boundary corrugations
include ripples excited on a flag by wind, or the Kelvin-
Helmholtz instability which is driven by the velocity dif-
ference across an interface between two fluids. Classically,
instabilities can be studied by linearizing equations of motion
and deriving a dispersion relation for wavelike solutions. The
dispersion relation relates a the frequency of oscillation to
a wave vector. Frequencies that have complex parts when
the wave vectors are real correspond to wavelengths that are
unstable to amplitude growth.

Using dynamic Euler-Bernoulli theory, the wave equation
for a linear elastic beam under tension and with an applied
force

μ
∂2w

∂t2
= −αbend

∂4w

∂x4
+ T

∂2w

∂x2
+ p(x), (21)

where, as previously, w(x) is beam displacement, αbend is
the bending moment or flexural rigidity, μ is the beam’s
linear mass density, and p(x) is an applied force per unit
length. We can use this equation to model the dynamics of
our flexible boundary. Here the horizontal coordinate x is
a plane parallel approximation to Rθ in polar coordinates
along the boundary with periodic boundary conditions and
w(x) is a radial displacement of the boundary away from its
rest, circular state. The linear mass density in the boundary
μ = Mnodes/(2πR). In Eq. (21), we have included a term
dependent upon tension T , the longitudinal tension in the
boundary. We estimate a mean value for the tension using
Eq. (A7), T ∼ Mboidsv

2
0/(2πR), and depending upon the total

boid mass and associated pressure. The applied force p(x) is
due to boids pushing up against the boundary. We refer to this
applied force as “swim pressure” (following Refs. [22,27,28])
or “boid pressure.”

A perturbative solution of Eq. (21) with displacement
w(x, t ) ∝ ei(ωt−kx), frequency ω, and wave vector k = 2π/λ,
for wavelength λ, and with applied pressure p = 0, gives a
dispersion relation

ω2 = αbend

μ
k4 + T

μ
k2. (22)

The tension-related k2 and bending-rigidity-related k4 terms
are consistent with discussion on active particle mediated
boundary instability in Ref. [22].

If the boids are moving parallel to a straight surface, they
will not interact with the boundary. However, if they are
moving next to a curved surface, their trajectories must curve.
The pressure on the boundary due to the boids depends on
the curvature of the boundary and the boid density pswim ∝
ρboid

∂2w
∂x2 . The pressure force is opposite that due to tension

in the boundary, as it would push in the same direction as a
bulge in the boundary, rather than counter it. In this sense,
the boid swim pressure acts like pressure variations in an
incompressible fluid near a boundary that is derived from
linearization of Bernoulli’s equation. We estimate the pressure
on the boundary

pswim ∼ −βswimMboid
v2

0

2πR

∂2w

∂x2
∼ −βswimT

∂2w

∂x2
, (23)

where βswim is a dimensionless factor that we can adjust.
This gives a simple approximate model for variations in boid
pressure exerted along a corrugated boundary and is in a
similar form to that predicted in Eq. (27) by Nikola et al.
[22]. This form for the swim pressure gives a term in the wave
equation similar to the tension term [see Eq. (A7) for tension]
but with the opposite sign (and this is also consistent with the
discussion in Ref. [22] supplements). The dispersion relation
[in Eq. (22)] becomes

ω2 = αbend

μ
k4 + T (1 − βswim )

μ
k2. (24)

In Fig. 3, we have plotted the phase velocity ω/(kv0),
computed using Eq. (24), as a function of wavelength for
different boundary to boid mass ratios, bending moments, and
two different values for the dimensionless coefficient βswim.
The values of boundary to total boid mass ratio and bending
moments are the same as used in our simulation series. In
Fig. 3(a), velocities are shown for βswim = 0. This would be if
the boids locally did not exert much pressure on the boundary
that is above or below a mean value. In Fig. 3(b), velocities
are shown for βswim = 0.8. Orange solid, red dot-dashed, and
maroon solid lines of increasing thickness have mass ratio
Mnodes/Mboids = 3, 10, 25, respectively, and bending moment
αbend/(Mboidsv

2
0R) = 10−3. Thin cyan and thick blue dotted

lines have αbend/(Mboidsv
2
0R) = 10−2 and 10−4, respectively,

and mass ratio Mnodes/Mboids = 10. We note that the phase
velocities shown in Fig. 3(b) do not reach zero. We suspect
that instability is not caused by large βswim, which would give
a negative right-hand side to Eq. (24) and complex values for
frequency ω. In this sense, our estimates for the phase velocity
do not support the model for boundary instability explored in
Ref. [22].

Figure 3 illustrates that higher boundary mass gives lower
wave velocity on the boundary. Likewise, weaker boundaries
(with lower αbend) have lower wave velocity. The trends we see
in Fig. 1, showing that corrugation wavelengths decrease with
increasing boundary mass and decreasing bending moment,
are matched by the trends we see in wave velocity. This
suggests that the instability on the boundary grows when
the wave speed on the boundary is similar to boid speed.
Horizontal gray lines on Fig. 3(b) show constant velocities.
Wavelengths to the right of where the curved lines cross a
horizontal gray line have phase velocity below the value of
the horizontal line. If instability depends on matching boid
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FIG. 3. Phase velocities for waves on the boundary for a simple
model that takes into account swim pressure from boids. These
were computed using the dispersion relation in Eq. (24). (a) No
local boid swim pressure on the boundary. (b) Local boid swim
pressure set by βswim = 0.8. In both plots, orange solid, red dot-
dashed, and maroon solid lines of increasing thickness have mass
ratio Mnodes/Mboids = 3, 10, 25, respectively, and bending moment
αbend/(Mboidsv

2
0R) = 10−3. Thin cyan and thick blue dotted lines

have αbend/(Mboidsv
2
0R) = 10−2 and 10−4, respectively, and mass ratio

Mnodes/Mboids = 10. Horizontal gray lines are at velocity v0 and
3/4v0. Wavelengths to the right of where the curved lines cross a
horizontal line have phase velocity below the value of the horizontal
line. If instability depends on matching boid speed to the velocity
of waves on the boundary, then smaller wavelengths are unstable for
higher mass and more flexible boundaries.

speed to the velocity of waves on the boundary, then smaller
wavelengths are unstable with higher mass and more flexible
boundaries.

Using our dispersion relation in Eq. (24), the wave vector
that gives ω = kv0 (and matching wave phase velocity to boid
speed) is

kcrit =
√

μv2
0 − T (1 − βswim )

αbend
. (25)

The regime giving us interesting boundary morphology has
Mnodes > Mboids and critical wave vector

kcritR ≈
√

Rv2
0Mboids

2παbend

√
Mnodes

Mboids
, (26)

where we have neglected βswim. In terms of a critical wave-
length λcrit = 2π/kcrit ,

λcrit

R
≈ 0.16

(
αbend

10−3MboidsRv2
0

) 1
2
(

10

Mnodes/Mboids

) 1
2

. (27)

The scaling and approximate values for the critical wave-
length are consistent with the wavelengths giving phase ve-
locity of v0 shown in Fig. 3.

As long as the coefficient giving swim pressure strength
βswim < 1, the dispersion relation in Eq. (24) always gives real
frequencies ω when the wave vectors are real. Only wavelike
solutions would be present and perturbations on the boundary
would not grow. If the dispersion relation has regions where
frequency ω is complex for real k, then perturbations at these
wavelengths would grow exponentially giving instability on
the boundary. If the k2 term in the dispersion is negative, then
there is an instability at small wavelengths. This is the setting
discussed by Nikola et al. [22] for instability of a filament
embedded in a medium containing self-propelled particles.
A modified form for the swim pressure might give a larger
negative term in the dispersion relation and show instability.

Using a linearized version of Bernoulli’s equation, a two-
dimensional incompressible fluid approximation for boids
moving at v0 would give boid pressure perturbation with am-
plitude pk ∝ Mboids(ω − kv0)2/k for a perturbation ∝ ei(ωt−kx)

on the boundary. However, unstable regions in the dispersion
relation then occur at larger wavelengths for heavier bound-
aries, which is opposite to what is seen in our simulations
[see Fig. 1(c)]. A model where swim pressure is proportional
to boid density and boid density is proportional to the local
boundary curvature (e.g., Ref. [44]) also would predict this
trend that is not consistent with our simulations. If the local
swim pressure is large and βswim > 1 in Eq. (24), unstable
regions would also give this incorrect trend. These types of
instability models also predict rapid growth rates for the insta-
bility, also in contradiction to what we see in the simulations,
where corrugations in the boundary take 5 to 10 crossing times
tR to grow.

The models discussed in the previous paragraph and
Eq. (23) (and in Ref. [22]) have boid swim pressure per-
turbations, exerted on the boundary, that are in phase with
the boundary perturbation. However, we see a difference in
the boid motions between leeward and windward sides of
corrugations in our simulations. This is most extreme for
the massive boundaries on the right-hand side of Fig. 1(c)
(third row), where boids are pushed outward toward the center
of the enclosed region after they pass a convex region of
the boundary. The difference between leeward and windward
sides in the boid motions implies there is an asymmetry in the
response of the boids to perturbations in the boundary. The
response of the boids slightly lags behind the perturbation,
giving a phase shift in the pressure response.

We consider a model where the boid swim pressure is
slightly out of phase with a small perturbation on the bound-
ary. For a perturbation ∝ ei(ωt−kx) on the boundary, we assume
that the sign of the phase shift depends on v̄ − ω/k, where v̄

is the mean speed of boids that are next to the boundary. We
approximate v̄ ∼ v0 even though the mean speed v̄ is usually
lower than v0 because the boids are slowed by bouncing
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against the boundary. The phase shift gives an additional
complex component to the amplitude of the boid pressure
perturbation pswim,k. We assume that the phase shift in boid
pressure is in the same form as Eq. (23), contributing a
complex component

Im(pswim,k ) = iδlagT k2sign(kv0 − ω) (28)

to the swim pressure perturbation amplitude. Here δlag is a
small dimensionless parameter describing the size of the lag.

Modifying Eq. (24), the resulting dispersion relation is

ω2 = αbend

μ
k4 + T

μ
k2[1 − βswim + iδlagsign(kv0 − ω)]. (29)

Assuming that the parameter δlag is small, we find that the
perturbation only grows if the imaginary term on the right-
hand side is positive. An instability is present if v0 > ω/k, so
only boundaries with slow wave speeds would be unstable to
the growth of corrugations. As heavier boundaries have slower
bending wave speeds, the delay would account for the relation
between corrugation and boundary mass we see in Fig. 1(c).

With small δlag, we estimate an instability growth rate from
the imaginary component of the frequency

γ (k) = Im(ω) ≈ δlagT k2

2μRe[ω(k)]
. (30)

Unstable perturbations would have amplitudes that increase
exponentially with time, ∝ eγ (k)t . While all wavelengths
larger than the critical one λcrit (where wave speed matches
boid speed) would be unstable (due to the sign of the phase
lag), the growth rate is maximum near the smallest unstable
wavelength, which is the critical one. Using Eq. (26) for the
critical wave vector, we estimate the the growth rate for this
wavelength,

γ (kcrit )tR ≈ T δlag

2μv2
0

kcritR ≈ δlag

2

√
Rv2

0Mboids

2παbend

√
Mboids

Mnodes

≈ 2δlag

(
10−3MboidsRv2

0

αbend

) 1
2
(

10

Mnodes/Mboids

) 1
2

.

(31)

We can test this phase-lag instability model by examining
the rate that boundary perturbations grow in our simulations.
In five simulations, we measure Fourier amplitudes Am(t ) > 0
as a function of time, where integer m gives the angular
frequency of radius R(θ, t ) = ∑

m Am(t ) cos[mθ + φm(t )] as
a function of angle θ along the boundary. For example, a
triangular perturbation gives an amplitude A3. The angle φ3

determines the orientation of the triangular perturbation. The
five simulations have parameters taken from Tables I and II but
with the boundary to boid mass ratio and bending moments
chosen to be the same as the phase velocities plotted in Fig. 3.
These simulations are the part of the first and third series listed
in Table II and shown in the first and third rows of Fig. 1. In
Fig. 4(a), we plot ln(

∑7
m=3 Am/R) as a function of time and

in Fig. 4(b) we plot ln(
∑20

m=10 Am/R). Lines have the same
colors and styles as in Fig. 3.

Figure 4 shows that corrugation growth rates are faster
with lower values of bending moment (comparing blue dotted,
red dot-dashed, and thin teal dotted lines), as expected from

FIG. 4. The log of a sum of Fourier amplitudes measured from
the boundary for five different simulations. (a) Using the m = 3 to
7 Fourier amplitudes. (b) Using the m = 10 to 20 amplitudes. The
lines types and parameter choices are the same as in Fig. 3. The
simulations have parameters the same as the first and third series of
simulations listed in Table II except they have specific boundary to
boid mass ratios and bending moments that are shown in the legends.

Eq. (31). The inverse dependence of growth rate on boundary
to total boid mass ratio is less evident, but the mass ratio varies
by a factor of about 3 rather than 10 as for the bending mo-
ment. The low-mass boundary only grows larger wavelength
perturbations (with lower Fourier index m) and the growth
rate is slower than for the higher mass boundaries with the
same bending moment (comparing thin orange to thick red
and maroon lines). The trends we see in Fig. 4 are consistent
with those predicted by Eq. (31).

We use our numerically measured growth rates to estimate
the size of the pressure lag. In Eq. (31) we have estimated the
growth rate of the critical wavelength for the mass ratio 10 and
αbend/(Mboidsv

2
0R) = 10−3 simulation which is shown with a

dot-dashed red line in Fig. 4. The slope of the red line gives
a growth rate of γ tR ∼ 0.2. Equating this to the growth rate
in Eq. (31), we estimate δlag ∼ 0.1. The required lag for the
pressure is small enough to be consistent with the appearance
of the simulations. This implies that a small delay in boid
response moving over boundary perturbations can account for
the instability on the boundary.

Throughout the discussion in this section, we have as-
sumed that tension on the boundary was that estimated by
Eq. (A7). However, if the boid separation is shorter than the

repel distance,
√

πR2

Nboids
< drepel, then there is additional tension

on the boundary because the boids are pushed against the
boundary by their repulsion. An increase in tension increases
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the wave speed and would reduce the wavelength of corruga-
tions on the boundary. The second series of simulations shown
in Fig. 1(b) (second row) is in this regime and shows weaker
boundary perturbations. Comparison of this simulation to
that with identical parameters but lower repel distance drepel

[Fig. 1(a), top row] shows that the corrugations in the higher
tension simulations tend to be shorter wavelength, confirming
our expectation. A single Fourier perturbation tends to domi-
nate in these simulations, but we lack an explanation for this
phenomenon.

What accounts for the size of the phase lag parameter δlag?
The phase lag may be due to the time it takes other boids
to push near-boundary boids back onto the boundary. This
time might be governed by the strength of the interboid repel
force. We have noticed that a weaker repel force Urepel gives
larger density contrasts in the boids. We would expect this
to give a larger asymmetry between windward and leeward
sides of corrugations in the boid distribution, leading to faster
corrugation growth rates and larger amplitude corrugations
but not necessarily a change in the wavelengths that are un-
stable. However, in Fig. 1(e) (fifth row), the simulations with
lower Urepel do seem to have smaller wavelength corrugations
and with larger Urepel, the boundary instability is suppressed.
The variation in the wavelengths of instability must be due
to another cause, perhaps because changing Urepel also af-
fects boid density near the boundary and the pressure-related
tension on the boundary, which in turn affects the speed of
boundary waves. Boids are slowed down near the boundary
and if the mean speed depends on Urepel, this too could affect
the wavelengths that are unstable. We lack a straightforward
way to predict the delay parameter, δlag. Better understanding
of the boid’s continuum dynamics near the boundary may
make it possible to predict the phase lag from the repel force
law and mean boid number density.

In summary, we have explored simple models for boid
swim pressure, exerted onto the boundary, that would give
instability on the boundary. A model with boid swim pressure
dependent on the boundary curvature and slightly lagging
its corrugations is most successful at matching sensitivity of
boundary corrugation wavelength to boundary mass, bending
moment, and the corrugation growth rates. Perturbations on
the boundary that move with wave speed slower than but near
the boid speed are most likely to grow and this determines the
wavelengths that grow on the boundary.

IV. SUMMARY AND DISCUSSION

We have carried out a numerical exploration in two dimen-
sions of self-propelled particles with alignment and repelling
forces that are enclosed in a flexible elastic loop. We primarily
find three types of long-lived states: a stochastic gaslike state,
a solidlike or jammed bullet state where the boids align
and push the boundary in a single direction, and rotating
or circulating states. The gaseous and circulating states re-
semble those exhibited by unconfined unipolar self-propelled
particles with cohesive or attractive interactions [4,32]. The
solidlike state resembles the jammed state seen in simulations
of confined soft repulsive self-propelled particles at high
density [33] and the moving droplets seen in simulations of
unconfined self-propelled particle with strong cohesion

[32,36]. We recover these three types of states without cohe-
sion due to the confining nature of the boundary.

The most of interesting of the states exhibited by our simu-
lations are the circulating states as they include rotating ovals
and sprocket-shaped and irregular or ruffled boundaries. Oval-
shaped boundaries are similar to those seen in simulations of
nonaligning stochastically perturbed self-propelled particles
[23,25]. The ruffled or sprocket-shaped rotated boundaries
mimic the rotating ratchet that was achieved by placing a rigid
ratchet in a solution of active particles [17,18,42], but here the
collective motion of the self-propelled particles and instability
on the boundary drive the rotation. The instability is likely
mediated by boid pressure inhomogeneities, as predicted by
Nikola et al. [22]. However, the instability is most noticeable
in the simulations with more massive and flexible boundaries.
The wavelength of corrugations on the boundary is near the
wavelength of elastic waves on the boundary that have phase
velocity equal to the particle swim speed. We suspect that
the instability depends on a lag between boid swim pressure
exerted on the boundary and boundary shape perturbations.
In this sense, our instability model differs from the model in
Ref. [22] that lacks a phase lag.

It may be possible to devise an experiment giving an
instability on a flexible boundary that is mediated by active
particles. Here we considered a uniform loop boundary, but a
boundary could be designed to be more flexible in one region
than another. For example, if the instability is fast, waves
might be excited on one side of a loop, making it possible
to fix the other side to another surface. States with rotating or
fluttering boundaries might be used to generate fluid flow or
vorticity or to create a swimmer. These artificial mechanisms
could more efficiently use power from self-propelled particles
as the particles are in proximity to the moving boundary rather
than distributed in a solution, though providing the particles
with an energy source for propulsion could be more difficult
as their fuel must be stored within or cross the boundary.

In this study, we ignored stochastic perturbations and co-
hesion in the self-propelled particles and the hydrodynamics
of the medium in which the self-propelled particles move.
Phase diagrams for classes of DADAM tend to scale with
the ratio of density to noise strength, with noisier systems
more likely to display disordered phases [30]. Our simulations
were restricted to a few hundred boids. Future studies could
extend and vary the physical model and explore dynamics
in three dimensions. Future work could also explore other
types of active materials that are enclosed by flexible bound-
aries, such as active self-propelled rods (e.g., Refs. [47,48])
or active nematics (e.g., Refs. [30,49–52]). With unipolar
self-propelled particles, we did not see long-lived bending
oscillations. Perhaps other types of active materials enclosed
in a flexible boundary could exhibit this type of phenomena.
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APPENDIX: NUMERICAL IMPLEMENTATION

All boundary node masses are equivalent and all boid
masses are equivalent; however, node mass is usually not
equal to boid mass. The total number of boids and nodes
remains fixed during the simulation. For visualization, we
translate the viewing window so that it is centered on the
center of mass of the boundary.

1. Initial conditions

The simulations are initialized with boids initially confined
within a circle with radius of 0.9 the initial boundary radius, R.
Boids are initially uniformly and randomly distributed within
this this circle. We explored two types of initial conditions for
the boids, an initially rotating flock and a nearly stationary
flock. In both cases, we also added a small initial random
velocity, uniformly distributed in angle, of size 0.1 v0, where
v0 is the boid swim speed. The rotating swarm has boids
initially rotating about the boundary center at a velocity of 0.8
v0. Circulating initial conditions are chosen when we study
the circulating states, whereas random initial conditions with-
out mean rotation are chosen when we study the transitions
between gaseous-like, circulating, and jammed states.

The boundary nodes are initially placed in a circle of
radius R, equally spaced and at zero velocity. Springs between
neighboring nodes are initially set to their rest length and all
springs have the same spring constant. The bending moment
does not vary as a function of position on the boundary.

2. Units

We work in units of boid speed v0, initial boundary radius
R, and total boid mass Mboids. A unit of time is

tR ≡ R/v0, (A1)

which is the time for a lone boid moving at v0 to cross the
radius R of the boundary. After choosing these units, the free
parameters are the total boundary mass Mnodes which is also
the boid to boundary mass ratio, the number of nodes and
boids Nnodes and Nboids, the alignment force strength and length
scale, αalign and dalign, the repel force strength and length scale
Urepel and drepel, the bending moment αbend, the node damping
parameter γdamp, the node-boid interaction strength and length
scale, Finteract and dinteract, and the spring constant ks. To run
a simulation, we also require a time step dt , which is fixed
during the simulation, and a maximum length of time tmax to
integrate. This is a large parameter space, but not all combi-
nations of these parameters necessarily affect the collective
dynamics or are in regimes that are physically interesting or
could be realized numerically. As long as the number of nodes
is high enough that the boids are confined and they smoothly
interact with the boundary, the dynamics should not depend
on the number of nodes in the boundary or the parameters
describing the boid-node interactions. The springs are used
to set the boundary length so the spring constant should not
affect the dynamics. The dynamics could depend upon the
number and mass of boids as the swim pressure, or pressure
exerted by boids on the boundary, depends on their number
density.

3. The time step

The speed of compression waves traveling in a linear mass-
spring chain is

vc =
√

ks

mnode
�s =

√
ks

mnode

2πR

Nnodes
. (A2)

For numerical stability, a CFL-like condition for the time step
is that it must be less than the time it takes a compression wave
to travel between nodes or

dt <

√
mnode

ks
. (A3)

In the continuum limit, Eq. (16) gives a dispersion relation for
bending waves equivalent to that from Euler-Bernoulli beam
theory

ω2 = αbend

μ
k4, (A4)

where αbend is the bending moment or flexural rigidity, μ =
mnode/�s is the linear mass density, ω is angular wave fre-
quency, and k is the wave vector. The simulation time step
should be chosen so that small corrugations in the boundary
are not numerically unstable. Taking the wave speed for wave
vector k = 1/�s, from the node separation, a condition on the
time step for numerical stability is

dt <

√
mnode

αbend�s
(�s)2. (A5)

The time step should be shorter than the time it takes a boid
to travel between boundary nodes, the mean distance between
boids, and the repel, align, and boundary interaction distances,

dt < min

⎛
⎝�s

v0
,

1

v0

√
πR2

Nboids
,

drepel

v0
,

dalign

v0
,

dinteract

v0

⎞
⎠. (A6)

We chose the time step to satisfy Eqs. (A3), (A5), and (A6),
with Eq. (A5) usually being the most restrictive.

4. Tension in the boundary

The springs are present to keep the boundary length nearly
constant. We would like the springs to be strong enough that
the choice of spring constant does not affect the simulation
collective behavior. Because they must turn, boids circulating
near a circular boundary exert a pressure on the boundary.
On average, the force per unit length on the boundary is

p ∼ Mboids
v2

0
R

1
2πR . This pressure is balanced by a tension in

the boundary (sometimes called wall tension and related to
hoop stress) that depends on the curvature of the boundary,
p ∼ T/R. Balancing these two estimates, we estimate the
tension on the boundary

T ∼ Mboids
v2

0

R

1

2π
. (A7)

This tension can stretch each spring by δx from its rest length,
giving tension T = ksδx. The spring strain is ε = δx/�s with
spring rest length �s = 2πR/Nnodes. Setting tension from wall
strain equal to that from spring tension, we solve for the spring
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strain to give a dimensionless parameter

εks ≡ Mboidsv
2
0

(2πR)2

Nnodes

ks
. (A8)

As long as this parameter is small, the springs should remain
near their rest length and the choice of spring constant should
not affect the behavior of the simulations. We ensure that our
spring constant ks is large enough that εks < 1 is satisfied.

5. Other constraints on parameters

The boundary-boid interaction should primarily cause
boids to reflect off the boundary. The acceleration on the boids
from the boundary nodes should exceed the interboid repel
force

Finteract

mboid

dinteract

�s
� Urepel

drepel
, (A9)

where the factor dinteract/�s describes the number of nodes
that push away a single boid as it approaches the boundary.
We also require internode distance to be similar to or less
than the boundary interaction distance, �s � dinteract 	 R.
The interaction force should not be so large that boids on
the boundary move a large distance during a single time step,
giving an upper bound

Finteract

mboid

dt

v0
� 1. (A10)

We maintain these conditions so that the parameters describ-
ing the boid-node interaction force should not significantly
affect the boid collective behavior. We have halved the time
step and we doubled the spring constant to check that these
did not affect our simulations. We repeated simulations to
check that boid distribution and boundary morphologies look
similar at the end. There is sensitivity to initial conditions with
some simulations freezing or jamming in a bullet-like state
and others with the same parameters remaining in a circulating
state. This is discussed in more detail in Sec. III.

If the interboid alignment force is too weak, then
many boid crossing travel times would be required for
collective phenomena to develop. We maintain alignment

strength αaligntR > 1 so that self-propelled particles align on
a timescale shorter than the travel time across the enclosed
region. This condition also ensures that transient behavior
decays within a few dozen domain travel times, tR. Likewise,
we keep the repel strength divided by the square of the swim
speed Urepel/v

2
0 to be of order 1 so that the boids effectively

repel one another during a simulation extending a few dozen
crossing times tR. There is some degeneracy between align-
ment strength αalign and distance dalign in how these parameters
affect collective behavior as both affect boid alignment. There
is also a degeneracy between repel strength Urepel and distance
drepel as both parameters determine interboid repulsion. Con-
sequently we usually fix the alignment and repel strengths
αalign and Urepel, and vary their length scales dalign and drepel

in our numerical exploration of collective phenomena.
The damping parameter γdamp mimics friction or viscous

interaction with a background substrate or fluid. If the damp-
ing parameter γdamptR 
 1, then the boundary is overdamped
and will not be sensitive to boid pressure. If γdamptR is ex-
tremely small, then circulating boids within the boundary will
cause the boundary to rotate, eventually matching the boid
rotation speed. We set γdamptR = 0.1, an intermediate value, so
that transient behavior will decay within a few dozen crossing
times.

To allow transient behavior to decay, we run each simula-
tion for tmax = 50tR. We show in Sec, III C that the growth of
structure on the boundary usually saturates by this time.

6. Code repository

We checked our classification of collective behavior and
phenomena with two independently written codes. One ver-
sion is written in C, uses an openGL display, and nearest
neighbor searches are accelerated with a 2D quad-tree search
algorithm based on the Barnes-Hut algorithm [53]. This code
can be found in Ref. [54]. Another version of our code is
written in JAVASCRIPT using the p5.js library (see Ref. [55]).
This code displays in a web browser and nearest-neighbor
searches are not accelerated. This code is available on github
in Ref. [56]. The figures in this paper were made with the
JAVASCRIPT code.
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