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Quantitative analysis of the gain in probability of escaping for ideal phototactic swimmers due to
chaotic dynamics
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We study the dynamics of ideal phototactic swimmers in a steady two-dimensional model flow with transport
barriers. We consider a distant light source, in which case the self-propulsion velocity of the swimmers is, at
any instant, along a predetermined direction. The probability of transport along that direction emerges from the
competing effects of the swimmers’ self-propulsion and the flow’s transport barriers. For swimmers bounded to
have the same time average self-propulsion speed, temporal modulation of that speed increases the probability
of escaping due to the formation of a stochastic layer which fosters transport. We use separatrix-map techniques
to calculate the gain in the probability of escaping.
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I. INTRODUCTION

The interplay between fluid dynamics and the activity
of transported material displays a plethora of complex phe-
nomena which has motivated intense research [1]. In this
context, a remarkable instance of activity of either biological
or engineered nature corresponds to self-propulsion of the
transported particles. These range from tiny organisms and
nanoscaled manufactured swimmers in microchannels to the
greatest mammals and large vessels in the ocean. As a result of
the enormous range of possible Reynolds numbers involved,
the underlying mechanisms and the emerging phenomena can
be very distinct.

Small-scale swimming is dominated by viscosity and
shows up in a number of different flavors, gyrotaxis, chemo-
taxis, and phototaxis being among the most common. Photo-
taxis, in particular, has been studied in unicellular organisms
[2,3] and artificial microswimmers [4,5]. Both the dynamics
of individual swimmers under a given flow and light stimulus
[6] and the collective motion which emerges also from the
interaction among swimmers [7] have been objects of research
interest.

In this paper we study the phototactic dynamics of small
individual swimmers far away from a light source in a steady
fluid flow with transport barriers. We are interested in the
nontrivial case where the self-propulsion velocity is small
compared to the characteristic flow velocity. Transport or
confinement is then the outcome of the delicate balance be-
tween self-propulsion along a fixed direction (that of the target
source) and the flow’s transport barriers. Our goal is to charac-
terize the gain in the probability of escaping, i.e., overcoming
such transport barriers, arising from a temporal modulation of
the self-propulsion speed. More specifically, we compute and
compare the probability of escaping of swimmers constrained
to have a given self-propulsion mean speed but adopting two
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different swimming strategies. The first strategy corresponds
to self-propulsion with constant speed and the second one
corresponds to self-propulsion with a sinusoidal temporal
modulation of the speed. For a given self-propulsion strategy,
whether a certain individual swimmer will escape or remain
trapped depends on its initial position, and the probability of
escaping is defined by the relative measure of the set of initial
conditions of trajectories which do not remain confined.

Generally speaking, we expect a gain in probability of
escaping arising from a periodic modulation of the self-
propulsion speed when the fluid flow is steady because such a
modulation usually induces the formation of a stochastic layer
(cf. Sec. IV A) which fosters transport. The intended contri-
bution of the present work is to show that classical separatrix-
map techniques can be a valuable yet simple tool for quan-
tifying that probability gain in the context of phototaxis. It
is worth noting that nearly periodic velocity oscillations of
single swimming cells have been measured for unicellular
algae [8] and that chaotic dynamics has been shown to result
for gyrotactic microswimmers with temporal self-propulsion
modulation [9].

II. PHOTOTAXIS AND FLUID FLOW MODEL

A. Model

A synthetic model for the motion of an individual ideal
phototactic swimmer in a fluid flow is given by [6]

ṙ = u(r, t ) + χ∇�(r), (1)

where u(r, t ) is the velocity field of the fluid flow at the
swimmer’s position r and time t , and χ is the phototactic
coefficient, which measures the strength of response of the
swimmer to the illumination field �(r). The term χ∇�(r)
therefore describes phenomenologically the self-propulsion
velocity of the swimmer.

We are interested in the case of a distant and localized
light source, for which the phototactic term, χ∇�(r), can be
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approximated by a constant self-propulsion velocity vc:

ṙ = u(r, t ) + vc, (2)

which we shall refer to as the first swimming strategy.
Motivated in part by the growing interest in engineering

microswimmers with different swimming properties, we pose
the question whether a swimmer with no information whatso-
ever about the flow and bounded to have the same mean self-
propulsion speed α ≡ |vc| as in the first strategy can increase
its chance of escaping by modulating its speed. We thus
introduce the second swimming strategy to be characterized
in this paper:

ṙ = u(r, t ) + vc + ε sin(�t )v̂c, (3)

where ε and � are, respectively, the amplitude and frequency
of oscillations in the self-propulsion speed, and v̂c is the unit
vector along the direction of vc.

For a specific flow field u(r, t ) we now describe, we shall
compare the two swimming strategies above in their capacity
to foster the transport of swimmers along v̂c. For concreteness,
we consider the classical planar cellular flow as a prototype
for a steady flow with transport barriers. Incompressibility in
dimension two allows us to write the fluid flow velocity field
in terms of the stream function

ψ f (x, y) = sin(2πx) sin(2πy). (4)

The flow field is therefore given by u(r, t ) = (ux, uy) =
(∂yψ f ,−∂xψ f ) and reads

ux = 2π sin(2πx) cos(2πy),

uy = − 2π cos(2πx) sin(2πy).
(5)

We point that the above fluid flow is prototypical for vortical
flows which are attainable in microfluidic devices [10,11].

Assuming for simplicity that the constant self-propulsion
velocity vc is along the x axis, the first and second swimming
strategies read

dx

dt
= 2π sin(2πx) cos(2πy) + α + ε sin(�t ),

dy

dt
= − 2π cos(2πx) sin(2πy),

(6)

with ε = 0 and ε �= 0, respectively. Note that the frequency
� introduced by the second swimming strategy should be
compared with some natural frequency �0 defined by the flow
field given by Eq. (5). To obtain �0, we proceed as follows.
The characteristic velocity U of the system can be taken as the
root mean square of the fluid flow velocity (since α is compar-

atively small). We have U =
√∫ 1

0

∫ 1
0 (u2

x + u2
y )dx dy = π

√
2.

Now, the characteristic length L of the system is 1/2, which is
the size of a vortex cell. Therefore the characteristic frequency
�0 of the system is �0 = 2πU/L = 4π2

√
2 � 55.83. This is

a reference frequency with which � should be compared.
The phase portrait of Eq. (6) for ε = 0 is shown in Fig. 1,

where one can observe the coexistence of trapped and escap-
ing trajectories. The first swimming strategy actually corre-
sponds to a Hamiltonian system of one degree of freedom,
with an effective stream function given by

ψ0(x, y) = ψ f (x, y) + αy. (7)

FIG. 1. Phase portrait of Eq. (6) with ε = 0. The other parameter
is α = π

5 . Both confined (blue) and escaping (green) trajectories are
shown, as well the solutions separating them (black).

Chaos is expected in the region of the separatrices when
a Hamiltonian system of one degree of freedom is subject
to a nonautonomous perturbation. This is indeed visible in a
Poincaré section for solutions of Eq. (6) in the case ε �= 0,
shown in Fig. 2. Chaos produces transport between confined
and nonconfined regions. In order to compare the strategies
(Sec. V) in their efficiency to foster transport, we first derive
expressions for the area of the set of initial conditions of
escaping trajectories for vanishing and finite ε, respectively,
in Secs. III and IV. Before that, let us discuss the validity and
limitations of our model.

B. Validity and limitations of the model

Equation (1) is a phenomenological model that neglects the
finite size of the swimmers. Real phototactic swimmers are
finite-size particles with a density that can differ from that of
the background fluid. In the biological context, both swimmer

FIG. 2. Poincaré section for solutions of Eq. (6) with finite ε. The
parameters are α = π

5 , ε = 0.3, and � = 75. Escaping trajectories
are shown in green.
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and background fluid have water as a major component.
Therefore it is reasonable to treat biological swimmers as
neutrally buoyant finite-size particles with self-propulsion.
This is also a good approximation for at least some artificial
microswimmers [12]. It has been shown that, in the absence
of swimming [χ = 0 in Eq. (1)], neutrally buoyant particles
may detach from their corresponding fluid elements [13,14]
provided that their size is sufficiently large. Therefore, a
necessary condition for the validity of Eq. (1) is that such a
detachment does not take place.

Interestingly, Sapsis and Haller [14] derived a rigorous
condition for spherical neutrally buoyant particles to move
as fluid elements. For incompressible two-dimensional fluid
flows, their condition reads

4

9St2
>

ω2

4
− det ∇u, (8)

where ω2 = (∂yux − ∂xuy)2 is the squared vorticity and St =
2
9 ( a

L )2Re is the particle’s Stokes number, given in terms of the
particle’s radius a, the characteristic length scale L of the flow,
and the flow’s Reynolds number Re. For the specific flow field
defined by Eq. (5), it suffices to consider swimmers satisfying
St < 1.7 × 10−2 for Eq. (1) to be a good effective model in
the sense discussed above.

It is worth noting that natural swimmers usually exhibit
run-and-tumble motions which are not accounted for by our
model. These motions can be addressed phenomenologically
as a stochastic term. For instance, Doussal et al. model run-
and-tumble motion on an infinite line using dichotomous
telegraphic noise [15]. On the other hand, the analytical
tools we use in Sec. IV rely on the (deterministic) Melnikov
function that allows characterizing the transport across broken
separatrices. Remarkably, a stochastic version of this function
has been recently applied [16] to address this type of transport
under colored noise. It is an interesting perspective of the
present work to combine the ideas and techniques developed
in [15] and [16] to increment the model studied herein.

Thermal fluctuations are also not addressed by the model
studied in this paper. In the context of deformable microswim-
mers in a vortical fluid flow, the effects of these fluctuations
have been studied by Tarama and collaborators [17]. These
authors add white Gaussian noise to the equation for the time
evolution of the self-propulsion velocity of the particles. They
report on a threshold noise intensity below which the phenom-
ena of capture or scattering of the swimmers by the vortex as
described by the deterministic dynamics they consider remain
robust. For their specific setup, that threshold noise intensity
corresponds to swimmers of size close to 1 mm. Rather than
using an equation of motion for the time evolution of the
self-propulsion velocity, the model considered here postulates
a self-propulsion velocity itself [cf. Eqs. (1)–(3)]. Therefore, a
possible way to incorporate thermal fluctuations in our model
would be to add a stochastic term generated by an Ornstein-
Uhlenbeck process to the right-hand side of Eqs. (1), (2), and
(3). This extension is left for future work.

Another limitation of Eq. (1) is that it does not account for
the orientational dynamics of the swimmers, which should be
reflected in more realistic models. We have ongoing work in
which we use Jeffery’s equation [18] to describe the evolution

FIG. 3. Heteroclinic connections for Eq. (6) with ε = 0 and
α = π

5 . The separatrices �1, �2, and �1 correspond to m = 1. The
separatrices �3, �4, and �2 correspond to m = 0.

of the swimmer’s orientation. Results along this line will be
published elsewhere.

III. FIRST SWIMMING STRATEGY: SELF-PROPULSION
WITH CONSTANT VELOCITY

In this section we study Eq. (6) with ε = 0, which cor-
responds to our first swimming strategy. This system has
heteroclinic trajectories and both elliptical and hyperbolic
equilibria. The equilibria of the system corresponding to the
first strategy are the singular points of the vector field

X(x, y) =
(

∂ψ0

∂y
,−∂ψ0

∂x

)
(9)

and can be calculated analytically. Because of the spatial pe-
riodicity of the solutions, it suffices to study the system in the
square Q ≡ [0, 1) × [0, 1), where there are four hyperbolic
equilibria given by

rh
m, j = (

xh
m, j, yh

m, j

) =
({

1

4
+ (−1) j

[
1

4

− 1

2π
arcsin

(
−α(−1)m

2π

)]}
mod 1,

m

2

)
, (10)

with m = 0 or 1 and j = 1 or 2. These hyperbolic equilibria
are shown in Fig. 3.

The heteroclinic connections satisfy

ψ0(x, y) = ψ0
(
xh

m, j, yh
m, j

)
. (11)

They are therefore given by

sin(2πx) sin(2πy) + αy = sin
(
2πxh

m, j

)
sin

(
2πyh

m, j

) + αyh
m, j

= αm

2
, (12)

and can be seen in Fig. 3.
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As stated before, our goal is to determine which of the
two strategies considered promotes more transport of the
swimmers in the following sense: we aim to calculate the area
of the set of initial conditions of nonconfined trajectories for
each of the strategies and check which strategy leads to the
largest area. This area will be equal to 1 (total area of Q)
minus the area of the set of confined trajectories. For the first
strategy, the latter is, due to symmetry, simply four times the
area between the separatrices �1 and �1 shown in Fig. 3.

The equations for separatrices �1 and �1 are given by

�1 : sin(2πx) sin(2πy) + αy = α

2
, 0.5 < y < 1;

�1 : y = 0.5, xh
1,1 < x < xh

1,2. (13)

From the equation for �1 we can isolate x, thereby defining
two functions x1(y) and x2(y), with 0.5 < y < ymax. These
functions are such that xh

1,1 < x1(y) � 0.25 � x2(y) < xh
1,2

and x1(y) + x2(y) = 0.5. The area of the region bounded by
�1 and �1 is then given by

A�1�1 (α) =
∫ ymax

0.5
[x2(y) − x1(y)]dy, (14)

where ymax, x1(y), and x2(y) depend on α. In order to calculate
ymax, we note that it corresponds to the y coordinate of the
intersection of �1 with the straight line x = 0.25. In other
words, ymax satisfies the inequality 0.5 < ymax < 1 and the
transcendental equation

sin(2πymax) + αymax = α

2
. (15)

We thus obtain the area of the set of initial conditions of
confined trajectories for the first strategy:

Ac
1(α) = 4A�1�1 (α). (16)

Finally, the area of the set of initial conditions of escaping
(i.e., nonconfined) trajectories is

Ae
1(α) = 1 − Ac

1(α). (17)

IV. SECOND SWIMMING STRATEGY: SELF-PROPULSION
WITH PERIODIC TEMPORAL MODULATION

In this section, we characterize the transport of swimmers
for the system corresponding to the second strategy, i.e.,
Eq. (6) with finite ε. The resulting dynamics is Hamiltonian,
with an effective stream function given by

ψ1(x, y, t ) = ψ0(x, y) + εψ̂ (x, y, t ), (18)

where

ψ̂ (x, y, t ) = sin(�t )y (19)

is called a Hamiltonian perturbation and (18) is a Hamiltonian
of one and a half degree of freedom.

A. The stochastic layer

The separatrices shown in Fig. 3 correspond to coinciding
branches of stable and unstable manifolds of different hy-
perbolic fixed points. For finite ε, these branches no longer
coincide and typically form a complex structure in phase
space, called the heteroclinic tangle, in the region formerly

occupied by the separatrices. This is usually accompanied by
the loss of integrability of nearby orbits, which wander in a
bounded region (provided that ε is small) called the stochastic
layer.

The mechanism by which the stochastic layer fosters trans-
port is related to the complex geometry of the heteroclinic
tangles and can be characterized in terms of the formation of
lobes, which are sets bounded by a segment of each of the
invariant manifolds. Since the pioneering work of Rom-Kedar
and collaborators [19,20], powerful techniques have been de-
veloped which use Melnikov approaches to compute the trans-
port with great accuracy (see [21], and references therein).
In particular, the flux across a time-evolving pseudoseparatrix
can be defined and properly quantifies transport in steady
two-dimensional flows under a time-periodic perturbation as
well as in flows under more general time dependence (cf.
Secs. 3.2–3.4 of [21]). In what follows, we use a simpler
approach based on classical separatrix-map techniques [22],
which nevertherless leads to reasonably accurate predictions
for the gain in probability of escaping, as we report in Sec. V.

B. The separatrix map

In general, the so-called separatrix map describes the dy-
namics near the separatrices when an integrable system is
perturbed. Weiss and Knobloch used the separatrix map to
analyze transport in a binary-fluid mixture due to traveling
waves [23]. It is worth noting that our unperturbed system,
Eq. (6) with ε = 0, is the same one considered in their work.

The separatrix map is obtained by considering successive
intersections, to be denoted (xn, yn), of the trajectories of the
system corresponding to the second swimming strategy with a
unidimensional surface  fixed in the phase space. Although
the map is insensitive to the specific choice of the surface,
let us follow [23] and consider for concreteness any of the
surfaces (where both x and y are taken modulo 1)

 = ±
m, j = {

(x, y)|y = yh
m, j ± ∣∣x − xh

m, j

∣∣} (20)

in a small neighborhood of the hyperbolic equilibrium
(xh

m, j, yh
m, j ). At each intersection (xn, yn), the value of the

stream function corresponding to the first strategy is calcu-
lated, i.e., we define ψn

0 = ψ0(xn, yn). The other variable used
in the separatrix map is the time tn at which the trajectory
crosses the line x modulo 1 = 0.75 − m/2 with positive ẋ
just prior to the (n + 1)th intersection with ±

m, j . Note that,
defining sn by (xn, yn) = [x(sn), y(sn)], we have tn < sn+1 <

tn+1.
Provided that ε is sufficiently small, the rate of change of

ψ0 along an actual trajectory of Eq. (6) can be approximated
by the corresponding rate along the separatrix. If we also use
the approximation tn+1 − tn � T (ψn+1

0 ), where T (h) is the
period of the stream function ψ0 = h, we obtain the separatrix
map as [22,23]

ψn+1
0 = ψn

0 + εM(tn),

tn+1 = tn + T
(
ψn+1

0

)
,

(21)

where M is the Melnikov function calculated in Appendix A.
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C. Boundary of the stochastic layer

We obtain an approximation for the period T (ψn+1
0 ) in

Appendix B. Using that result, the separatrix map (21) reads

ψn+1
0 = ψn

0 + εM(tn),

tn+1 = tn + (−1)(m+ j+1)

(
2

k

)
ln

∣∣∣∣∣ 2ψn+1
0 − αm

2k
(
x0 − xh

m, j

)(
y1 − yh

m, j

)
∣∣∣∣∣,

(22)

where k is given by Eq. (B6) and x0 and y1 are also defined
in Appendix B (see the caption of Fig. 6). To obtain the curve
separating confined trajectories of nonconfined ones, we first
use the criterion given in [22] to locate the boundaries of the
stochastic layer,

max
tn

∣∣∣∣∂tn+1

∂tn
− 1

∣∣∣∣ = 1, (23)

which corresponds to the observation that the dynamical
instability associated to separatrix chaos first manifests itself
as the stretching of the variable tn. Using Eq. (22), we obtain

max
tn

∣∣∣∣∂tn+1

∂tn
− 1

∣∣∣∣ =
∣∣∣∣∣ 4ε

k
(
2ψn+1

0 − αm
)
∣∣∣∣∣ max

tn

∣∣∣∣dM

dtn

∣∣∣∣. (24)

From the expression for the Melnikov function given in (A4),
we get

max
tn

∣∣∣∣dM

dtn

∣∣∣∣ = max
tn

|2π�Ii(α,�) sin(�tn)|

= 2π�|Ii(α,�)|,
(25)

where Ii(α,�) is defined by Eq. (A5). Using Eqs. (24) and
(25), Eq. (23) becomes

∣∣∣∣ 8επ�Ii(α,�)

k(2ψn+1
0 − αm)

∣∣∣∣ = 1. (26)

The above equality describes the following curves which form
the boundary of the stochastic layer:

ψ0(x, y) = ψ
s1
0 ≡ αm

2
+ 2ε�Ii(α,�)√

4π2 − α2
,

ψ0(x, y) = ψ
s2
0 ≡ αm

2
− 2ε�Ii(α,�)√

4π2 − α2
.

(27)

D. Measure of the set of initial conditions of escaping solutions

We now observe that, for each separatrix �i, one of the
above curves is located in the region of escaping trajectories
of the unperturbed system whereas the other one lies in the
region of confined trajectories. The latter will, in the perturbed
system (i.e., the one corresponding to the second swimming
strategy), separate escaping from confined solutions since
chaos breaks transport barriers.

FIG. 4. Theoretical boundary (red), predicted by Eq. (28), be-
tween the regions of confined (blue) and escaping (green) solutions.
The parameters are α = π/5, ε = 0.2, and � = 80.

The region corresponding to confined trajectories is there-
fore contained by one of the following curves:

sin(2πx) sin(2πy) + αy = ψ s
0 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αm

2
+ 2ε�Ii(α,�)√

4π2 − α2

or
αm

2
− 2ε�Ii(α,�)√

4π2 − α2
.

(28)
Let ζ = ψ−1

0 (ψ s
0 ) be such a curve, depicted for a specific

choice of parameters in Fig. 4. In order to calculate the area
Aζ enclosed by ζ , we proceed as in Sec. II. We obtain

Aζ =
∫ ymax

ymin

[x2(y) − x1(y)]dy, (29)

where x2 and x1 are the functions of y implicitly defined by ζ ,
and ymin and ymax are the two solutions of

sin(2πy) + αy = ψ s
0

and

− sin(2πy) + αy = ψ s
0,

respectively, for i � 2 and i � 3.
Then, the area of the set of initial conditions of confined

trajectories within the unit square is given by

Ac
2 = 4Aζ (30)

and the area of the set of initial conditions of nonconfined
trajectories within the unit square is

Ae
2 = 1 − Ac

2. (31)

We note that Ae
2 is a function of α, ε, and �.
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FIG. 5. Percentage increase of the area of the set of initial condi-
tions of nonconfined trajectories for the second swimming strategy as
compared to the corresponding area for the first swimming strategy.
The other parameter is α = π

5 . The region under the black curve is
the validity region, where the parameters satisfy inequality (32). The
two vertical dashed lines correspond to the values of � for which the
Melnikov function vanishes.

V. COMPARISON BETWEEN THE SWIMMING
STRATEGIES

We have used our theoretical results, Eqs. (17) and (31),
to compare the two strategies for different values of the
parameters α, ε, and �. In Fig. 5, the percentage variation
of the area of the set of initial conditions of nonconfined
trajectories is shown as a function of ε and � for a fixed value
of α. Note the existence of values of the parameters for which
the percentage increase exceeds 80%.

To validate our analytical results, we have also calculated,
for specific values of the parameters, the same quantities using
numerical methods. For that purpose, we have chosen initial
conditions near the separatrices �1, �2, �3, and �4 until ob-
taining the four curves separating confined from nonconfined
motion. This was performed numerically by means of the
bisection method, with an error smaller than 10−6. We have
used the bubble sort algorithm [24] to index each point of
these curves and, from that, obtained the area of the region
within each such curve using numerical integration. Finally,
by adding the area of the four regions, we have computed the
area of the set of initial conditions of confined trajectories in
the square Q. Numerical results (not shown) indicate good
agreement with our analytical predictions (deviations not
larger than 5%) for most of the parameter range depicted in
Fig. 5.

Deviations are, however, expected in two cases. First, close
to the two vertical dashed lines shown in the figure, where
the Melnikov function vanishes and analysis up to second
order is necessary, which is beyond the scope of the present
work. Second, as the parameters approach the region above
the black curve in the uppermost left part of the figure, where

the following inequality does not hold:

8�ε|Ii(α,�)| � α
√

4π2 − α2. (32)

This is a condition for the validity of our analytical results
for the second strategy. It arises because, if the perturbation ε

is large enough, the exterior boundary curve of the stochastic
region close to �1 (respectively, �2) collides with the exterior
boundary curve of the stochastic region close to �3 (respec-
tively, �4).

Given the recent advances in experimental techniques to
investigate chaotic structures in two-dimensional flows (see,
e.g., [25]), it seems reasonable to assume that an experimental
assessment of the chaotic behavior of the swimmers might be
already feasible if the relative area of the stochastic layer is
of the order of 1% or larger. As a rule of thumb for the the
parameter region depicted in Fig. 5, this occurs if ε � 0.02
provided that one is not too close to the resonant frequencies
where the Melnikov function vanishes (vertical dashed lines
in Fig. 5).

VI. CONCLUSIONS

We have compared two strategies of swimming particles.
The systems corresponding to these strategies display both
confined and escaping trajectories, and our goal here was
to determine which strategy leads to a larger probability of
escaping. For the first strategy the calculations are easier since
it corresponds to an integrable system. The second strategy is
a periodic perturbation of the first one. Using separatrix-map
techniques we could approximate analytically the boundary
of the region of escaping solutions. This has allowed us to
show that the area of initial conditions leading to nonconfined
trajectories increases as we replace the first by the second
strategy. Our main result is the analytical quantification of that
increase.

Research started in this work suggests some interesting
extensions. First, new bases of comparison between strategies
that take into account not only the area of the set of initial con-
ditions leading to nonconfined trajectories but also the average
velocity of the swimmers may be introduced and exploited.
Second, it would be interesting to investigate new strategies
for swimmers that can obtain local information about the
flow (e.g., pressure gradients). It would also be interesting to
compare all these strategies with the optimal strategy, which
can be obtained by means of variational methods and requires
global knowledge of the flow.

Finally, an important perspective of the present work is the
consideration of a nonphenomenological equation of motion
for specific types of phototactic swimmers. Such an equation
must at some point account for their finite size. Finite-sizeness
is known to render the dynamics dissipative [13,26–28],
which may lead to the formation of attractors where particles
accumulate, a phenomenon which was addressed for heavy
finite-size particles in [29,30].
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APPENDIX A: MELNIKOV FUNCTIONS

In general, if γ i(t ) = [xi(t ), yi(t )] is a parametrization of
the separatrix �i, where i = 1, 2, 3, or 4, the corresponding
Melnikov function is defined by

Mi(θ0) =
∫ +∞

−∞
{ψ0[γ i(t − θ0)], ψ̂[γ i(t − θ0), t]}dt, (A1)

where

{ψ0, ψ̂} = ∂ψ0

∂x

∂ψ̂

∂y
− ∂ψ0

∂y

∂ψ̂

∂x
(A2)

is the Poisson bracket of ψ0 with ψ̂ .
The meaning of the Melnikov function is the following:

εMi(θ ) is proportional to the signed distance, to first order
in ε, between stable and unstable manifolds which replace �i

when ε = 0 is replaced by a small but finite ε in Eq. (6).
Replacing Eqs. (7), (19), and (A2) in Eq. (A1), we obtain

the following expression for the Melnikov function:

Mi(θ0)

=
∫ +∞

−∞
2π cos [2πxi(t − θ0)] sin[2πyi(t − θ0)] sin(�t )dt,

(A3)

where, for the sake of simplicity, the dependence of Mi on the
parameters α (since both xi and yi depend on α) and � has
not been made explicit in the notation. After the substitution
t �→ t − θ0, the Melnikov function reads

Mi(θ0) =
∫ +∞

−∞
2π cos[2πxi(t )] sin[2πyi(t )] sin [�(t + θ0)]dt

= 2π [Ii(α,�) cos(�θ0) + Ji(α,�) sin(�θ0)],
(A4)

where

Ii(α,�) =
∫ +∞

−∞
cos [2πxi(t )] sin 	2πyi(t )
 sin(�t )dt (A5)

and

Ji(α,�) =
∫ +∞

−∞
cos [2πxi(t )] sin[2πyi(t )] cos(�t )dt .

(A6)
By means of a suitable choice of the initial condition γ i(0)

for each �i, we can simplify the above integrals. In particular,
we choose γ1(0) and γ2(0) as the intersections of the straight
line x = 0.25 with �1 and �2, respectively. Analogously, we
choose γ3(0) and γ4(0) as the intersections of the straight line
x = 0.75 with �3 and �4, respectively. We then obtain

Ii(α,�) = 2
∫ +∞

0
cos [2πxi(t )] sin[2πyi(t )] sin(�t )dt

and

Ji(α,�) = 0

for all positive α and �. We also obtain I1 = I4 = −I2 = −I3.

FIG. 6. Solutions of Eq. (B7) (blue) in the neighborhood of a
hyperbolic equilibrium (xh

m, j, yh
m, j ). The intersection points of one

such solution with the boundary (in red) of an open ball centered at
the equilibrium are (x0, y0 ) and (x1, y1), where the former is visited
before the latter. In black, we show the stable and unstable spaces of
(xh

m, j, yh
m, j ).

Melnikov functions are similarly defined for the horizontal
separatrices shown in Fig. 3, as for example �1. Because
of the parametrizations of these separatrices, however, the
corresponding Melnikov functions vanish identically. This
is consistent with the survival of the horizontal separatrices
when ε is switched from zero to a finite value in Eq. (6).

APPENDIX B: APPROXIMATE EXPRESSION FOR T (ψn+1
0 )

We now turn to the second equation (21). The problem to
be dealt with is that there is no analytical representation for
T (ψn+1

0 ). However, the dynamics of the trajectories in the
neighborhood of an equilibrium is very slow, meaning that
we can use a Taylor expansion of ψ0 in the neighborhood of
a hyperbolic equilibrium of the system corresponding to the
first strategy to approximate T (ψn+1

0 ) [31,32].
The Taylor expansion for ψ0 in a neighborhood of a

hyperbolic equilibrium (xh
m, j, yh

m, j ) is given by

ψ0
(
xh

m, j + u, yh
m, j + v

)
≈ ψ0

(
xh

m, j, yh
m, j

) + 1
2 [u v]∇2ψ0

(
xh

m, j, yh
m, j

)
[u v]t , (B1)

where the matrix ∇2ψ0(xh
m, j, yh

m, j ) is given by

∇2ψ0
(
xh

m, j, yh
m, j

) = (−1)(m)4π2

[
0 cos

(
2πxh

m, j

)
cos

(
2πxh

m, j

)
0

]
.

(B2)
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Using Eq. (10), we obtain

cos
(
2πxh

m, j

) = (−1) j+1

√
4π2 − α2

2π
. (B3)

Thus, the matrix in Eq. (B2) is

∇2ψ0
(
xh

m, j, yh
m, j

) = (−1)(m+ j+1)2π
√

4π2 − α2

[
0 1

1 0

]
.

(B4)

Using the above equality and Eq. (12), we can recast (B1) as

ψ0(x, y) ≈ αm

2
+ (−1)(m+ j+1)k

(
x − xh

m, j

)(
y − yh

m, j

)
, (B5)

where

k = 2π
√

4π2 − α2, (B6)

from which the approximated equations for the trajectories in
a neighborhood of (xh

m, j, yh
m, j ) are derived:

dx

dt
= (−1)(m+ j+1)k

(
x − xh

m, j

)
,

dy

dt
= (−1)(m+ j)k

(
y − yh

m, j

)
.

(B7)

Noting that the trajectory on the streamline ψ0 = H close to a
separatrix spends a time interval roughly given by T (ψ0)/2
in the neighborhood of each hyperbolic equilibrium it ap-
proaches, we can integrate the first equation (B7) to write

ln

∣∣∣∣∣x1 − xh
m, j

x0 − xh
m, j

∣∣∣∣∣ = (−1)(m+ j+1)T (H )
k

2
, (B8)

where (x0, y0) and (x1, y1) are the points where a solution of
(B7) intersects the boundary of an open ball centered at the
hyperbolic equilibrium (xh

m, j, yh
m, j ), as shown in Fig. 6. Using

Eq. (B5) to compute H = ψ0(x1, y1), we can express x1 − xh
m, j

in terms of H . Equation (B8) then becomes

T (H ) = (−1)(m+ j+1) 2

k
ln

∣∣∣∣∣ 2H − αm

2k
(
x0 − xh

m, j

)(
y1 − yh

m, j

)
∣∣∣∣∣. (B9)
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