
PHYSICAL REVIEW E 101, 052616 (2020)

Forced deterministic dynamics on a random energy landscape: Implications
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The dynamics of supercooled liquids and plastically deformed amorphous solids is known to be dominated
by the structure of their rough energy landscapes. Recent experiments and simulations on amorphous solids
subjected to oscillatory shear at athermal conditions have shown that for small strain amplitudes these systems
reach limit cycles of different periodicities after a transient. However, for larger strain amplitudes the transients
become longer and for strain amplitudes exceeding a critical value the system reaches a diffusive steady state.
This behavior cannot be explained using the current mean-field models of amorphous plasticity. Here we
show that this phenomenology can be described and explained using a simple model of forced dynamics on
a multidimensional random energy landscape. In this model, the existence of limit cycles can be ascribed to
confinement of the dynamics to a small part of the energy landscape which leads to self-intersection of state-space
trajectories and the transition to the diffusive regime for larger forcing amplitudes occurs when the forcing
overcomes this confinement.
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I. INTRODUCTION

Random energy landscapes are an ubiquitous feature of
disordered systems such as spin-glasses and structural glasses
[1,2]. One can think of the dynamics of a fluid as the dif-
fusion of a point particle on a random energy landscape
embedded in a space of dimensionality equal to the number
of particles times the number of space dimensions [3]. At
high temperatures, the dynamics is dominated by transitions
between saddles, which do not require thermal activation [4],
whereas in a supercooled liquid, or a liquid which is close
to the glass transition, the dynamics is thermally activated; it
is dominated by energy barriers which determine the rate of
relaxation [5,6]. At even lower temperatures when the system
is in a glassy state, it spends most of the time close to potential
energy minima [7]. This premise has led to increased interest
in understanding the structure of such high-dimensional land-
scapes with emphasis on characterizing the density of minima
and saddle points under different conditions [8–15]. Specifi-
cally, recent studies have shown that Gaussian landscapes and
p-spin glasses undergo a geometrical phase transition from
having an exponentially large number of minima to having
one minimum when an external potential is varied at zero
temperature [9,11,15]. When an amorphous solid is subjected
to an externally applied shear, minima become destabilized,
thus causing the system to move from one minimum to the
other, exploring different configurations which correspond to
different points on the energy landscape [16]. Theoretical
approaches based on describing the dynamics of amorphous
solids in terms of a zero- or one-dimensional energy landscape
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have been highly successful [17,18]. However, recent exper-
iments and simulations studying the response of amorphous
and granular materials [19–33], as well as other random
systems [34–37], to oscillatory shear of varying amplitudes
under quasistatic, athermal conditions, have revealed inter-
esting phenomena which cannot be explained using a zero-
or one-dimensional energy landscape [26,38–40]. The typical
response for small driving amplitudes is transient random
dynamics that ends up in a limit cycle of a period that is an
integer multiple of the driving period (this is possible since
at zero temperature the dynamics is deterministic). For large
driving amplitudes, the system typically reaches a nonrepet-
itive, diffusive, steady state [20–30]. Since one-dimensional
dynamical systems are topologically restricted, they will al-
ways reach a limit cycle when subjected to oscillatory forcing.
However, as we show in the following, in a multidimensional
energy landscape we observe a transition from periodic to
diffusive behavior in accordance with the observations from
molecular dynamics simulations and experiments.

The energy function U of a typical material (fluid or solid)
is a scalar function of the vector of coordinates which can be
thought of as a surface in the Nd-dimensional configuration
space:

U (r1, r2, . . . , rN ) =
N∑

i �= j

ui j (|ri − r j |), (1)

where N is the number of particles, ri are the position vectors
of the different particles, and ui j (x) is a two-body interaction.
Under athermal conditions, the dynamics of a periodically
forced amorphous solid is equivalent to the dynamics of a
particle moving on a rugged surface embedded in a space with
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dimensionality equal to that of the configuration space and
subjected to a periodic external force. For an amorphous solid
made of N particles, the dimensionality of the configuration
space is 3N (2N for a two-dimensional system of particles). N
in molecular dynamics simulations varies between N = 1000
and N = 64 000 or more, which means that the configuration-
space dimensionality is typically at least 2N = 2000. Since
most configurations in a liquid or an amorphous solid are
disordered, the energy function has a large number of minima,
maxima and saddles, distributed randomly in configuration
space. For this reason the energy function is called “the energy
landscape” of the system. Recently, Refs. [22,38], one of
us suggested that, at least in some models of amorphous
solids, the phenomenology of transient dynamics, limit cy-
cles of different periodicities, and a crossover into diffusive
dynamics can be explained in terms of a multidimensional
energy landscape. Here we use a specialized algorithm to
study deterministic dynamics on a random energy landscape
in relatively large space dimensions. We show that this model
can reproduce some of the dynamics observed in amorphous
solids cyclicly sheared at low temperatures, such as limit
cycles of varying periodicities and a transition from repetitive
to diffusive dynamics. We explain how this behavior emerges
naturally from the interplay between the randomness of the
landscape, the periodicity of the forcing, and the deterministic
nature of the dynamics. Finally, we discuss how the ability to
reproduce the dynamics observed in amorphous solids using a
Gaussian landscape model can lead to a better understanding
of the irreversibility transition.

II. THE MODEL

To obtain dynamics similar to those studied in molecular
dynamics simulations of amorphous solids under oscillatory
shear, we model the system as a point moving determinis-
tically on a complex potential energy landscape where the
coordinates of the particle are assumed to represent the vector
of coordinates of all the particles in an amorphous solid:

r = (x1, y1, z1, x2, y2, z3, . . . , xN , yN , zN ). (2)

The energy landscape is modeled as a random Gaussian field
ϕ(r) and the periodic shear is modeled as another random
force field whose amplitude is oscillating in time with an
angular frequency ω and amplitude A. The total force at a
point r and time t is of the form

F(r, t ) = −∇ϕ(r) + A cos(ωt ) a(r), (3)

where the first term is the gradient field stemming from the
random potential and second term is the oscillatory forcing.
In the second term a(r) is a random vector field independent
of ϕ, representing the shear direction in the random energy
landscape. The dynamics is assumed to be overdamped and
time is discretized with equal time steps of length �t . This
gives rise to the discrete equation of motion:

rn+1 = rn + �t

γ
F(rn), (4)

where γ is a friction coefficient which we set to 1. For small-
enough forcing frequencies ω, the dynamics is approximately
relaxational; if the force changes slowly, then the system stays

close to a minimum which moves due to the forcing. When
the minimum vanishes due to the forcing, the system flows to
a new minimum (a fast process) and stays close to it until the
new minimum vanishes as well. In this sense the dynamics
is similar to the dynamics in quasistatic simulations of amor-
phous solids in which a force is applied slowly and the system
stays close to the same minimum until it experiences a plastic
event and moves to a different minimum. Here we chose to
model the dynamics using the simplest form of a random field,
a Guassian random field with zero mean. A Gaussian field f
is a field whose value at each point is a random variable taken
from the multivariate Gaussian distribution:

P( f (r1), f (r2), . . . , f (rN ))

= 1

(2π )N/2|�|e− 1
2

∑
i, j f (ri )�

−1
i j f (r j ), (5)

where

�i j = 〈 f (ri ) f (r j )〉 = C(ri, r j ) (6)

is the covariance matrix defined by the covariance function
between the different spatial components of ri and r j . By
choosing different covariance functions we can change the
properties of the random field.

To allow for simulations of systems in large space dimen-
sions, we avoid creating the random field beforehand and ran-
domly draw field realizations at new points in configuration
space by keeping track of the previously visited points and
imposing appropriate correlations between each new point
and the previously visited points [41]. This enables us to
extend our simulation to higher dimensions while minimizing
computational complexity. At each time step we sample the
values of ∇ϕ(r) and a(r), which are statistically independent
random vectors with the dimensionality of the space, based on
their values in the current position rn and previous n − 1 posi-
tions visited. We first discuss the calculation of the somewhat
simpler field a(r). In order to account for the correlations,
we use a conditional probability density function to draw the
value of a(r) in the (n + 1)th step [41]:

P
(
aα

n+1|aα
1 , . . . , aα

n

) = P
(
aα

1 , . . . , aα
n , aα

n+1

)
P
(
aα

1 , . . . , aα
n

) , (7)

where we denote a(rn) ≡ an the force at step n, and the
different components aα (r) of a(r) are by assumption statis-
tically independent. Since we are sampling a Gaussian field,
the conditional probability distribution is a Gaussian whose
expectation value μn+1, and variance σ 2

n+1 are obtained from
Eq. (7) (see Appendix A). We used a Gaussian covariance
function:

C(ρ) = e− 1
2 ρ2

, (8)

where ρ = |ri − r j | and the correlation length was set to 1. In
the case of the driving force direction a(r), the components
in different Cartesian directions aα (r) are assumed to be
independent and thus the covariances are as follows:

〈aα (r)aβ (r + ρ)〉 = δαβC(ρ). (9)

For the gradient field ∇ϕ(r), the different Cartesian compo-
nents are correlated since they are derived from the same
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FIG. 1. Energy landscape sampling: A two-dimensional example of the force field generated by our simulation with driving force amplitude
A = 10 at two different times: (a) at A cos(ωt ) = 0 and (b) at A cos(ωt ) = 10. We can see that the landscape generated contains a mixture of
minima (blue) and maxima (red) surrounded by saddle points (yellow), where each minimum is surrounded by maxima and saddles which
define its basin of attraction, and every saddle point connects separatrixes from which the system may evolve into two distinct minima. As time
advances the landscape evolves smoothly in the first half period from (a) → (b) → (a) thus allowing the system to leave an initial minimum
and explore other regions of state space by changing the stability of the minima.

potential ϕ(r). This leads to the covariance function obtaining the form (see Appendix A for a detailed explanation):

〈∇αϕ(r)∇βϕ(r + ρ)〉 = ∂2C(ρ)

∂ρα∂ρβ

= (δαβ − ραρβ )C(ρ), (10)

and the probability distribution function for ∇αϕ(rn+1) is as follows:

P(∇αϕ(rn+1)|∇1ϕ(r1),∇1ϕ(r2), . . . ,∇dϕ(rn)) = P(∇1ϕ(r1),∇1ϕ(r2), . . . ,∇1ϕ(rn+1),∇2ϕ(r1), . . . ,∇dϕ(rn+1))

P(∇1ϕ(r1), . . . ,∇dϕ(rn))
. (11)

To illustrate the dynamics induced by these fields, we show
in Fig. 1 a representative realization of the field F(r) as a
function of position for an amplitude A = 10 at two different
times. In Fig. 1(a) we see the field F for A cos(ωt ) = 0 which
is F(r) = −∇ϕ(r). Minima, maxima and saddle points are
shown as blue, red, and yellow circles, respectively. In the
absence of forcing, the system flows from any given initial
position into one of the minima (the set of points leading to
a minimum is its basin of attraction). Applying a nonzero
forcing amplitude A induces a periodic perturbation to the
potential force field. In Fig. 1(b) we show how the force field
looks at A cos(ωt ) = 10. We can see that all the stable fixed
points disappeared. This means that for this configuration,
when the force reaches its maximum value, the system escapes
the initial fixed point from which it started at t = π/2ω and
can move to a different basin of attraction which leads to
a different stable fixed point. This means that as the force
oscillates, the particle explores other basins of the stationary
configuration space, where a larger forcing amplitude enables
the particle to explore more distant basins, and thus a larger
portion of configuration space. If after a complete forcing
cycle the particle returns to a previously visited basin, due
to the deterministic nature of the dynamics (this comes from
the fact that we do not “forget” previously visited sites and
the correlations), then the system settles into a limit cycle
in which it periodically revisits the same basins. In Fig. 2
we can see several trajectories on the same landscape with

the same initial condition (x1, x2) = (10, 10), where the state-
space trajectory evolves differently for different driving-force
amplitudes A. For A = 3 and A = 6 we see that the system
is confined to a limit cycle around the origin; trajectories that
correspond to larger forcing amplitudes A explore larger and
larger portions of space, and lead the system to settle into limit
cycles further away from the origin. For A = 15 the system
was able to explore even more distant parts of the state space
and did not reach a limit cycle within the limited number of
time steps used for this demonstration.

III. RESULTS

We ran simulations in d = 3 and d = 9 with a random
driving-force set to oscillate at an angular frequency ω = 1
(low enough to allow for the formation of limit cycles) and
a time step �t = 2π/70 for different driving amplitudes A.
In Fig. 3 we can see the typical behavior of the coordinates
and the squared displacement r2(t ) for d = 9 where we can
see that the system experienced a random transient which
approaches a limit cycle. This is the typical behavior observed
in simulations of model amorphous solids [20–30,42]. We
repeated the simulations for d = 3 with values of A increasing
from zero in increments of 0.4, where for each driving-force
amplitude we used n = 80 independent realizations to obtain
an ensemble average, and in each realization we ran the
simulations up to 7000 steps or until the system reached a limit
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FIG. 2. Effect of increasing the forcing: Examples of state-space
trajectories for five different simulations with different maximal
forcing amplitudes A on a two-dimensional landscape generated by
our model, all starting from the same point (x1, x2) = (10, 10) in
state space. For A = 3 and A = 6 the system is confined to a limit
cycle around the origin, whereas trajectories that correspond to larger
forcing amplitudes explore larger and larger portions of space, and
lead the system to settle into limit cycles further away from the
origin. In this demonstration, for A = 15 the system was able to
explore even more distant parts of the state space and did not reach a
limit cycle.

cycle. To better understand the dynamics we evaluated r2(t ) at
zero forcing (after each driving-force period) and calculated
the mean-squared displacement (MSD) 〈r2(t )〉. We observe
that for low-enough amplitudes the system always evolves
into a limit cycle, in which the displacement is constant.
However, for large-enough amplitudes we observe diffusive
dynamics where 〈r2(t )〉 ∼ t [Fig. 4(a)]. Furthermore, the
mean transient time τ , the time required to reach a limit
cycle, increases with the driving force amplitude and the
increase is consistent with a power law divergence |A − Ac|−α

where in d = 3, Ac = 26.0 ± 0.4 and α ≈ 6.23 [Fig. 4(c)].
The simulations were also repeated in d = 9 [Figs. 4(b) and

4(d)] with Ac = 2.6 ± 0.1 and α ≈ 3.6, where we increased
the maximum number of steps to 70,000 in order to obtain
a more accurate characterization of the transition. As was
mentioned above, the transition from periodic to diffusive
behavior and the dependence of the critical amplitude on the
system size are consistent with the phenomenology observed
in simulations and experiments of cyclicly sheared amorphous
solids [20–30].

Figures 5(a) and 5(d) illustrate how transients and limit
cycles arise in a deterministic system with a rough energy
landscape. In Fig. 5(a) we can see r2(t ) of a trajectory ending
in a limit cycle, and Fig. 5(d) shows its spatial trajectory (the
simulation was performed in three dimensions). The latter
shows that the system performed a random trajectory which
entered a limit cycle once the trajectory intersected its own
basin of attraction. Similarly to Fig. 2, the point at which
self-intersection occurs is affected by the external forcing and
larger forcing allows the system to explore larger regions of
the configuration space which causes the system to travel fur-
ther before the trajectory intersects its own basin of attraction
which leads to longer transients. For large-enough forcing,
it seems that the available state space is large enough that
the probability to self-intersect becomes negligible and the
system keeps diffusing forever. Another effect of the increase
in available state space is that close to the critical point, the
limit cycles can self-intersect after more than one forcing
period. This has been observed in particle simulations, where
it was shown that for forcing amplitudes close to the critical
points, limit cycles can have periodicity which is a multiple of
the periodicity of the external forcing [21,22,25]. Here we also
observed this behavior, with two selected realizations shown
in Fig. 5: In Figs 5(b) and 5(c) we can see limit cycles with
periodicity 2T and 3T , respectively. Both were obtained for
a forcing amplitude A = 7.6 and space dimension d = 3. In
Figs. 5(e) and 5(f) we can see the same limit cycles in three
dimensions, where the parts of the trajectories that correspond
to different forcing cycles are shown in different colors. This
illustrates that the reason for a period larger than one is that
the trajectory self intersects only after two or three forcing
periods. In the next section we will compare these results to a
molecular dynamics simulation of an amorphous solid under
oscillatory shear.

FIG. 3. Transient in many dimensions: Time evolution of r2(t ) in nine dimensions (thick black line), and the position in each coordinate xk ,
where k = 1, . . . , 9 (thin lines). The coordinates initially exhibit random dynamics but end in a periodic state which is easily distinguishable
from the random transient.
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(a)

(c) (d)

(b)

FIG. 4. Transition from periodic to diffusive dynamics: Time evolution of the mean squared displacement (MSD) sampled after each period
of the driving force in (a) three dimensions averaged over 80 realizations and (b) nine dimensions averaged over 40 realizations for different
driving-force amplitudes. Realizations under low driving-force amplitudes evolve into a limit cycle (visible as a flattening of the MSD), where
the time it takes to reach a limit cycle is increased (visible by the growing length of the continuous lines) up to the point in which the system
does not reach a limit cycle in the peak number of steps [equivalent to 630 simulation time units (STU)]. Mean transient time as a function of
|A − Ac| exhibiting power-law divergence (fitted curve) for d = 3 (c) and d = 9 (d). Insets: Same data in log-log scale.

IV. COMPARISON TO MOLECULAR DYNAMICS
SIMULATIONS

We further compare our results to two-dimensional
molecular dynamics (MD) simulations of an amorphous solid
prepared from a binary mixture and subjected to damped
dynamics and oscillatory strain of the form:

γ = A sin(ωt ) . (12)

where ω is the driving frequency. The simulations were kept
at a very low temperature using a thermostat and the friction
coefficient was large in order to minimize thermal effects.
For further simulation details see Appendix C. To study the
dynamics of the system as a function of the maximal shearing
amplitude A, we follow the trajectory of one particle, which
can be thought of as a projection of the vector of coordinates
of the system into a two-dimensional plane. We observe that
similarly to the landscape model, the particle and the system
reach a limit cycle after a transient (Fig. 6). In Fig. 6(a) we can
see the trajectories obtained for different amplitudes A. Ini-
tially, increasing A does not change the dynamics significantly
and the system reaches similar limit cycles. However, for
large-enough A the particle escapes into a different limit cycle

that was not in the same region of state space as the one ob-
tained previously. If we increase A further, then the system still
reaches a similar limit cycle but for a certain A the limit cycle
changes again. For significantly larger maximal strain ampli-
tudes, the system reaches a limit cycle only after a long tran-
sient [Fig. 6(b)]. For the long transients, the system diffuses
a distance larger than the particle diameter which precludes
the possibility that the observed effects are due to caging.
The similarities in the results lead us to suggest that a similar
mechanism is responsible for the formation of limit cycles in
both amorphous solids and the energy-landscape model.

V. DISCUSSION

In this work we suggest a simple explanation for the
phenomenology observed in the irreversibility transition in
amorphous solids under oscillatory shear by studying the
dynamics of a deterministic vector of coordinates exploring
a random energy landscape. Specifically, we are interested in
the appearance of limit cycles of different periodicities, in the
transients leading to these limit cycles and in the transition
from periodic to diffusive dynamics.
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(a) (b) (c)

(d) (e) (f)

FIG. 5. Limit cycles and state-space trajectories: Several trajectories that evolved into limit cycles: [(a) and (d)] A trajectory forming a
limit cycle of period T (in maroon) after a transient (in blue), where (a) shows the r2(t ) of the trajectory and (d) shows the three-dimensional
trajectory (red dot represents the initial condition). [(b) and (e)] A trajectory reaching a limit cycle of period 2T where (b) shows r2(t ) during
the transient (blue) and the limit cycle (maroon and yellow) and (e) shows the three-dimensional trajectory during a cycle. The maroon part
is the trajectory during the first forcing period, while the yellow part is the trajectory during the consecutive forcing period. Note that the
trajectory self-intersects only after the second forcing period. [(c) and (f)] A limit cycle of period 3T where (c) shows r2(t ) during the transient
(blue) and the limit cycle (maroon, yellow and cyan) and (f) Shows the three-dimensional trajectory where each color represents a different
forcing period. In all cases the driving force amplitude was A = 7.6 and the dimension was d = 3.

Since the dynamics is deterministic, once the basin
of attraction of the trajectory self-intersects, the system
enters a periodic trajectory. Here the differences
between one-dimensional and multidimensional energy
landscapes become important. Dynamics on a deterministic
one-dimensional landscape is trivial and will always reach a

fixed point. However, since our system is nonautonomous and
periodically driven, it is equivalent to an autonomous system
with a phase variable φ whose dynamics is described by an
equation of motion φ̇ = ω, where φ is defined modulo 2π . For
a one-dimensional system the dynamics is thus confined to an
infinite cylinder since the spatial coordinate is unbounded but

FIG. 6. Molecular dynamics simulations: (a) Change in the state-space trajectories of one particle following a gradual increase in the
maximal strain amplitude. Here xk and yk are the coordinates (normalized by the system size L) of the k = 500 particle out of N = 1024. (b) y
coordinate of one of the particles in a MD simulation subjected to oscillatory shear with A = 0.07, ω = 0.0157. The coordinate shows transient
random dynamics and the settling into a limit cycle with a periodicity 2T (red dot represents the initial condition).
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the phase coordinate is compact. In this case, assuming that
the dynamics in the x coordinate is random but unbiased it
will always self-intersect and form a period-one limit cycle.

However, for d = 3 and d = 9, we have shown that a
simple energy landscape model with Gaussian statistics can
reproduce many of the distinct behaviors observed in amor-
phous solids such as limit cycles of different periodicities and
a transition from asymptotically periodic to asymptotically
diffusive dynamics. The model provides an appealing expla-
nation for the observation of limit cycles with periods nT , n ∈
N—when the forcing is small, the vector of coordinates is
limited to a small part of the energy landscape and the trajec-
tory self-intersects after a short transient and forms a limit cy-
cle. However, when the amplitude of the forcing increases, the
volume explored by the vector of coordinates (here we think
of it as a point in state space) increases and it takes a longer
time for its trajectory to self-intersect. This idea is supported
by the similarity of Figs. 2 and 3, which show the results of our
model, to the results of the molecular dynamics simulations
shown in Fig. 6(a) which provides a strong indication that this
is indeed the mechanism also in the amorphous solid, even
though the amorphous solid has a much more complex energy
landscape. This notion can also explain why cycles with
periodicities n > 1 occur: When the accessible volume is large
but bounded, and the space dimension is larger than 1, the
trajectory may cross itself after more than one cycle as is seen
in Figs. 5(b) and 5(c) for d = 3. The appearance of a transition
from asymptotically periodic to unbounded, diffusive dynam-
ics (Fig. 4) which involves a diverging timescale with a power-
law divergence, together with the appearance of periods larger
than 1 (Fig. 5), which are also observed in MD simulations
[21,25,26], hint that these aspects of the irreversibility transi-
tion in amorphous solids can be explained in terms of a forced,
deterministic, dynamics on a random energy landscape.

The observation that many aspects of the dynamics are
captured by a model of dynamics on a random energy land-
scape with Gaussian statistics is encouraging since the re-
sults obtained in three dimensions are qualitatively similar to
the results obtained in higher dimensions, which may help
visualize and obtain a deeper understanding of the relevant
features of energy landscapes which are responsible to the
irreversibility transition. Furthermore, the fact that the tran-
sition can be reproduced, at least qualitatively, on a Gaussian
surface is encouraging since analytical calculations are much
more tractable on an energy landscape with Gaussian statistics
than on other, more complex landscapes. Specifically, that the
geometrical phase transition studied analytically in Gaussian
surfaces subjected to forcing [9,15] may be related to the
transition from having many limit cycles to an unbounded
diffusive dynamics observed here.
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APPENDIX A: ALGORITHM DETAILS

In our algorithm we assume that the Gaussian fields ϕ(r)
and a(r) are normalized and centered around zero:

〈aα (r)〉 = 〈ϕ(r)〉 = 0, (A1)

and the covariance function is chosen to be a Gaussian of the
form:

〈aα (ri )aβ (r j )〉 ≡ Cαβ (ri, r j ) = δαβ e− 1
2 |ri−r j |2 , (A2)

〈ϕ(ri )ϕ(r j )〉 ≡ C(ri, r j ) = e− 1
2 |ri−r j |2 , (A3)

where α = 1, . . . , d is an index of the different Cartesian
components.

1. The forcing field: a(r)

In order to sample the force at point rn+1 visited at the
(n + 1)th step when the forces at the previous n steps were
already determined, we calculate the conditional probability
distribution given by Eq. (7). Since the forces at all the
previous steps were already determined, the denominator is
already known. We therefore calculate the numerator given
by the probability density function:

P
(
aα

1 , . . . , aα
n+1

) = e
− 1

2

∑
i, j aα

i

[
�(n+1)

]−1

i j
aα

j√
(2π )(n+1)|�(n + 1)|

. (A4)

Here and in the following, aα
i ≡ aα (ri ). In the following, we

will also drop the index α for convenience and will relate to
a as a scalar which is one of the Cartesian components of a.
Note also that while an is the value of a in the nth time step,
a(n) is a vector whose elements are all the sites visited up
to step n: a(n) = (a1, a2, . . . , an). The matrix �(n + 1) is the
covariance matrix after n + 1 steps which can be written in
the form:

�(n + 1) =
[

�(n) b(n)
bT (n) c

]
, (A5)

where the matrix �(n) is the (n × n) covariance matrix after
n steps, b(n) is an n-vector defined by the covariance between
the point rn+1 and all the previously visited points (ri, i =
1, 2, . . . , n), or bi(n) = C(ri, rn+1), and c = C(rn+1, rn+1) ≡
1. �(n + 1) can be inverted blockwise [43] to find �−1(n + 1)
in terms of the n-step matrices and vectors:

�−1(n + 1) =
[
�−1(n) + �−1(n)b(n)s−1(n)bT (n)�−1(n) −�−1(n)b(n)s−1(n)

−s−1(n)bT (n)�−1(n) s−1(n)

]
, (A6)

here s(n) is as follows:

s(n) ≡ c − bT (n)�−1(n)b(n). (A7)
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Since �(n) and b(n) are known we can use Eq. (A6) to calculate �−1(n + 1) and find both numerator and denominator of Eq. (7).
To extract from it a probability distribution for an+1 we complete the square inside the exponent in Eq. (A4):

aT (n + 1)�−1(n + 1)a(n + 1) = {
an+1 − aT (n)�−1(n)b(n)

}
s−1(n)

{
an+1 − bT (n)�−1(n)a(n)

} + aT (n)�−1(n)a(n)

the numerator is now a product of two terms of the form:

e
−

(
aα

n+1−μα
n+1

)2

2σ2
n+1 e−aT (n)�

−1
(n)a(n), (A8)

where μn+1 and σ 2
n+1 are as follows:

μn+1 = aT (n)�−1(n)b(n) (A9)

and

σ 2
n+1 = c − bT (n)�−1(n)b(n). (A10)

However, the second exponential cancels with the denomina-
tor and we get that the probability distribution function for the
force component aα in the (n + 1)th step is as follows:

P
(
aα

n+1|aα
1 , . . . , aα

n

) = 1√
2πσn+1

e
−
(

aα
n+1−μα

n+1√
2σn+1

)2

, (A11)

which we use to find the value of aα
n+1 and calculate the

position at the (n + 1)th time step.

2. The gradient field: ∇ϕ(r)

In our algorithm we do not evaluate the potential field
directly but rather the conservative force field ∇ϕ(r). For a
gradient field, the different components of the vector are not
statistically independent and thus the covariance function is
modified to take this into account. We first note that:

�αβ = 〈∇αϕ(r)∇βϕ(r + ρ)〉 = ∂2C(ρ)

∂ρα∂ρβ

, (A12)

substituting a Gaussian covariance function, this leads to the
following:

〈∇αϕ(r)∇βϕ(r + ρ)〉 = (δαβ − ραρβ )C(ρ). (A13)

Therefore, the covariance for the gradient term mixes the
different spatial components of the force which leads to
appropriate alterations of Eq. (A6), Eq. (A9), and Eq. (A10)
which are then used to find the mean and variance for the
gradient field from the probability distribution, Eq. (11).

APPENDIX B: NUMERICAL LIMITATIONS AND
APPROXIMATIONS

A potential problem in our algorithm is that the covariance
matrix � becomes numerically ill-conditioned when two pre-
viously visited points are close-by. To overcome this difficulty
we use a singular-value decomposition (SVD) for calculating
the inverse of the covariance matrix. When � is invertible,
the SVD method gives the exact inverse. When the matrix
becomes ill conditioned, we set a lower cut-off value for the
small singular values and when they fall below it (e.g., 10−6

in our simulation) we set the corresponding singular values of
�−1 to zero. We want to emphasize that this approximation
is required due to limitations of the numerics (the problem
of calculating eigenvalues for a matrix with a large condition

number) and that the singularity of �−1 should not affect the
analytical calculation as we will show below for a simple
one-dimensional example.

In the following we analytically estimate the deviation
between the analytical and numerical solution that uses the
aforementioned procedure for a simple geometry. To simplify
the calculation, we choose only three points from a hypothet-
ical trajectory (Fig. 7). First consider two adjacent points at
distance ε � 1 apart (points 1 and 2 in Fig. 7) and assume
that they were previously visited. The covariance matrix for
these two points will be ill conditioned and will be written as:

� =
[

1 f (ε)
f (ε) 1

]
≈

[
1 1 + ε2

2 f ′′(0)

1 + ε2

2 f ′′(0) 1

]
,

(B1)

where f ′′(0) = 1 for the covariance function that we chose. In
order to evaluate the force at a third point at distance � from
the first two points (point 3 in Fig. 7) we need the covariance
vector b for the third point which will take the form:

b =
[

f (�)
f (� + ε)

]
≈

[
f (�)

f (�) + f ′(�)ε

]
. (B2)

The inverse of � is then calculated analytically:

�−1 =
[
− 4

4ε2+ε4
4+2ε2

4ε2+ε4

4+2ε2

4ε2+ε4 − 4
4ε2+ε4

]
. (B3)

We need to make sure that the result is not divergent in the
conditions of a limit cycle in which ε → 0. Starting with
calculating σ [Eq. (A10)], we need to calculate bT �−1b, and
in the limit of ε → 0 we get

lim
ε→0

{
bT �−1b

} = f (�)2 − f ′(�)2, (B4)

which is not divergent. We can treat μ in a similar way
[Eq. (A9)]. Since the force at each point is determined by μ

FIG. 7. A cartoon illustrating a trajectory and the three points on
it used in the definitions in the analytical derivation of Eq. (B1) and
Eq. (B2).
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FIG. 8. A comparison between the exact and approximate calcu-
lation of σ 2 [Eq. (A10)] in the limit of ε → 0, the exact analytical
calculation obtained by Eq. (B4) (blue) and the SVD solution ob-
tained by Eq. (B9) (magenta). The inset is an enlargement of the
region of small � relevant to the case of a limit cycle.

and σ alone, and since σ → 0 as ε → 0 (and thus a2 → a1 as
ε → 0), we can expand a2 to the first order of ε and get

a =
[

a1

a2

]
≈

[
a1

a1 + a′
1ε

]
, (B5)

thus μ is also nondivergent in the limit of ε → 0.
To test the accuracy of our simulation we employ the SVD

method on � given by Eq. (B1). Since � is symmetric, it can
be decomposed as � = PDPT , where D is a diagonal matrix
containing the singular values of �. We get

D−1
SVD =

[ 2
ε2 0
0 2

4+ε2

]
, (B6)

meaning that in our simulation for ε < 7 × 10−4 we will get

D−1
SVD =

[
0 0
0 2

4+ε2

]
, (B7)

and therefore

�−1
SVD =

[
1

4+ε2
1

4+ε2

1
4+ε2

1
4+ε2

]
, (B8)

and in the limit of ε → 0 we get

lim
ε→0

{
bT �−1

SVDb
} = f (�)2, (B9)

which deviates from the result of the analytic calculation
[Eq. (B4)] by f ′(�)2. We have tested the validity of our algo-
rithm under the expected conditions when the time steps are
very small or ε → 0, and showed that there is no singularity
in either μ or σ , thus making our calculation mathematically
valid. However, the effects of our numerical approximations
are manifested in a deviation from the analytic solution. In
Fig. 8 we see how σ 2 is affected by our approximations, where
in the inset we can see that for small values of � the differences
are small. Since in a real setup, which contains hundreds
of points, the covariances decrease exponentially with the
distance, we expect � to be either small or dominated by the
covariances with closer points (assuming that the time steps
are small enough). In both cases, we regard the inaccuracy
due to the approximation as a numerical noise.

APPENDIX C: MOLECULAR DYNAMICS SIMULATIONS

We simulated N soft disks [44] which were chosen to be
a 50:50 binary mixture of small and large particles where
the large particles were 1.4 the size of the small particles.
Using a binary mixture in MD simulations is a necessity in
order to avoid crystallization, and a 1:1.4 ratio between small
and large particles is used to impose geometrical frustration,
i.e., this ratio does not allow for a formation of a crystal
lattice [45,46]. This setup is widely used in experiments
and industrial applications when preparing bulk-metallic glass
alloys [47,48]. The soft-disk interaction potential was chosen
to be harmonic:

ui j (ri j ) =
{ 1

2 k(ai + a j − ri j )2, ri j � ai + a j

0, ri j > ai + a j
,

where ai = 1 or 1.4 is the particle radius. We used damped
dynamics with an oscillatory drive:

mi
dvi

x

dt
= −∂U

∂xi
− 2π f A cos(2π f t ) − ηvi

x, (C1)

mi

dvi
y

dt
= −∂U

∂yi
− ηvi

y, (C2)

xi = dvi
x

dt
+ A sin(2π f t ), (C3)

yi = dvi
y

dt
, (C4)

which were coupled with the Lees-Edwards boundary condi-
tions [49]. The parameters mi, k, η, and f were fixed mi = 1,
k = 300, η = 1, and f = 0.0025 (in Lennard-Jones units)
whereas the drive amplitude A was used as a varying control
parameter. The equations of motion were solved using the
leap-frog algorithm and the dynamics was thermostated using
the Berendsen thermostat [50].
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