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Motile dissenters disrupt the flocking of active granular matter
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We report flocking in the dry active granular matter of millimeter-sized two-step-tapered rods without an
intervening medium. The system undergoes the flocking phase transition at a threshold area fraction of ∼0.12
having high orientational correlations between the particles. However, the one-step-tapered rods do not flock
and are used as the motile dissenters in the flock-forming granular matter. At the critical fraction of dissenters of
∼0.3, the flocking order of the system gets completely destroyed. The variance of the system’s order parameter
shows a maximum near the dissenter fraction f ∼ 0.05, suggesting a finite-size crossover between the ordered
and disordered phases. Our experiments bring out the disruption of the cooperative behavior in heterogeneous
active systems with possible implications in real-life examples.
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I. INTRODUCTION

The effect of static defects or motile nonaligning agents
(called dissenters [1]) on the flocking or other collective mo-
tions of a group is a subject of recent interest in model systems
and simulations [2–16]. Disordered environment in the form
of physical obstacles is found to alter the group’s motion
dramatically by bringing spatial heterogeneity into the system.
Laboratory experiments using colloidal rollers show that the
obstacle critical fraction to destroy the flocking increases
monotonically with the roller packing fraction. The ratio of
the critical obstacle packing fraction to the roller packing
fraction was rather high (4:1) [6]. In comparison, the effect
of nonaligning self-propelled particles on the global polar
order has been studied only numerically [1,17]. Studying an
agent-based model of finite swarms with local aligning and
cohesive interactions between neighbors and a subpopulation
of nonaligning agents (called motile dissenters that do not
align with their neighbours and do not have a defined internal
preferred velocity) within the group, Copenhagen et al. [17]
have shown that at the dissenter critical fraction of ∼0.5 the
system goes to the nonswarming state. Later, focusing on the
case where the self-propelled agents only experience repulsive
interactions due to volume exclusion, in addition to alignment,
Yllanes et al. [1] have reported that even a small concentration
of dissenters (∼0.1) disrupts the flocking state completely.
However, to date, there are no experiments to study the role
of dissenters on the flocking behavior, a motivation for our
present study.

We have used two types of brass particles having different
degrees of polarity (Fig. 1). Our experimental observations
are as follows: (i) Flocking in a granular medium of two-
step-tapered polar active agents (called aligners) is observed
above a certain area fraction without any intervening medium.
(ii) One-step-tapered polar active agents (called dissenters) do
not flock even at a very high area fraction. (iii) The mixed
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systems of flock-forming aligners and dissenter particles show
flocking with a low fraction of dissenters. However, above
a critical dissenters’ fraction, the mixed system does not
flock, similar to the simulation results [1,17]. We quantify
orientational correlations and other measures as the fraction
of dissenters is increased.

II. EXPERIMENTAL DETAILS

Our active granular material is a collection of macroscopic
polar brass rods vibrated vertically by a magnetic shaker (LDS
V406-PA100E). The aligner rods are 4.5 mm long (denoted
by La), with the diameter tapered in two steps from 1.1 mm
at the thick end to 0.7 mm at the thin end. On the other
hand, the dissenter rods are 3.5 mm long, with the diameter
tapered in one step from 1.1 mm at the thick end to 0.7 mm
at the thin end. Our monolayer of rods is confined in the
1.2-mm gap between the flower-shaped experimental cell and
its top glass lid (see Supplemental Material [18] for details
about the setup calibration). We keep the shaker oscillation
amplitude (A = 0.025 mm) and frequency (n = 200 Hz) fixed
during our experiments. The nondimensional shaking strength
[(2πn)2A/g, where g is gravity] is 4.0 (also measured by
the two orthogonally attached MPU-6050 accelerometers).
Both types of rods imitate self-propulsion by transducing
the vertical vibrations into horizontal motion, in the tail-to-
head direction [19–22]. A Redlake MotionPro X3 camera is
used to capture images at 30 fps (frames per second) during
studies with a single particle and at 1 fps during studies with
the collection of particles. Fiji (ImageJ) is used for image
analysis [23] (see Supplemental Material [18] for details).

III. RESULTS

The aligner and the dissenter are polar particles with shape
asymmetry and hence are self-propelling due to vertical vi-
brations of the platform. Figure 1 shows the single-particle
dynamics captured at 30 fps, of the aligner and the dissenter,
present alone in the cell (Supplemental Material [18], Movies
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FIG. 1. The single particle in the cell. Distributions of U‖ and U⊥ (velocity components along and orthogonal to the polarity direction,
respectively) (a) of the two-step-tapered polar active rod, called the aligner, and (b) of the one-step-tapered polar active rod, called the dissenter,
are shown. The respective rod images are shown. Solid curves are Gaussian fits with peak positions of ∼1.0 and 0.0 cm/s in panel (a) and
∼−0.2 cm/s (∼resolution limit) and ∼0.0 cm/s in panel (b). Dotted lines represent zero velocity. (c) Rotational autocorrelation functions
[Cr (τ )] vs the time gap (τ ). (d) Distributions of the angular displacement (dθ , measured with a time gap of 0.03 s) for the aligner (black
symbols) and for the dissenter (red symbols) are shown. The dotted line in panel (c) is at Cr (τ ) = 1/e. The shaking strength � = 4 and the
shaking frequency n = 200 Hz are fixed during our study.

S2 and Movies S3, respectively). Velocity components U‖ and
U⊥ are calculated by taking the projection of the laboratory
frame velocity parallel to the particle polarity direction and
orthogonal to the polarity direction, respectively. The statisti-
cal anisotropy of the dynamics is evident from the probability
distributions of U‖ and U⊥ for both the particles [Figs. 1(a)
and 1(b)], which show a much greater dispersion along the
rod axis direction than transverse to it. For the aligner, the U‖
component shows a maximum in the probability distribution
P(U‖) at ∼1 cm/s, whereas P(U⊥) has a peak close to zero.
For the dissenter, P(U‖) shows a peak at ∼−0.2 cm/s, close
to the resolution limit, whereas P(U⊥) is peaked close to
zero. Both velocity components of aligners and dissenters
show Gaussian behavior. Using the orientation [θ (t )] of the
particle polarity direction with respect to the laboratory frame
x axis at time t , we calculate the rotational autocorrelation
function Cr (τ ) = 〈cos [θ (t + τ ) − θ (t )]〉t for each particle,
which is a measure of the rotational noise in the particle
motion [Fig. 1(c)]. The very short autocorrelation time of the
dissenter (∼0.03 s) implies a very short persistent length. As
this correlation time is at the limit of inverse of the frame rate
to capture the images, we cannot measure the directed motion

of the dissenters precisely and hence the P(U‖) is centered
close to the origin. On the other hand, the aligner shows
persistent motion with large correlation time (∼0.50 s) and
hence the P(U‖) peaks at finite U‖. The angular displacements
of both the particles (measured over the time interval of 0.03 s)
are similar as shown in Fig. 1(d).

Now we disperse the required number of particles in the
clean cell and keep the shaker on for 500 s to observe the
onset of the flocking transition over time (captured at 1 fps).
We repeat this procedure three times with a given set of
particles to get good statistical estimations. We first present
the collective behavior of only aligners and the collective
behavior of only dissenters before presenting the effect of
dissenters on the flocking transition.

The collective behavior of the system with only aligners
(Supplemental Material [18], Fig. S3 and Movies S4, S5, and
S6) is markedly different from that of the system with only
dissenters (Supplemental Material [18], Fig. S4 and Movies
S7 and S8). At low area fraction φ = 0.07 (φ = area covered
by the two-dimensional projections of the rods/flower area),
aligners show a completely isotropic disordered state. Above
a threshold area fraction (φ = 0.12), they form a dynamically
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steady flock where most of the rods are aligned along the
flocking direction. We quantify (following Ref. [24]) the
flocking order for each time frame by resolving the in-plane
rod’s orientation ni into local polar-coordinate components,
with the coordinate center located at the flower center, and
define (ni · ri, ni × ri) ≡ Pi, where ri is the unit radial posi-
tion vector of the ith particle. For each image frame, we then
calculate P ≡ |〈Pi〉|, averaged over all particles. Figure 2(a)
shows the growth kinetics of the measured flocking order
parameter [P(t )] for the system having only aligners for three
area fractions. For φ = 0.07, the system shows a completely
isotropic disordered state with P(t ) fluctuating near zero,
implying disordered state. For φ = 0.20 and 0.30, aligners
form a dynamically stable flock within 300 s. The order
parameter grows from a random configuration and reaches a
steady saturation value close to 1. The average steady-state
order parameter (〈P〉) is calculated by taking an average of
P over the steady-state time frames and then over the three
repeated experiments for each φ [Fig. 2(b)]. The error bar is
the standard deviation in 〈P〉 over three repeated experiments
for the same φ. The same calculation strategy is adopted for
all 〈P〉 presented in the subsequent plots. For all the area
fractions below 0.13, aligners do not form a dynamically
stable flock. Aligners form a dynamically stable flock for the
area fractions 0.13 � φ � 0.40. The smooth variation in order
parameter above φ = 0.12 is due to the finite system size
effects as the discontinuous flocking transition is observed
in the finite but larger system sizes in simulations [25]. For
0.40 < φ � 0.70, the randomly running active matter con-
densates to a large single cluster of particles and eventually
goes to a dynamically jammed state [26]. For φ > 0.70, we
observe spatially restricted motion. The condensation and the
dynamical jamming are not pursued in this work. We now
explore how the orientational correlation function grows as
φ increases. In Fig. 2(c) we plot the average steady-state ori-
entational correlation function G(r) = 〈Pi(0) · P j (r)〉all pairs, a
measure of the probability that two rods separated by distance
r are pointing in the same direction, and the data is averaged
over various pairs in the steady-state frames and in the three
repeated experiments. We observe that above φ = 0.12 the
system shows long-range correlation. On the other hand,
systems with only dissenters do not show flocking up to the
highest volume fraction (φ = 0.78). The order parameter P(t )
is low [<0.1, see Supplemental Material [18], Fig. S4(e)].
The rotational autocorrelation function (averaged over all the
dissenters) 〈Cr (τ )〉 decays fast for φ < 0.70, but for φ =
0.78 the particles have spatially restricted motion and hence
the 〈Cr (τ )〉 retains the high value up to large delay times
[Supplemental Material [18], Fig. S4(f) and Movie S8].

We next discuss the effects of dissenters on the flocking.
Figure 3 broadly summarizes our experimental findings with
the aligner-dissenter mixed system. In the mixed system, the
area fraction of aligners and the area fraction of dissenters
are denoted by φa and φd, respectively (φ = φa + φd). The
trapping and sorting study with these active particles (at low
φ) and having a trap in the cell is reported elsewhere [22]. At
first, to see the effect of dissenters on the flocking behavior
of aligners, dissenters are added with an increasing number
to increase the total φ, keeping the aligners’ area fraction
constant (φa = 0.28), and the mixture is dispersed in the cell

(a)

(c)

(b)

t

FIG. 2. The system with only aligners. The error bar with each
data point represents the standard deviation of the quantity in three
repeated experiments. (a) The flocking order parameter [P(t )] vs time
(t) is shown for three different area fractions (φ). (b) The average
steady-state value of P(t ) (〈P〉, averaged considering steady-state
frames and then over the three repeated experiments) is plotted
against φ. (c) The average orientational correlation function [G(r)]
vs the interparticle separation (r/La, where La is aligner’s length) is
plotted for different φ. For the given φ and r, G(r) is averaged over
satisfying pairs in the steady-state frames and then over the three
repeated experiments. The red arrow is towards increasing φ.
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FIG. 3. The mixed system having aligners + dissenters. Error bars are calculated in the same way as in Fig. 2. (a) 〈P〉 vs φ is shown
along with the plot from Fig. 2(b). φ = φa + φd, where φa is the aligners’ area fraction and φd is the dissenters’ area fraction. (b) For four
different fixed φ, 〈P〉 vs φa plots along with the plot from Fig. 2(b). The dissenter fraction f = φd/φ was increased until the disordered state
was reached. (c) 〈P〉 normalized with respect to the maxima are plotted vs f for all the mixed systems. (d) For φ = 0.35, the variance of P in
the steady state is plotted vs f . The red curve is the guide to the eyes, indicating a maximum near f = 0.05. (e) For φ = 0.35, G(r) vs r/La for
different f are shown, without including the dissenters in the calculation. The red arrow is towards increasing f . (f) For φ = 0.35, the value of
G(r) at r = 2La is plotted vs f .
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to follow the dynamics in time. The presence of dissenters
disrupts the flocking [Fig. 3(a)], and the system shows reduced
order parameter 〈P〉 with increasing φ (as we increase φd)
(Supplemental Material [18], Movie S9). All error bars in
Fig. 3 are the standard deviations over three repeated ex-
periments. At a higher φd, it shows completely disordered
motion (Supplemental Material [18], Movie S10). We note
that the mixed system phase segregates at the high value of φ

(�0.58) and shows spatially restricted motion of the particles
for φ � 0.70.

Now we keep the total φ fixed and increase the dissenters’
fraction in the system ( f = φd/φ) by substituting some align-
ers with dissenters in the system (Supplemental Material [18],
Movies S11 and S12). In Fig. 3(b), we plot 〈P〉 vs φa with
increasing f for different fixed values of φ until the system
shows the completely disordered state. Black solid squares
represent the same data as in Fig. 2(b), where we have φa = φ

as φd = 0. Compared to the system with pure aligners, the
crossover from ordered to disordered state happens at higher
values of φa (depending on starting φ), implying that the effect
of the dissenters is much stronger than that of simply diluting
the system. To quantify these effects in terms of the fraction of
dissenter particles f , we plot normalized 〈P〉 vs f in Fig. 3(c)
which shows the collapse of all the data sets. We expect that
the data collapse may be better with a much larger system
size. The normalized order parameter 〈P〉/〈P〉max decreases
continuously from 1 and reaches the completely disordered
state nearly at f ∼ 0.3. Figure 3(c) suggests that the relative
suppression of flocking by dissenters is independent of the
area fraction of aligners.

The variance of the steady-state order parameter would be
proportional to the susceptibility if this was an equilibrium
system, and is in any case a measure of the magnitude of
fluctuations. In the simulation study on the mixed aligner-
dissenter system, Yllanes et al. [1] have shown that the
variance shows a maximum at a dissenters’ fraction where
the order parameter reduces to ∼0.5 of its maximum value,
indicative of an underlying phase transition in the infinite-size
limit. We were curious to see if the variance of P exhibits such
nonmonotonic behavior with respect to f . Figure 3(d) plots
the variance of P as a function of f calculated considering
the fluctuations observed in the steady state for φ = 0.35,
showing a peak at f ∼ 0.05 where the order parameter is
close to 0.5〈P〉max, similar to the simulation results (see Fig. 3
of Ref. [1]). Here we may add a word of caution that the
crossover point extracted from our data is only indicative due
to finite-size effects.

It is also interesting to look at the mixed systems with-
out including the contributions of dissenters in calculating
〈P〉, G(r), etc. We have estimated separately contributions
of aligners and dissenters in the normalized 〈P〉 vs f for
φ = 0.35 and observed negligible contributions of dissenters
[Supplemental Material [18], Fig. S5(a)]. Also, the variance of
P vs f considering only aligners [Supplemental Material [18],
Fig. S5(b)] shows reduced values but still retains the maxima
close to f = 0.05 as in Fig. 3(d). The negligible contribution
of dissenters in the normalized 〈P〉 and variance is expected
as they do not contribute to the collective behavior.

Next, we quantify the particle-level interactions in the
mixed systems. For φ = 0.35, in Figs. 3(e) and 3(f), we plot

(a)

(b)

(c)

FIG. 4. (a) For the mixed systems, G(r) vs r/La considering
aligner-aligner (a-a), aligner-dissenter (a-d), and dissenter-dissenter
(d-d) pairs separately and together for φa = 0.28 and φd = 0.06 are
plotted. (b) Similar plots for φa = 0.28 and φd = 0.12 are shown.
(c) 〈Cr (τ )〉 vs τ is plotted by averaging separately over all aligners
and over all dissenters, for the systems as in panels (a) and (b).

G(r) vs r/La and G(at r = 2La ) vs f considering only align-
ers, without taking into account the contribution of dissenters.
The plot shows a monotonic evolution from a highly corre-
lated state to a low correlated state. When a small fraction of
dissenters is present, the system can retain some order. With
a high dissenters fraction, G(r) falls rapidly with r/La to a
low value showing negligible correlation between aligners.
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FIG. 5. The flocking phase diagram in the f -φa plane, consid-
ering data sets of Figs. 2 and 3, represented by different symbols.
Color bars represent 〈P〉/〈P〉max value. The order region and the
disorder region are indicated by considering the crossover value
〈P〉/〈P〉max ∼ 0.5.

The aligner-dissenter and the dissenter-dissenter pairs always
show low orientational correlation even when the system
shows flocking with high 〈P〉 at low f [Figs. 4(a) and 4(b)].
The dissenters are nonaligning agents which introduce rota-
tional noise in the system. At a low fraction of the dissenters
(e.g., φa = 0.28 and φd = 0.06), the aligners induce the dis-
senters to develop finite rotational autocorrelation [Fig. 4(c)].
At high f , the rotational autocorrelation of the aligners as
well as the dissenters is highly reduced, thus disrupting
the flocked state. By combining the observations shown in
Figs. 2(b), 3(a), and 3(b), the phase diagram thus constructed
of this flocking ordered to isotropic disordered transition is
shown in Fig. 5. Here we take 〈P〉/〈P〉max ∼ 0.5 to mark the
boundary between order and disorder regions.

IV. CONCLUSIONS

In summary, our dry active granular system with two-step-
tapered polar rods shows flocking in a wide range of the area

fraction without any intervening medium. The order param-
eter varies smoothly around φ = 0.12 due to finite system
size which would be discontinuous in the larger system sizes
as shown in the simulations [25]. Orientational correlations
grow as the system approaches a threshold area fraction. We
experimentally realize motile “dissenters” in the form of one-
step-tapered polar particles that move in a fashion much more
noisy than that of the two-step-tapered particles. To follow the
transient behavior of the system during flocked to deflocking
transition in the presence of dissenters, one has to pause the
shaker after flock formation and replace some aligners in ran-
dom places by dissenters, keeping all positions and directions
unchanged, and then run the shaker to follow the dynamics
in, time which is a very laborious task. Rather, we mix and
disperse them to follow the system in the steady state. The
effect of the dissenters is much stronger than that of simply
diluting the system and it depends only on the ordering in the
system, not on the aligners’ area fractions. We have shown that
the high rotational noise of the dissenters decorrelates all three
types of orientational correlations (aligner-aligner, aligner-
dissenter, and dissenter-dissenter) and disrupts the flocking
of the active granular matter. The peak in the variance of the
system’s order parameter at f ∼ 0.05 is associated with the
finite-size crossover from an ordered to a disordered state.
Our experimental results can be visualized in terms of real-life
examples. For example, flocking is observed in animal groups
having a small fraction of baby animals along with the adults,
whereas the flocking is absent with a large fraction of baby
animals. Another situation where deflocking can be desirable
is the motion of a crowd in high-risk situations where a large
number of dissenters do not allow collective motion. It will
be interesting to study the effects of static obstacles on the
flocking of the aligners.
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