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Time-reversal symmetry breaking in two-dimensional nonequilibrium viscous fluids
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We study the rheological signatures of departure from equilibrium in two-dimensional viscous fluids with and
without internal spin. Under the assumption of isotropy, we provide the most general linear constitutive relations
for stress and couple stress in terms of the velocity and spin fields. Invoking Onsager’s regression hypothesis
for fluctuations about steady states, we derive the Green-Kubo formulas relating the transport coefficients to
time-correlation functions of the fluctuating stress. In doing so, we show that one of the nonequilibrium transport
coefficients, the odd viscosity, requires time-reversal symmetry breaking in the case of systems without internal
spin. However, the Green-Kubo relations for systems with internal spin also show that there is a possibility
for nonvanishing odd viscosity even when time-reversal symmetry is preserved. Furthermore, we find that
breakdown of equipartition in nonequilibrium steady states results in the decoupling of the two rotational
viscosities relating the vorticity and the internal spin.
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I. INTRODUCTION

This paper presents the consequences of time-reversal
symmetry breaking at the microscale, and other signatures
of nonequilibrium on emergent transport coefficients in two-
dimensional viscous fluids. A motivation for this work is the
recent emergence of the field of active matter, which studies
systems that consume and dissipate energy at the particle
scale. Active systems have been found to yield novel phase
behavior [1–6] and continuum descriptions with unusual
transport behavior [7–18], including odd viscosity [19,20].
They also provide insights into activity-mediated biologi-
cal processes, including flows in the actin cortex [21,22]
and collective motion in swarming and growing bacterial
colonies [23–25].

Active systems with nonconservative forces at the mi-
croscale support nonequilibrium steady states different in
nature from those arising from spatial gradients in tempera-
ture, pressure, or chemical potential by means of boundary
conditions. The latter class of problems has been of intense
interest for over a century and may be addressed within a well-
established nonequilibrium thermodynamics formalism that
unifies a variety of transport processes, building on the semi-
nal work of Onsager, Prigogine, deGroot, and Mazur [26–29].
This approach is based on the local equilibrium hypothesis,
expressing entropy production as a bilinear form of general-
ized thermodynamic forces Xα and fluxes Jα , with α enumer-
ating the concerned transport process. The fluxes and forces
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are then taken to be related by linear laws,

Jα =
∑

β

LαβXβ. (1)

The proportionality constants Lαβ , also referred to as transport
coefficients, obey the celebrated Onsager reciprocal relations,
Lαβ = Lβα , derived by Onsager via invocation of the principle
of microscopic time-reversibility (or time-reversal symme-
try), and a regression hypothesis connecting the macroscopic
boundary-driven gradient phenomena to fluctuations in equi-
librium systems [26,27]. These same assumptions were used
by Kubo, Yokota, and Nakajima to derive another set of
prominent relations, the Green-Kubo relations, relating the
constants Lαβ to integrals of the time-correlation functions of
the fluxes Jα in equilibrium systems [30,31].

Active matter systems, which break time-reversal symme-
try at the microscale, still lack a unifying thermodynamic
description for explaining emergent transport phenomena. In
this work, we study the nonequilibrium viscous transport
behavior of generic isotropic active systems in two dimen-
sions with and without internal spin, investigate fluctuations
in the nonequilibrium steady state, analyze the consequences
of time-reversal symmetry breaking on the emergent transport
coefficients, and demonstrate the breakdown of Onsager’s
reciprocal relations by deriving the Green-Kubo relations. In
particular we elucidate the connection between time-reversal
symmetry breaking and the emergence of a nonequilibrium
transport coefficient, the odd viscosity. Furthermore, we show
that breaking of equipartition leads to a decoupling of trans-
port coefficients previously assumed to be related. We thus
provide a first step towards developing a nonequilibrium
thermodynamics formalism for transport phenomena in active
media.
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II. ODD VISCOSITY AND TIME REVERSAL

We begin our treatment of emergent behavior in viscous
nonequilibrium fluids with a brief discussion of odd viscosity,
recently proposed as a consequence of time-reversal symme-
try breaking in active media [19,32–34]. In a general theory
of viscous fluids, a viscosity tensor ηi jkl defines a linear
relation between the stress tensor Ti j and the velocity gradient
vk,l , where (·),i indicates the spatial partial derivative. Certain
symmetries of the viscosity tensor are physically meaningful.
It is well known that the symmetry ηi jkl = η jikl enforces the
symmetry of the stress tensor, while the symmetry ηi jkl =
ηi jlk expresses its objectivity, i.e., its insensitivity to the an-
tisymmetric part of the velocity gradient reflecting the rigid-
body rotation of the fluid. Another symmetry that has recently
attracted interest is ηi jkl = ηkli j [19,33]. Components of the
viscosity that are antisymmetric with respect to this permuta-
tion do not contribute to the stress power Ti jvi, j = ηi jklvi, jvk,l ,
and are referred to as odd viscosities. These have interesting
hydrodynamical consequences such as transverse response to
shear strain that have been explored in both classical [19,34]
and quantum [32] fluids. In the quantum setting, the odd
viscosity is expected to appear in quantum Hall fluids [33].

In previous work on odd viscosity [19,33], the symmetry
ηi jkl = ηkli j has been claimed as a necessary consequence of
time-reversal symmetry on the basis of Onsager’s reciprocal
relations Lαβ = Lβα . At first glance, it is plausible to take the
symmetry ηi jkl = ηkli j of the viscosity to be a particular in-
stance of Onsager reciprocity, identifying α = i j and β = kl ,
with stress being the flux of momentum and velocity gradient
as the generalized thermodynamic force. This analogy is in-
correct, as the reciprocal relations were developed for coupled
thermodynamical transport processes using the entropy as a
central tool [26,27]. The center-of-mass momentum of a fluid
parcel is not a thermodynamic quantity and does not enter
into any proper account of the entropy of that parcel. Thus
an independent demonstration is required to prove that time-
reversal symmetry breaking is necessary for the observation of
odd viscosity and therefore the breakdown of the reciprocal
relations for the viscosity tensor. This is one of the results
we provide here, still using Onsager’s particular insight, the
regression hypothesis connecting the fluctuations in the steady
state to macroscopic boundary-driven gradients in velocity.

III. CONSERVATION LAWS

In establishing the breakdown of reciprocal relations in
active fluids, we study generalized viscous fluids sustaining
internal spin [35–37]. These are relevant to systems ranging
from chiral active and granular materials [37,38] to biological
systems behaving as active gels [39,40], while exhibiting
interesting behavior due to active driving forces, namely,
edge flows and topological localization [18]. To study two-
dimensional fluids with internal structure, we take as fun-
damental dynamical fields the velocity vector vi and the
scalar internal spin m. Conservation of linear and angular
momentum is guaranteed by the balance equations

ρv̇i = Ti j, j, (2)

ρṁ = Ci,i − εi jTi j, (3)

with Ti j being the stress tensor and Ci being the couple stress
or spin flux. The dot indicates the convective or material
derivative ∂t + vi∂i, and εi j is the two-dimensional Levi-Civita
tensor. Such a microstructural continuum theory was proposed
by Dahler and Scriven [35,36]. The coupling term −εi jTi j

preserves conservation of total angular momentum while per-
mitting the existence of an antisymmetric component of stress.
The hydrodynamic equations (2) and (3) are shown to arise
for a class of active systems consisting of dumbbell particles
subjected to active or nonconservative rotary forces [16,41].

IV. CONSTITUTIVE RELATIONS AND ISOTROPY

To close Eqs. (2) and (3) for vi and m, we require consti-
tutive equations relating the stress Ti j and couple stress Ci to
the fields vi and m. We assume that these relations are linear,
Galilean invariant, and contain derivatives of the fields only
up to first order. The most general linear constitutive relations
are then given by

Ti j = ηi jklvk,l + γi jm + ξi jkm,k, (4)

Ci = βi jkv j,k + κim + αi jm, j, (5)

where repeated indices are summed, and η, γ , ξ, β, κ, and α

are linear maps.
Imposing isotropy further restricts the couplings in Eqs. (4)

and (5). Isotropic tensors of any rank in dimension n may
be expressed as linear combinations of terms consisting only
of the rank-two Kronecker tensor δi j and the rank-n Levi-
Civita tensor εi1,...,in (see Sec. I in the Supplemental Mate-
rial (SM) [42]). In two dimensions, both of these are rank
two, so there are no nonzero isotropic tensors of odd rank.
This forbids the existence of nontrivial isotropic linear maps
between tensors with ranks differing by an odd number. For
instance, the couple stress Ci, a vector, cannot depend on
the spin density m, a scalar, or the velocity gradient vi, j , a
rank-two tensor. Similarly, the stress tensor Ti j , a rank-two
tensor, cannot depend on the spin gradient m,i, a vector.
Therefore, the most general isotropic constitutive equations
have the form

Ti j = ηi jklvk,l + γi jm, Ci = αi jm, j . (6)

The maps γi j and αi j may be expressed as

γi j = γ1δi j + γ2εi j, αi j = α1δi j + α2εi j . (7)

The viscosity tensor ηi jkl is an element of the six-dimensional
space of isotropic rank-four tensors in two dimensions (see
Sec. I in the SM [42]). An orthogonal basis s(α) for this space
is provided in Table I, along with the symmetry properties
of the basis elements under various index permutations of
physical significance. We can express the viscosity tensor as a
linear combination of these basis elements:

ηi jkl =
6∑

α=1

λαs(α)
i jkl . (8)

In Table I, we provide the components s(α)
i jklvk,l of the stress

tensor due to each of the basis tensors, elucidating the physical
meaning of each coefficient. The bulk viscosity λ1 and shear
viscosity λ2 resist compression and shearing as in a typical
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TABLE I. The tensors s(α)
i jkl form a basis for the isotropic rank-four tensors in two dimensions, and are orthogonal with respect to the inner

product Ai jkl Bi jkl . This basis has been chosen to be an eigenbasis for the index permutations i ↔ j and k ↔ l , corresponding to the symmetry
and objectivity of the stress tensor, respectively. It is also an eigenbasis for the mirror transformation x1 �→ −x1, x2 �→ x2, also known as the
parity transformation (P). Four of these basis tensors are also eigenvectors of the index permutation i ↔ k and j ↔ l , and we also indicate
the parity of the basis tensors under this transformation. In the last column, we provide the component of the stress Ti j = ηi jklvk,l due to
each basis element of the viscosity. The symmetric traceless velocity gradient is defined as ůi j = 1

2 (vi, j + v j,i − vk,kδi j ), and the vorticity as
ω = − 1

2 εi jvi, j . We also use the matrices σz = [1, 0; 0, −1] and σx = [0, 1; 1, 0], which are basis elements of the pure shear modes of the
velocity gradient that transform into each other under rotation. The tensor σz ⊗ σx maps a pure shear mode of the velocity gradient to a rotated
pure shear mode of the stress. A complete eigenbasis e(β ) for the permutation i j ↔ kl is presented in Sec. I of the SM [42].

Basis tensor Components i ↔ j k ↔ l i j ↔ kl P s(α)
i jklvk,l

s(1)
i jkl δi jδkl + + + + (∇ · v)δi j

s(2)
i jkl δikδ j� + δi�δ jk − δi jδkl + + + + 2ů

s(3)
i jkl εi jεkl − − + + −2ωεi j

s(4)
i jkl εikδ j� + ε j�δik + + − − (σz ⊗ σx − σx ⊗ σz ) : ů

s(5)
i jkl εikδ j� − ε j�δik + εi jδk� + εk�δi j − + N/A − (∇ · v)εi j

s(6)
i jkl εikδ j� − ε j�δik − εi jδk� − εk�δi j + − N/A − 4ωδi j

Newtonian fluid. The rotational viscosity λ3 resists rotation,
corresponding to the appearance of a torque in response to
nonvanishing vorticity, breaking both symmetry and objectiv-
ity of the stress tensor. All three of these components of the
viscosity are even under mirror symmetry, implying that they
may arise in nonchiral systems.

The other three components of the viscosity are odd under
mirror symmetry and thus should be expected to vanish in
nonchiral systems. The odd viscosity λ4, corresponding to
a term that violates the permutation symmetry ηi jkl = ηkli j ,
responds to pure shear along one axis with pure shear stress
along an axis rotated by π/4. Equivalently, it responds to
simple shear along one axis with pressure or tension along
the orthogonal axis, depending on the sign of the shear. An
interesting feature of this component of the viscosity is that it
is nondissipative in the sense that it does not contribute to the
stress power Ti jvi, j . This term satisfies both objectivity and
symmetry of the stress tensor, so that it is compatible with
conservation of angular momentum even in the absence of a
mechanism coupling internal spin to the velocity gradient.

Finally, the component λ5 responds to compression with
torque, breaking symmetry of the stress, while the component
λ6 responds to vorticity with isotropic pressure, breaking ob-
jectivity. The corresponding basis tensors s(5) and s(6) both vi-
olate the symmetry ηi jkl = ηkli j . They span a two-dimensional
subspace with one even and one odd direction under this index
permutation, so that there are in fact two independent odd
components of the viscosity.

V. ONSAGER’S REGRESSION HYPOTHESIS
AND GREEN-KUBO RELATIONS

The reciprocal relations, or symmetry relations of the trans-
port coefficients were derived by Onsager in a seminal work
connecting macroscopic phenomena and transport coefficients
to time correlations of fluctuations of related variables at the
microscopic level, using regression hypothesis for the decay
of fluctuations and the principle of microscopic reversibil-
ity (or time-reversal symmetry) [26,27]. This connection
between microscopic reversibility and the symmetry of

macroscopic transport coefficients may also be established
via the Green-Kubo relations [31], which provide explicit mi-
croscopic expressions for the transport coefficients. Note that
Onsager’s regression hypothesis and time-reversal symmetry
are independent assumptions, and one may be invoked without
the other. In what follows, we invoke only the regression hy-
pothesis for decay of fluctuations of in nonequilibrium steady
states and determine the effects of time-reversal symmetry
breaking on transport coefficients. In particular, we derive the
Green-Kubo formulas relating the viscous coefficients intro-
duced in Eqs. (7) and (8) to the stress-stress time-correlation
function in a fluctuating steady state, starting from an assump-
tion on the fluctuations in the spirit of Onsager’s regression
hypothesis. The philosophy adopted here is to suppose that
the fields vi, m, Ti j , and Ci are fluctuating or stochastic
rather than deterministic, but that small fluctuations about a
steady state behave, in expectation, in the same manner as
the deterministic transport equations would predict. In other
words, a viscous fluid is best described in different regimes
by either a deterministic or a stochastic theory, and the two
must be related in some plausible way. This is the informal
content of Onsager’s regression hypothesis [26,27,30,31].

We now provide a more formal presentation of the
statement of the regression hypothesis in a general setting,
which will be central to the derivation of Green-Kubo
relations. Suppose a system is characterized by some set of
complex variables Ai and Bj , and that the system is described
by a deterministic theory that obeys the linear dynamical (or
conservation) and constitutive equations

dAi

dt
=

∑
j

Mi jB j, Bj =
∑

i

S jiAi, (9)

where Mi j and Skl are constant coefficients, and Ai = Bj = 0
is a stable fixed point. These lead to the transport equations

dAi

dt
=

∑
j,k

Mi jS jkAk, (10)

where any external perturbation to the variables Ai decays
with a characteristic relaxation time τr ≈ 1

Mi j S jk
.
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Extending Onsager’s regression hypothesis to nonequi-
librium steady states [27], we suppose that spontaneous
fluctuations about the steady state decay according to the
transport equation (10) in expectation, in the sense that

〈Ai(t + �t )〉t,a − ai

�t
=

∑
j,k

Mi jS jkak, (11)

where the subscript indicates that the expectation is taken over
the subensemble of trajectories satisfying Ai(t ) = ai. Note
that we have in mind steady states of active matter systems
subjected to microscopic nonconservative forces rather than
those arising from spatial gradients due to boundary condi-
tions. In Eq. (11), �t is chosen to be small in comparison with
the macroscopic relaxation time τr, but sufficiently large com-
pared with the microscopic or molecular timescales [27,31].
This is the mathematical statement of the regression
hypothesis.

Following Kubo-Yokota-Nakajima [31], we may derive
from the regression (11) (see Sec. III in the SM [42]) the
generalized Green-Kubo relations

Mi jS jk〈Ak (0)A∗
r (0)〉 = −

∫ ∞

0
〈Ȧi(t )Ȧ∗

r (0)〉dt (12)

= −Mi jM
∗
rk

∫ ∞

0
〈Bj (t )B∗

k (0)〉dt, (13)

where the averages are taken over the steady-state ensemble of
trajectories, (·)∗ denotes complex conjugation, and repeated
indices are summed. Deriving Eq. (12) requires an important
condition on the separation of timescales:

τcorr � �t � 1

Mi jS jk
, (14)

where τcorr is the timescale associated with the decay of the
correlation functions 〈Ȧ j (t )Ȧ∗

r (0)〉.
VI. GREEN-KUBO RELATIONS FOR VISCOUS FLUIDS

For our system of nonequilibrium fluids, the role of the
variables Ai and Bj will be played by the large-wavelength
components of the fluctuations of the fields vi, m, Ti j , and Ci

about the steady state with vi = 0 and m = const. The evolu-
tion of these components is governed by the linearized Fourier
forms of the linear- and angular-momentum balance equations
(see Sec. II in the SM [42]). Invoking a regression hypothesis
on these variables in the spirit of Eq. (11) and examining the
large-wavelength limit of the fluctuations yields the following
Green-Kubo relations for the transport coefficients (see Sec. V
in the SM [42] for detailed derivations):

γ1 = 1

2ρ0ν
δi jεklT i jkl , (15)

γ2 = 1

2ρ0ν
εi jεklT i jkl , (16)

λ1 + 2λ2 + λ3 − γ1π

2μ
+ γ2τ

2μ
= 1

2ρ0μ
δikδ jlT i jkl , (17)

λ4 + λ5 + λ6 − γ1τ

4μ
− γ2π

4μ
= 1

4ρ0μ
εikδ jlT i jkl , (18)

λ5 − γ2π

4μ
= 1

8ρ0μ
εi jδklT i jkl , (19)

λ3 + γ2τ

2μ
= 1

4ρ0μ
εi jεklT i jkl , (20)

where T i jkl is the time-integrated stress-stress correlator

T i jkl = 1

L4

∫ ∞

0
dt

∫
d2x d2y〈δTi j (x, t )δTkl (y, 0)〉, (21)

and μ, ν, τ , and π are the steady-state correlation functions
defined by

μδi j = 1

L4

∫
〈δvi(x)δv j (y)〉d2x d2y, (22)

π = 1

L4

∫
(yi − xi )〈δvi(x)δm(y)〉d2x d2y, (23)

τ = 1

L4

∫
εkr (yr − xr )〈δm(x)δvk (y)〉d2x d2y, (24)

ν = 1

L4

∫
〈δm(x)δm(y)〉d2x d2y. (25)

In Eqs. (15)–(25), δa indicates the fluctuation about the
steady-state value of a.

The constants μ and ν provide an estimate of the effective
kinetic temperature in the steady state and by the equipartition
theorem are proportional to the Boltzmann temperature in the
special case of equilibrium systems. The constant τ measures
the correlation of the internal spin with the fluid vorticity, in
other words, the correlation between the internal and external
angular-momentum density fields. The constant π measures
the correlation of the internal spin with the fluctuating diver-
gence of the velocity field.

Several features of the Green-Kubo relations (15)–(20) are
noteworthy. In the absence of internal spin (or the absence of
a mechanism for coupling internal spin to the velocity field),
γ1 = γ2 = 0 by assumption and λ3 = λ5 = 0 by conservation
of angular momentum. Then we are left with the Green-Kubo
relations

λ1 + 2λ2 = 1

2ρ0μ
δikδ jlT i jkl , (26)

λ4 + λ6 = 1

4ρ0μ
εikδ jlT i jkl . (27)

If we assume that the stress tensor is objective, then λ6 =
0 and we are left with a Green-Kubo relation for the odd
viscosity λ4 given by

λ4 = 1

4ρ0μ

1

L4

∫ ∞

0
dt

∫
d2x d2y

× [〈δT11(x, t )δT21(y, 0)〉 − 〈δT21(x, t )δT11(y, 0)〉
+ 〈δT12(x, t )δT22(y, 0)〉 − 〈δT22(x, t )δT12(y, 0)〉].

(28)

It is clear from Eq. (28) that only the component of the
stress autocorrelation function that is odd under time reversal
survives, thus demonstrating that nonvanishing odd viscosity
λ4 �= 0 requires breaking time-reversal symmetry at the level
of the steady-state stress fluctuations for fluids without inter-
nal spin.

Now allowing for coupling of internal spin to the fluid
velocity, we may observe from Eqs. (16) and (20) that

2λ3 =
(

ν − τ

μ

)
γ2. (29)
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In an equilibrium system, ν = μ by equipartition and there
exist no correlations between internal spin and vorticity, so
that τ = 0. Then γ2 = 2λ3, so that there is a single parameter
characterizing the response of the stress to both the spin m
and the vorticity ω. This feature is assumed in many previous
works on out-of-equilibrium active systems [19,20,38–40]. It
should be noted that such active systems may break equipar-
tition in the steady state so that in general ν − τ �= μ, which
leads to decoupling of the two rotational viscosity coefficients
coupling the vorticity and internal spin, and therefore this
assumption must be revisited.

Finally, we note that, in a system with internal spin that
obeys time-reversal symmetry at the level of the stress cor-
relations, the Green-Kubo relation (18) involving the odd
viscosity reduces to

λ4 + λ5 + λ6 = γ1τ

4μ
+ γ2π

4μ
. (30)

Thus λ4 need not necessarily vanish. Therefore, it is possible
that there are systems that do not break time-reversal sym-
metry at the level of stress correlations, yet do exhibit odd
viscosity due to a coupling of internal spin to fluid velocity.
This possibility merits future consideration.

VII. CONCLUSION

In this work, we have made progress towards the goal
of understanding transport phenomena in systems that break

time-reversal symmetry. By deriving Green-Kubo formulas
via an Onsager regression hypothesis, we have put on stronger
footing the claim that, in systems without internal spin,
nonvanishing odd viscosity requires breaking time-reversal
symmetry at the level of stress-stress correlations. However, in
systems with internal spin, we cannot rule out the possibility
of nonvanishing odd viscosity even when this symmetry is
preserved. Furthermore, we have demonstrated that breaking
of equipartition leads to modification of the coupling between
internal spin and fluid vorticity. Finally, we note that our
Green-Kubo formulas for shear and odd viscosities with an
effective temperature have been validated in a model active
system consisting of dumbbells subjected to active rotary
forces, by comparison to independent measurements obtained
from nonequilibrium flow studies [41]. In particular, we show
that nonvanishing odd viscosity arises only under the appli-
cation of active forces and corresponds to breaking of time-
reversal symmetry of stress correlation functions as predicted
in this work.
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