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Hydrodynamics, superfluidity, and giant number fluctuations in a model of self-propelled particles
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We derive hydrodynamics of a prototypical one-dimensional model, having variable-range hopping, which
mimics passive diffusion and ballistic motion of active, or self-propelled, particles. The model has two main
ingredients—the hardcore interaction and the competing mechanisms of short- and long-range hopping. We
calculate two density-dependent transport coefficients—the bulk-diffusion coefficient and the conductivity, the
ratio of which, despite violation of detailed balance, is connected to particle-number fluctuation by an Einstein
relation. In the limit of infinite-range hopping, the model exhibits, upon tuning density ρ (or activity), a
“superfluidlike” transition from a finitely conducting fluid phase to an infinitely conducting “superfluid” phase,
characterized by a divergence in conductivity χ (ρ ) ∼ (ρ − ρc )−1 with ρc being the critical density. The diverging
conductivity greatly increases particle (or vacancy) mobility and thus induces “giant” number fluctuations in the
system.
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I. INTRODUCTION

Persistence and interactions are the hallmarks of self-
propelled particles (SPPs), also called active matters. Self-
propelled particles are ubiquitous in nature—in living beings,
e.g., bacterial colonies [1–5], flocking birds [6], and fish
schools [7], as well as in nonliving systems, e.g., photo-
activated colloids [8]; for review, see Ref. [9]. They propel
themselves persistently by consuming chemical energy, while
interacting with their neighbors through chemical signaling
or excluded-volume interactions, and dissipate energy to the
medium. Due to the subtle interplay between drive, dissipation
and interactions, SPPs remain inherently out of equilibrium
and exhibit fascinating collective behaviors like clustering
[10–16] and “giant” number fluctuations (GNF) [11,12,17–
21] on the one hand and anomalous transport on the other
[22–31].

There has been considerable progress in understanding col-
lective behaviors of SPPs through studies of simple models,
such as the Vicsek model [32–34], run-and-tumble particles
(RTPs) [14,23,35,36], active Brownian particles [12,13], and
active lattice gases [37–39]. However, even for these mini-
mal models, exact results are few and far between [33,39],
mainly because such systems are not in equilibrium and have
nontrivial many-body correlations and the probability weights
of their microscopic configurations are unknown. Not surpris-
ingly, there is lack of concrete understanding of two important
questions: (1) What are precisely the underlying mechanisms
responsible for the anomalous behaviors in SPPs and (2)
how are fluctuations and transport related? In this paper, we
address these issues in a minimalistic setting of a prototypical
many-particle model, which qualitatively captures the large-
scale features of SPPs and, moreover, is amenable to exact
analysis.

Indeed, an exact derivation of hydrodynamics of in-
teracting SPPs, accounting for long-ranged spatiotemporal

correlations as manifest in the anomalous behaviors of fluctu-
ation and transport, has been elusive so far. To bridge this gap,
we introduce a generalized version of simple symmetric ex-
clusion process (SSEP) [40], called the generalized long-hop
model (gLHM), which, in addition to the nearest-neighbor
short-range hopping of SSEP, incorporates also long-range
hopping by particles. The model is motivated by random
but space-time correlated coherent motion, called “runs” or
“swims,” which are observed in living micro-organisms such
as bacteria and amoebae [2–4]. For example, consider a
bacterium like Escherichia coli, which moves by rotating its
flagella: Coherent counterclockwise rotation drives the E. coli
in a straight line by some distance and disassembled clockwise
rotation makes the bacterium tumble in a random direction
[5]. On a large timescale, the motion of E. coli can be traced as
a zigzag path consisting of series of ballistic “swims,” punctu-
ated by “tumbles.” However, depending on the fluctuations of
an enzyme in a bacterium’s chemotaxis network (e.g., CheY-P
in E. coli [5]), there can be some variations in the individual
bacterium’s swim lengths [4], having a typical characteristic
length scale, called persistence length. In certain conditions,
though, the swim-length distributions have long tails with
diverging mean, sharing the characteristics of Levy walks
[2].

In the generalized long-hop model (gLHM) introduced in
this paper, we consider hardcore particles moving on a one-
dimensional lattice on a ring, with the total number of particles
being conserved. Provided that there is an empty lane (an
empty stretch of vacant sites) in front of it, a particle can hop a
variable distance, symmetrically in either direction; however,
due to hardcore constraint, particles do not cross each other.
The mean hop length in gLHM could be related to the per-
sistence length of individual self-propelled micro-organisms
like bacteria. Though we model persistence in the simplest
possible way, the model, as explained later, brings to the fore
a crucial element, which could be central to the understanding
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FIG. 1. Schematic diagram to illustrate the mapping between
gLHM and UgLHM in one dimension in a few successive time
steps; we consider here gLHM with localized hop-length distribu-
tion φ(l ′) = δl ′,l with l = 4. The filled circles (red) are particles
in gLHM, and filled blue squares are masses in UgLHM (gaps in
gLHM). Maximum possible hop length in gLHM in this particular
case is l = 4, which, in UgLHM, corresponds to the maximum
amount of mass, which can be transferred at any time. The “crossed”
arrow indicates the impossibility of the time-reversed hopping pro-
cess, demonstrating violation of detailed balance in the system.

of clustering and transport in self-propelled-particles: The
competition between long- and short-range hopping mecha-
nisms induces cooperative behaviors in the system. Indeed, it
is not difficult to see that, while a particle makes a long-range
hop, equivalently a vacancy cluster as a whole moves in uni-
son. Subsequently, two such neighboring clusters could then
coalesce to form even a larger one, effectively incorporating
cooperativity into the dynamics (see the model in Fig. 1 and
Sec. II). Specifically in the context of micro-organisms, while
the long hops correspond to the persistent or the ballistic
motion, the short hops mimic thermal diffusion in the sur-
rounding solvent. The relative strength of long-range hopping
is called here activity.

The main results of the paper are the following. We derive,
from first principles, the hydrodynamic structure of general-
ized long-hop model in the diffusive scaling limit. Moreover,
in a special case of the model with an infinite-range hopping,
we explicitly obtain in one dimension the analytic expressions
of two transport coefficients—the bulk diffusion coefficient
D(ρ) and the conductivity, or the inverse resistivity, χ (ρ).
The transport coefficients in general are nonlinear functions
of density ρ and are defined through the diffusive current
JD = −D(ρ)∂ρ(x, t )/∂x and the drift current Jd = χ (ρ)F ,
respectively, where ρ(x, t ) is the density at position x and time
t , and F is the magnitude of a small external force field, which
is applied to calculate the (linear) response of the system to
the external perturbation. Remarkably, even in the absence
of detailed balance, we find an Einstein relation σ 2(ρ) =
χ (ρ)/D(ρ), which relates scaled subsystem particle-number
fluctuation σ 2(ρ) = limlsub→∞(〈n2〉 − 〈n〉2)/lsub to the ratio
of the two transport coefficients, where n is the number of
particles in a subsystem of size lsub. Indeed, in the case of
infinite-range hopping, the competition between the short-
and the long-range hopping induces, beyond a critical density
ρc (or a critical activity), a first-order “superfluid” transition

from a finitely conducting disordered fluid phase to an ordered
phase with an infinitely conducting “superfluid” coexisting
with a vacancy condensate. In the ordered or “superfluid”
phase, the particles (or vacancies) are highly mobile, and
consequently the conductivity diverges near criticality as
χ (ρ) ∼ (ρ − ρc)−1; in other words, the resistivity vanishes.
Precisely, this extremely high mobility near criticality leads to
“giant” number fluctuations, which, along with the diverging
conductivity, persist even in the ordered phase; interestingly,
the bulk-diffusion coefficient remains finite even at criticality.

The paper is organized as follows. In Sec. II we define
generalized long-hop model. In Sec. III we derive hydrody-
namic structure of the model in terms of the bulk-diffusion
coefficient and the conductivity: Hydrodynamics are given
for finite-range hopping in Sec. III A and for infinite-range
hopping in Sec. III B; we verify density relaxation governed
by the above hydrodynamics in Sec. III C and the existence
of an Einstein relation in Sec. III D, and we discuss the con-
nection between “superfluid” transition and “giant” number
fluctuation in Sec. III E. In Sec. IV we summarize with some
concluding remarks.

II. MODEL

In this section, we introduce the generalized long-hop
model (gLHM), which consists of N hardcore particles mov-
ing on a one-dimensional periodic lattice of L sites. Due to
hardcore constraint, a lattice site can be occupied by at most
one particle and crossing between two particles is not allowed.
A particle moves according to the following dynamical rules:

(A) Short-range hop: With rate p, a particle makes a short-
range hop of unit length, to its left or right nearest neighbor
with equal probability 1/2, provided that the destination site
is vacant.

(B) Long-range hop: With rate q, a particle, say, the kth
one, makes a long-range hop, to its left or right with equal
probability 1/2, provided there is an empty stretch of vacan-
cies in its hopping direction. At any instant of time, the long-
range hop length l is drawn from a probability distribution
φ(l ). More specifically, in case of rightward (leftward) hop-
ping, if the gap (i.e., an empty lane consisting of consecutive
vacancies) between kth and (k + 1)th [(k − 1)th] particles is
less than l , the particle hops to the site adjacent to its nearest
occupied site in the hopping direction. However, if the gap in
the hopping direction is greater than or equal to l , the particle
hops the maximum possible distance l . We categorize long-
range hops into two: A finite-range hop (FRH) having a typi-
cal long-hop length, which is finite, and an infinite-range hop
(IRH) where the typical long-hop length is infinitely large.

We specify a microscopic configuration {ηi} by the oc-
cupation variable ηi at site i = 1, . . . , L where ηi = 1 if
site i is occupied, otherwise ηi = 0. The total number of
particles is conserved, and we denote density as ρ = N/L.
We define a dimensionless parameter q̃ = q/(p + q), called
activity, which parametrizes the competition between short
and long hops. Clearly, for q = 0 (in the absence of long-
range hopping), gLHM reduces to the well-studied model of
a simple symmetric exclusion process [40].

Interestingly, a one-dimensional gLHM with L sites and
N particles can be mapped to a one-dimensional unbounded
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model [41], called here UgLHM, having N “sites” and
(L − N ) “particles” and having no hardcore constraint, i.e.,
the occupation number at a site in UgLHM is unbounded.
This particular mapping is used later in Sec. III B where we
explicitly calculate the transport coefficients for infinite-range
hopping. According to the convention we follow here, kth
particle in gLHM is considered the kth lattice site in UgLHM
and the gap or number of “holes” between the kth and (k +
1)th particle in gLHM is considered occupancy number or
mass at the kth site in UgLHM. Thus density ρ in gLHM is
related to density ρ ′ in UgLHM as

ρ ′ = L − N

N
=

(
1

ρ
− 1

)
. (1)

Accordingly, the dynamical rules in gLHM can be translated
to UgLHM as follows. With rate p, a single unit of mass
in UgLHM (equivalently, a “hole” in gLHM) is chipped off
and transferred, to right or left with equal probability 1/2,
to the nearest-neighbor site (this particular dynamical rule
corresponds to short-range hop in gLHM). With rate q, two
kinds of hopping events are possible: If the mass (number
of “particles”) at a site in UgLHM is greater than l , only
l unit of mass is fragmented, transferred to its right or left
neighbor with probability 1/2, and eventually coalesces with
the mass at the destination site; otherwise, the whole mass
is transferred to its right or left neighbor with probability
1/2 and coalesces with the mass at the destination site. See
the schematic diagram in Fig. 1 for the update rules in
both models and their correspondence. Note that, for generic
parameter values, these models violate the Kolmogorov cri-
terion and, consequently, detailed balance because some of
the hopping events cannot be time reversed. For example,
consider a gLHM with hop-length distribution φ(l ′) = δl ′l
with l = 4, where the impossibility of a time-reversed path in
a particular hopping event is demonstrated in Fig. 1 (indicated
with a “crossed” arrow). To show the violation of Kolmogorov
criterion, one constructs a closed loop in the trajectory space,
containing at least one event which cannot be time reversed.
Therefore long-range hops are responsible for breaking time
reversibility and driving the system out of equilibrium.

III. HYDRODYNAMICS

Hydrodynamic time evolution provides large-scale spa-
tiotemporal behaviors of slow variable(s) in a system. Since
the total number of particles is the only quantity, which is
conserved in gLHM, the slow variable in our case is the local
particle-number density ρ(x, t ) at position x and time t . Our
aim in this paper is to obtain a large-scale hydrodynamic
structure of the time evolution of the density field ρ(x, t ),
which, as shown later, is governed by a continuity equation,

∂ρ(x, τ )

∂τ
= − ∂

∂x

[
−D(ρ)

∂ρ

∂x
+ χ (ρ)F

]
≡ −∂J (ρ)

∂x
, (2)

through a constitutive relation between local density ρ(x, t )
and hydrodynamic current J (ρ) = −D(ρ)∂ρ/∂x + χ (ρ)F ,
which is defined through two transport coefficients—the
bulk-diffusion coefficient D(ρ) and the conductivity χ (ρ).
The first term in the current arises due to Fick’s law where a
nonuniform density profile contributes to a diffusive current

JD[ρ(x, t )] = −D(ρ)∂ρ(x, t )/∂x and the second term in the
current provides a drift current Jd (ρ) = χ (ρ)F , which is
essentially the (linear) response to a small perturbation due to
an externally applied biasing force of magnitude F .

To calculate the conductivity χ (ρ) in the presence of a
small constant biasing force F (say, counterclockwise along
the ring), we modify, by following macroscopic fluctuation
theory [42], the original (unbiased) hopping rate ci→ j from
site i to j to a biased hopping rate

cF
i→ j = ci→ j exp

(

ei j

2

)
	 ci→ j

[
1 + F ( j − i)a

2

]
, (3)

which is linearized in the limit of small force F , with 
ei j =

mi→ jF ( j − i)a/2 being an “energy cost” for transferring

mi→ j number of particles from site i to j; for gLHM,

mi→ j = 1, which is the number of particle transferred at a
time, and a = 1 the lattice spacing. In gLHM with modified
hopping rates, each particle hops with rates, which are slightly
larger in the direction of the applied force than that in the
opposite direction.

Let us start with the simplest case of gLHM with a
localized distribution φ(l ′) = δl ′l of long-hop lengths, i.e.,
the case of long-range hop with a fixed hop length l . We
denote separately the modified (or biased) hop rates in each
direction: The modified long-hop rates as qF

R (l ) and qF
L (l ) and

similarly the modified short-hop rates as pF
R and pF

L , where the
subscripts “R” and “L” denote anticlockwise (in the direction
of the biasing force) and clockwise (opposite to biasing force)
hopping directions of particles, respectively. To calculate the
rate of change of average occupancy ρi = 〈ηi(t )〉 or local
density at site i, we consider all possible ways of gaining
and losing a particle at site i. Clearly there are total four
contributions at a site i, two of which are associated with loss
of a particle, i.e., outward fluxes J−

R (i) towards right and J−
L (i)

towards left and the remaining two with gain of a particle, i.e.,
inward fluxes J+

R (i) towards right and J+
L (i) towards left. Now

the rate of change of average occupation 〈ηi(t )〉 can be written
as

∂〈ηi(t )〉
∂t

= ∂ρi(t )

∂t
= J+

R (i) + J+
L (i) − J−

R (i) − J−
L (i). (4)

Let us explicitly consider the hopping events of a particle
at site i toward its right direction, corresponding to the term
J−

R (i) in Eq. (4), which has two contributions: the flux contri-
bution J−

R,sh(i) due to short hop and the other one J−
R,lh(i) due

to long hop, as shown below.
Short-hop contribution. For short-range hop, a particle

hops by a unit distance, provided the destination site is empty.
Therefore, the ith site can gain particle from the nearest
neighbor (i + 1) or (i − 1); on the other hand, site i can
lose a particle when the particle hops to the nearest neighbor
(i + 1) or (i − 1). Therefore, the corresponding loss rate for a
particle, moving to right from site i to (i + 1), is given by

J−
R,sh(i) = 1

2
pF

R〈ηiηi+1〉

= p

2

(
1 + Fa

2

)
〈ηi(1 − ηi+1)〉 + O(F 2),

where angular brackets denote steady-state averages.
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Long-hop contribution. In this case, depending on the
number of consecutive vacant sites, or gap size g, two different
kinds of hopping events are possible from site i as follows.

Case I. If g < l , the particle at site i can hop only by
length g as the nearest occupied site is located at (i + g + 1).
Therefore the corresponding loss rate is given by

J−
R,<(i → i + g) = 1

2 qF
R (g)〈ηiηi+1ηi+2 . . . ηi+gηi+g+1〉.

Case II. If g � l , the particle hops by maximum possible
length l and then resides at the (i + l )th site, and the corre-
sponding loss rate is given by

J−
R,�(i → i + l ) = 1

2 qF
R (l )〈ηiηi+1ηi+2 . . . ηi+l〉.

The total loss rate corresponding to rightward outflux of
particle from site i, considering all possible gap sizes, can be
written as

J−
R,lh(i) = J−

R,�(i → i + l ) +
l−1∑
g=1

J−
R,<(i → i + g). (5)

Now by denoting the correlation functions as

A(l )
i = 〈ηi−l+1 . . . ηi−1ηi〉, (6)

B(l+2)
i = 〈ηi−l−1ηi−lηi−l+1 . . . ηi−1ηi〉, (7)

B(2)
i = 〈ηi−1ηi〉, (8)

we write various rightward fluxes in linear order O(F ) of the
biasing force F , as given below:

J−
R,sh(i) = p

2

(
1 + Fa

2

)(
ρi − B(2)

i+1

) + O(F 2),

J−
R,<(i → i + g) = q

2

(
1 + Fga

2

)
B(g+2)

i+g+1 + O(F 2),

J−
R,�(i → i + l ) = q

2

(
1 + Fla

2

)(
A(l )

i+l − A(l+1)
i+l

) + O(F 2).

The net loss rate J−
R (i) due to both short-range and long-range

hop is given by

J−
R (i) = J−

R,sh(i) + J−
R,lh(i), (9)

where we use Eq. (5). We can calculate other loss and gain
rates in a similar way; for detailed calculations of J−

L (i), J+
R (i)

and J+
L (i), see the Appendix Sec. A 1.

A. Finite-range hopping

In this section, we set up the continuity equation for the
density field for gLHM with finite-range hopping, i.e., the
long-hop length is chosen from a distribution φ(l ′) = δl ′,l with
finite long-hop range l . As derived in Eq. (9), the rightward
loss rate from site i is given by, up to linear order O(F ) of
force,

J−
R (i) 	 p

2

(
1 + Fa

2

)(
ρi − B(2)

i+1

) +
l−1∑
g=1

q

2

(
1 + Fga

2

)
B(g+2)

i+g+1

+ q

2

(
1 + Fla

2

)(
A(l )

i+l − A(l+1)
i+l

)
. (10)

Similarly, as shown in the Appendix Sec. A 1, we write the
leftward gain rate,

J+
L (i) 	 p

2

(
1 − Fa

2

)(
ρi+1 − B(2)

i+1

)
+

l−1∑
g=1

q

2

(
1 − Fga

2

)
B(g+2)

i+g

+ q

2

(
1 − Fla

2

)(
A(l )

i+l−1 − A(l+1)
i+l

)
, (11)

the rightward gain rate,

J+
R (i) 	 p

2

(
1 + Fa

2

)(
ρi−1 − B(2)

i

)
+

l−1∑
g=1

q

2

(
1 + Fga

2

)
B(g+2)

i+1

+ q

2

(
1 + Fla

2

)(
A(l )

i − A(l+1)
i

)
, (12)

and the leftward loss rate,

J−
L (i) 	 p

2

(
1 − Fa

2

)(
ρi − B(2)

i

) +
l−1∑
g=1

q

2

(
1 − Fga

2

)
B(g+2)

i

+ q

2

(
1 − Fla

2

)(
A(l )

i−1 − A(l+1)
i

)
. (13)

Substituting all loss and gain rates from Eqs. (10), (11), (12),
and (13) into Eq. (4), we obtain the time evolution of local
density, which, in the leading order O(F ) of the biasing force
F , is recast below in a somewhat long but interesting form:

∂ρi

∂t
	 q

2

[{
A(l )

i+l−1 − A(l )
i+l

} − {
A(l )

i−1 − A(l )
i

}] − qFl

4

[{
A(l )

i+l−1 + A(l )
i+l

} − {
A(l )

i−1 + A(l )
i

} − 2
{
A(l+1)

i+l − A(l+1)
i

}]
+

l−1∑
g=1

q

2

[{
B(g+2)

i+1 − B(g+2)
i

} − {
B(g+2)

i+g+1 − B(g+2)
i+g

}] −
l−1∑
g=1

qFg

4

[{
B(g+2)

i+g+1 + B(g+2)
i+g

} − {
B(g+2)

i+1 + B(g+2)
i

}]
+ p

2
[ρi+1 − 2ρi + ρi−1] + pF

4

[{ρi−1 − ρi+1} + 2
{
B(2)

i+1 − B(2)
i

}]
, (14)

where quantities inside the curly brackets are written in the
form of a gradient of various observables, leading to a conti-

nuity equation for local density as follows. We take diffusive
scaling limit i → x = i/L, t → t/L2 and a → 1/L, where the
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observables are assumed to vary slowly in space and time
and therefore to take local steady-state values [42,43], and
then we expand an observable, say, A(l )

i (t ) ≡ A(l )[ρ(x, t )], in
Taylor’s series around local density ρi(t ) ≡ ρ(x, t ) to obtain,
up to O[(1/L)2],

A(l )
i+l 	 A(l )[ρ(x, t )] + l

L

∂A(l )[ρ(x, t )]

∂x

+ l2

2L2

∂2A(l )[ρ(x, t )]

∂x2
,

and similarly for the other observables B(l+2)
i+l and B(2)

i+1, etc.
Using the above Taylor series expansion in Eq. (14) and col-
lecting terms up to O(1/L2), we obtain in the diffusive scaling
limit the desired hydrodynamics of gLHM as a continuity
equation ∂ρ(x, t )/∂t + ∂J (ρ(x, t ))/∂x = 0 for local density
ρ(x, t ),

∂ρ(x, t )

∂t
= − ∂

∂x

[
−Dl (ρ)

∂ρ

∂x
+ χl (ρ)F

]
, (15)

where the two density-dependent transport coefficients, the
bulk-diffusion coefficient and the conductivity, are given by

Dl (ρ) = p

2
− q

2

l−1∑
l ′=1

l ′ ∂B(l ′+2)(ρ)

∂ρ
− ql

2

∂A(l )(ρ)

∂ρ
, (16)

χl (ρ) = 1

2

[
q

l−1∑
l ′=1

l ′2B(l ′+2)(ρ) + p(ρ − B(2)(ρ))

]

+ ql2

2

[
A(l )(ρ) − A(l+1)(ρ)

]
, (17)

respectively; for details, see the Appendix Sec. A 1d. In
deriving the above hydrodynamic evolution of density field,
we have essentially established a constitutive relation between
local current J (ρ) and local density ρ(x, t ) as J (ρ) = JD(ρ) +
Jd (ρ) where the total current J (ρ) is split into two parts—the
diffusive current JD(ρ) = −Dl (ρ)∂ρ(x, t )/∂x and the drift
current Jd (ρ) = χl (ρ)F . Equations (16) and (17) constitute
the first main results of the paper. For a general distribution
φ(l ′) of long-hop length l ′, the bulk-diffusion coefficient
D(ρ) and the conductivity χ (ρ) are obtained by performing
a weighted sum of Eqs. (16) and (17) over all possible hop
lengths: D(ρ) = ∑

l ′ φ(l ′)Dl ′ (ρ) and χ (ρ) = ∑
l ′ φ(l ′)χl ′ (ρ);

generalization of the results to higher dimensions is straight-
forward. Although, at this stage, we do not have explicit
expressions of the transport coefficients, one, however, can
readily calculate them numerically as a function of density
and can verify the above hydrodynamic structure Eq. (15).
In the next section, we study the interesting special case
of gLHM with infinite-range hopping, which is analytically
tractable and exhibits phase transition and for which one can
calculate the two transport coefficients explicitly as a function
of density.

B. Infinite-range hopping

For finite-range hopping, the transport coefficients as in
Eqs. (16) and (17) remain finite as a function of density and
activity and there is no phase transition as such. However, the
situation changes when the typical length scale in the long-

range hop diverges. To demonstrate this point, we consider
a special case of the infinite-range hopping where the hop-
length distribution has the following form: φ(l ′) = δl ′l with
l → ∞.

The dynamics for short-range hopping is exactly the same
as described in the previous section. However, due to infinite-
range hopping, the dynamics for long-range hop is slightly
modified. Now, during a long-range hop, a particle at a site i
always hops the maximum possible distance along an empty
lane in its hopping direction (which is still chosen symmetri-
cally with probability 1/2). That is, the particle at site i hops
a distance g—the size of the gap in front of it.

We outline below the calculation techniques; for details,
see the Appendix Sec. A 2. First, in the case of infinite-range
hopping with l → ∞, some simplifications occur as the terms
involving A(l )

i ’s drop out from Eqs. (16) and (17), leading
to the bulk-diffusion coefficient and the conductivity χ (ρ) as
given below:

D(ρ) = p

2
− q

2

∞∑
l ′=1

l ′ ∂B(l ′+2)(ρ)

∂ρ
,

χ (ρ) = p

2
(ρ − B(2)(ρ)) + q

2

∞∑
l ′=1

l ′2B(l ′+2)(ρ).

But we still have to determine Bl ′+2(ρ) and B(2)(ρ) as a
function of ρ. To this end, we exploit the previously de-
scribed mapping between gLHM and its unbounded version,
UgLHM, for which the infinite-range hopping translates into
the diffusion of the individual masses as a whole, thus in-
corporating complete aggregation of neighboring masses in
UgLHM. Similar versions of UgLHM have been studied in
the past in the context of mass aggregation and gelation
processes [45–47]. However, the large-scale hydrodynamic
structure of these mass-aggregating systems is still largely un-
explored. Below we focus on hydrodynamics of gLHM with
infinite-range hopping; hydrodynamics of the corresponding
unbounded version of the model (i.e., UgLHM with aggrega-
tion) will be presented elsewhere [48].

We now proceed by noting that the mass or the gap
distribution P(gk|ρ ′) at “site” k in UgLHM with a given ρ ′
is related to the required correlations in gLHM as

B(l+2)(ρ) = ρP(g = l|ρ ′)

and
B(2)(ρ) = ρP(g = 0|ρ ′) = ρ[1 − c (ρ ′)],

where c (ρ ′) is the occupation probability in UgLHM. Using
the identities

ρ ′ = 〈g〉 =
∑

g

gP(g|ρ ′)

and ∞∑
l ′=1

l ′ ∂B(l ′+2)(ρ)

∂ρ
= ∂ (ρρ ′)

∂ρ
,

we find that one actually requires only the second mo-
ment θ2(ρ ′) = ∑

g g2P(g|ρ ′) of the gap distribution P(g|ρ ′) to
obtain the bulk-diffusion coefficient and the conductivity

D(ρ) = p

2
− q

2

d (ρρ ′)
dρ

(18)
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and

χ (ρ) = p

2
ρc (ρ ′) + q

2
ρθ2(ρ ′), (19)

respectively, where we c (ρ ′) is the probability that a site
is occupied in UgLHM. Now one can immediately cal-
culate θ2(ρ ′) by assuming a statistical independence be-
tween neighboring masses in UgLHM, which, as a finite-
size scaling analysis indicates, is possibly exact (see the Ap-
pendix Sec. A 3 for further discussion). Finally, some further
algebraic manipulations, using c (ρ ′) = ρ ′(p − qρ ′)/p(1 +
ρ ′), θ2(ρ ′) = pρ ′[1 + c (ρ ′)]/[p{1 − c (ρ ′) − 2qρ ′}] and ρ ′ =
1/ρ − 1, give explicit expressions of the two transport coeffi-
cients,

D(ρ) = p + q

2
, (20)

χ (ρ) = ρ(1 − ρ)[(p + q)ρ2 − 2qρ + q]

2[ρ2 − q/(p + q)]
, (21)

the second main results of the paper; for calculation details,
see the Appendix Sec. A 3. Therefore in gLHM with infinite-
range hopping, though the bulk-diffusion coefficient remains
finite (constant), interestingly, upon approaching a critical
density (or activity), the conductivity develops a singularity - a
first-order pole, signifying a phase transition beyond a critical
density ρc(q) = q̃1/2 [or a critical activity q̃c(ρ) = ρ2]. As
discussed later in Sec. III E, at criticality and beyond (i.e.,
for ρ � ρc or q̃ � q̃c), the bulk of the system behaves like a
“superfluid,” having diverging conductivity χ (ρ) ∼ θ2(ρ) ∼
(ρ − ρc)−1 [equivalently, vanishing resistivity ∼(ρ − ρc)].
That is, the emerging superfluidity is a direct consequence of
diverging gap or vacancy fluctuations, through which cooper-
ativity emerges in the system.

C. Density relaxation

In this section, we study density relaxation from an initial
density perturbation in the generalized long-hop model, with
the original unbiased hopping rates (F = 0). As derived in
the previous sections, the process of density relaxation is
governed by Eq. (2) with F = 0,

∂ρ(x, t )

∂t
= ∂

∂x

[
D(ρ)

∂ρ(x, t )

∂x

]
, (22)

where x = i/L is rescaled position and t is hydrodynamic
rescaled time (in unit of L2). To verify the above hydro-
dynamic time evolution of density field, we solve Eq. (22),
with a suitable initial condition ρ(x, t = 0), by performing
numerical integration of the equation for finite-range hop-
ping with l = 2 as well as infinite-range hopping (l → ∞).
From Eq. (16), the bulk-diffusion coefficient for l = 2 can be
written as

D(ρ) = p

2
− q

2

∂B(3)(ρ)

∂ρ
− q

∂A(2)(ρ)

∂ρ

= p

2
− q

2

∂[ρP(g = 1|ρ)]

∂ρ
− q

∂P(g � 2|ρ)

∂ρ
, (23)

where B(3) = ρP(g = 1|ρ) with P(g = 1|ρ) being the prob-
ability of a gap of unit size and A(2) = P(g � 2|ρ) is the
probability of a gap of size greater than or equal to 2, provided

 0.01

 0.1
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 0.35  0.45  0.55  0.65

ρ(
x,

t)-
ρ 0

x

 0.01

 0.1

 0.4  0.45  0.5  0.55  0.6

ρ(
x,

t)-
ρ 0

FIG. 2. Density relaxation in gLHM from two-step initial con-
dition. Density profiles δρ(x, t ) = ρ(x, t ) − ρ0 (line) obtained by
numerically integrating Eq. (22) are compared with that obtained
from microscopic simulations (points) at t = 0 (blue, initial profile -
topmost one), t = 0.5 × 10−3 (green, second profile from top), 10−3

(magenta, third profile from top), 2 × 10−3 (red, fourth profile from
top), and 5 × 10−3 (black, fifth profile from top). Top panel: Finite-
range hopping with l = 2, ρ0 = 0.5, and ρ1 = 0.5; bottom panel:
Infinite-range hopping with l → ∞, ρ0 = 0.75, and ρ1 = 0.25. We
take w = 0.1 and L = 1000 in both cases.

density is ρ. As we do not have the explicit expressions for
the probabilities P(g = 1|ρ) and P(g � 2|ρ), we obtain, the
numerical values of bulk-diffusion coefficient as a function of
density by directly calculating the above probabilities from
simulations. For infinite-range hopping, we use the bulk-
diffusion coefficient as given in Eq. (20) to solve Eq. (22).
We take the initial density perturbation as a two-step function
of height ρ1 and width w over a uniform density profile ρ0,
i.e., the initial density profile is given by

ρ(x, t = 0) =
{
ρ0 + ρ1 for |x − 1

2 | < w
2 ,

ρ0 otherwise.

In Fig. 2 we plot density profile δρ(x, t ) = ρ(x, t ) − ρ0, ob-
tained from simulations, as a function of rescaled position
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x = i/L at various hydrodynamic times t = 0 (blue points,
initial profile), t = 0.5 × 10−3 (green), 10−3 (magenta), 2 ×
10−3 (red), and 5 × 10−3 (black) for finite-range hopping (l =
2, ρ0 = 0.5, top panel) and infinite-range hopping (l → ∞,
ρ0 = 0.75, bottom panel); in both cases, we take L = 1000
and p = q = 1/2. The simulations (points) compare quite
well with the hydrodynamic theory (lines).

D. Einstein relation

In this section, we demonstrate, using macroscopic fluc-
tuation theory, how the hydrodynamic transport coefficients
can be related to particle-number fluctuations in generalized
long-hop model. While hydrodynamics provides average be-
havior of the system on a local coarse-grained level, there
are also fluctuations in local observables, such as density
ρ̂(x, t ) and current ĵ(x, t ), whose probabilities are provided
by macroscopic fluctuation theory in terms of the two trans-
port coefficients [42]. More specifically, if the transport co-
efficients are known as a function of density, macroscopic
fluctuation theory predicts the steady-state joint probability
P[{ρ̂(x, t ), ĵ(x, t )}] of density ρ̂(x, t ) and current ĵ(x, t ) tra-
jectories in a given domain of space x ∈ � and time t ∈ [0, T ]
[42,49],

P[{ρ̂(x, t ), ĵ(x, t )}] ∼
∫

Dρ̂

∫
D ĵδ(∂ρ̂/∂t + ∂ ĵ/∂x)

× exp

{
−L

∫ T

0
dt

∫
�

dx
[ j − D(ρ̂)∂ρ̂/∂x]2

4χ (ρ̂)

}
, (24)

where the Dirac δ function imposes the constraint of con-
tinuity equation ∂ρ̂/∂t + ∂ ĵ/∂x = 0 and L is the system
size. On a periodic domain, the large-deviation probability
P[{ρ̂(x)}] of a given density profile ρ̂(x, t ) can be obtained
simply in terms of a local equilibrium-like free energy-density
functional V [ρ̂(x)],

P[{ρ̂(x)}] ∼ e−LV [ρ̂(x)],

where V [ρ̂(x)] = ∫
�

dx[ f (ρ̂) − f (ρ) − μ(ρ)(ρ̂ − ρ)], ρ is
global density, f (ρ) is a nonequilibrium free energy-density
function, and μ(ρ) = df /dρ is a nonequilibrium chemical
potential [42]. The functional dependence of free energy
density on number density is determined by integrating a
fluctuation-response relation between a nonequilibrium com-
pressibility and number fluctuation [44],

dρ

dμ
= σ 2(ρ), (25)

through an Einstein relation (ER) [42],

σ 2(ρ) = χ (ρ)

D(ρ)
, (26)

where σ 2(ρ) is the scaled particle-number fluctuation and ρ is
the global density. In the above equation, we have defined the
scaled number fluctuation as

σ 2(ρ) = lim
lsub→∞

〈(
n)2〉
lsub

,

where 〈(
n)2〉 = 〈(n − 〈n〉)2〉 is the variance of particle num-
ber n = ∑lsub

i=1 ηi in a subsystem of size lsub.
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σ2 (ρ
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FIG. 3. Verification of the ER (26) in gLHM. Scaled variance
σ 2(ρ ) of subsystem particle number obtained from simulations
(points) and the ratio χ (ρ )/D(ρ ) of transport coefficients obtained
from hydrodynamic theory (lines) is plotted as a function of den-
sity ρ. Top panel: Finite-range hopping (l = 2) and bottom panel:
Infinite-range hopping (l → ∞). For l = 2 (top panel), system size
L = 5000 and subsystem of size lsub = 50; for l → ∞ (bottom
panel), system size L = 10 000 and subsystem sizes lsub = 50 (red
triangles), 100 (green circles), and 200 (black rectangles); we take
p = q = 1/2 throughout and therefore ρc = 1/

√
2. Inset, bottom

panel: We plot scaled variance σ 2(ρ ) as a function of (ρ − ρc ),
where the guiding line (dashed) shows the simple-pole singularity
σ 2(ρ ) ∼ (ρ − ρc )−1 as predicted by the ER (26).

Therefore, for a diffusive system on a periodic domain,
which is the case for a generalized long-hop model on a ring,
macroscopic fluctuation theory predicts an equilibrium-like
ER between the ratio of the transport coefficients and the
number fluctuation. Next we verify the ER for gLHM with
finite as well as infinite-range hopping. To this end, in Fig. 3
we plot scaled variance σ 2(ρ) of subsystem particle number,
obtained from simulations (points), and theoretically obtained
ratio χ (ρ)/D(ρ) of the conductivity and the bulk-diffusion
coefficient (lines) as a function of density ρ for p = q = 1/2
and for finite (l = 2, top panel) and infinite (l → ∞, bottom
panel) range hopping. To check the ER for l = 2, we use the
numerical values of the bulk-diffusion coefficient D(ρ) as a
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function of density using Eq. (23) and the conductivity

χ (ρ) = q

2
B(3)(ρ) + p

2
B(2)(ρ) + 2q

[
A(2)(ρ) − A(3)(ρ)

]
,

using Eq. (17), where B(3)(ρ) = ρP(g = 1|ρ), B(2)(ρ) =
ρP(g = 0|ρ), A(2)(ρ) = P(g � 2|ρ) and A(3)(ρ) = P(g �
3|ρ) are directly evaluated as a function of density from
simulations by calculating the gap distribution P(g|ρ). For
l → ∞, we use the analytic expressions in Eqs. (20) and (21)
to calculate the ratio of the transport coefficients χ (ρ)/D(ρ).
In both cases of finite- and infinite-range hopping, we find
that the ER as in Eq. (26) is quite well satisfied, thus estab-
lishing a direct connection between number fluctuation and
transport in the generalized long-hop model. Note that, though
it remains finite for any density and activity in the case of
finite-range hopping, number fluctuation diverges in the case
of infinite-range hopping upon approaching critical density
ρc = 1/

√
2 and remains diverging beyond. In inset of bottom

panel of Fig. 3, we plot the scaled number fluctuation σ 2(ρ)
for infinite-range hopping as a function of 
 = (ρ − ρc),
demonstrating that, similar to the conductivity, the number
fluctuation also has a simple-pole singularity σ 2 ∼ 
−1, as
predicted by the ER.

E. “Superfluid” transition and “giant” number fluctuation
for infinite-range hopping

As shown in Sec. III B, the generalized long-hop model
with infinite-range hopping undergoes a “superfluid” tran-
sition beyond a critical value of density ρ � ρc = q̃1/2 or
beyond a scaled activity q̃ � q̃c = ρ2 where q̃ = q/(p + q). It
is quite instructive to analyze the nature of the phase transition
through the dynamics of gaps or vacancies in the light of
a previously studied mass aggregation model [45], which is
the unbounded version of gLHM with infinite-range hopping.
Let us consider two adjacent gaps, which are separated by
a particle and subsequently coalesce into a larger gap as
the particle performs a long-range hop. The impossibility
of the reverse process corresponding to the above event is
precisely the reason for the violation of detailed balance in
the system. Clearly the above mentioned irreversible nature
of coalescence process facilitates formation of gaps of larger
sizes. However, short-range hops reduce a gap as particles
on either side of a gap invade inside it and thus fragment
a vacancy cluster. For ρ < ρc = q̃1/2, the system organizes
itself in such way that long hops win over short hops, leading
to the formation of a macroscopic gap—a “condensate” of
vacancies or holes. Due to the formation of a macroscopic
size vacancy cluster, translational symmetry of the system
breaks down, and accordingly the phase is called an “ordered”
one. On the other hand, for ρ � ρc (or q � q̃c), the system
remains homogeneous, and the corresponding phase is called
a “disordered” one.

Importantly, the simple-pole singularity in the conductivity
χ (ρ) has the following implications.

1. Simple-pole singularity in number fluctuation

As shown in bottom panel of Fig. 3 for infinite-range
hopping, particle-number fluctuation diverges near criticality
(and remains diverging beyond). This can be immediately

10-2

10-1

10+0

 1  10  100

c(
r)

r

 r-1/2

10-5

10-3

10-1

 1  100

condensate

P(
g)

g

g-5/2

FIG. 4. Two-point correlation function c(r) = (〈ηiηi+r〉 − ρ2) is
plotted as a function of distance r is plotted for densities ρ =
0.9 (magenta, bottom-most line), 0.8 (sky blue, second line from
bottom), and 0.71 (red, third line from bottom - near criticality).
The power-law tail of c(r) ∼ r−1/2 near critical point ρ = 0.71
demonstrates the presence of long-ranged spatial correlation in the
system. Inset: Gap distribution P(g) is plotted as a function of gap
size g is for densities ρ = 0.9 (magenta, bottom-most line), 0.8 (sky
blue, second line from bottom), 0.71 (red, third line from bottom -
near criticality), and 0.5 (green).

understood from ER σ 2(ρ) = χ (ρ)/D(ρ) [Eq. (26)], which
implies a simple pole in the scaled subsystem particle-number
fluctuation σ 2(ρ) ∼ (ρ − ρc)−1, leading to diverging particle-
number fluctuation near criticality (see inset of Fig. 3).

2. Gap distribution and condensation transition

For density ρ < ρc (or q̃ > q̃c), the system exhibits bi-
modal gap distribution in the ordered phase, signifying a
condensation transition (CT) in the system [44,45]. Indeed,
following Ref. [44] and using fluctuation-response relation
Eq. (25), we can show that the simple-pole singularity
structure of scaled number fluctuation σ 2(ρ) ∼ (ρ − ρc)−1

implies a gap distribution P(g) ∼ const g−5/2 + const δ[g −
(ρ ′ − ρ ′

c)N] with ρ ′ being corresponding mass density in
UgLHM as in Eq. (1), having a power-law tail near criticality
and a “delta peak” at a macroscopic gap of size (ρ ′ − ρ ′

c)N
in the ordered phase [45]; see the Appendix Sec. A 4 for
details. In inset of Fig. 4, we plot gap distribution P(g) as a
function of gap size g for various densities ρ = 0.9 (magenta),
0.8 (sky blue), 0.71 (red, near criticality) and 0.5 (green,
ordered phase); one can see the power-law tail near criticality
(red line) and, beyond criticality (ρ < 1/

√
2), there appears,

in addition to the power-law tail, a peak at a large gap,
indicating the formation of a macroscopic size vacancy (hole)
cluster in the system. Notably, the transition from the homo-
geneous fluid phase to the translational-symmetry-broken
ordered phase, being a coexisting phase of two distinct den-
sities, is of first order.
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3. Long-ranged spatial correlations

Not surprisingly, as the system becomes infinitely conduct-
ing, long-ranged spatial correlations is expected to build up in
the system; in fact, they are present near the critical point as
well as in the ordered phase. For gLHM near criticality, fol-
lowing Refs. [44] and [50], we calculate the two-point density
correlation c(r) = (〈ηiηi+r〉 − ρ2) ∼ r−1/2 exp(−r/ξ ), which
has a power-law tail with exponent 1/2 and a cutoff distance,
called the correlation length, ξ ∼ (ρ − ρc)−ν where ν = 2
(shown below by using simple scaling arguments); also see
Appendix Sec. A 5 for calculation details. In Fig. 4 we have
plotted correlation function c(r) as a function of distance r
for various densities ρ = 0.9 (magenta), 0.8 (sky blue), and
0.71 (red). Theoretically obtained r−1/2 power-law tail (red
line) in the correlation function c(r) agrees quite well with
that obtained from simulations (points).

4. Giant number fluctuations

Due to the presence of the long-ranged correlations, there
are “giant” number fluctuations in the system near criti-
cality as well as in the ordered phase, where infinite con-
ductivity, through the ER, immediately implies diverging
fluctuations [see point (1)]; in other words, the diverging
conductivity, being related to diverging vacancy fluctuations,
leads to the giant number fluctuations (see Sec. III B). In-
deed, for infinite-range hopping, we obtain, by using sim-
ple scaling arguments, the critical behavior of the standard
deviation of subsystem particle number

√
〈(
n)2〉 ∼ 〈n〉α′

where we find α′ > 1/2, implying “giant” number fluctuation.
The diverging fluctuations persist in the bulk even in the
ordered phase because changing the global density in the
ordered phase affects only the condensate size, whereas
the density of the bulk “superfluid” remains the same. Indeed
the power-law form of the density correlation can be related
to the diverging number fluctuation as following. Near criti-
cality as 
 = (ρ − ρc) → 0 and correlation length ξ ∼ 
−ν ,
the scaled variance σ 2(ρ) is related to the integrated corre-
lation function as σ 2(ρ) 	 ∫

c(r) dr ∼ ∫ ξ

0 r−1/2dr ∼ ξ 1/2 ∼

−ν/2. Explicitly using simple-pole singularity of scaled
number fluctuation σ 2 ∼ 
−1 ∼ 
−ν/2, we straightforwardly
obtain ν = 2. Moreover, taking the correlation length ξ ∼
lsub � 1 (but still assuming lsub  L), the standard deviation
of subsystem particle number n in a subsystem of length lsub is
given by

√
〈(
n)2〉 =

√
(〈n2〉 − 〈n〉2) ∼

√
lsubξ 1/2 ∼ (lsub)α

′
,

leading to the scaling exponent α′ = 3/4 > 1/2 correspond-
ing to “giant” number fluctuation with the standard deviation√

〈(
n)2〉 ∼ 〈n〉α′
. However, when the subsystem size lsub ∼

L is of order system size, there is a strong finite-size effect,
and the correlation length, which is related to the width of
mass fluctuation in UgLHM, has a scaling ξ ∼ L2/3 [51]. In
that case, the standard deviation of subsystem particle number
scales slightly differently and interestingly crosses over to the
following scaling of the giant number fluctuation

√
〈(
n)2〉 ∼√

Lξ 1/2 ∼ Lα′
with exponent α′ = 2/3.

As evident from the above discussions, the superfluidlike
transition, characterized by a diverging conductivity, is in-
timately connected to the giant number fluctuations in the
system.

IV. SUMMARY AND CONCLUDING REMARKS

We have derived hydrodynamics of a prototypical model
of self-propelled particles, called the generalized long-hop
model (gLHM). The model system consists of hardcore par-
ticles on a lattice with a ring geometry. A particle hops
symmetrically a variable distance, chosen from a probability
distribution, provided there is an empty lane (a cluster of
vacancies or holes) in front of it; however, if the chosen hop
length at any time is greater than the length of the empty
lane, also called gap, the particle sits just at the end of the
lane adjacent to the nearest particle in that hopping direction
(i.e., particle crossing is not allowed). The dynamics captures,
albeit in a crude way, the ballistic motion in self-propelled
particles, such as bacteria [2,4], which, due to persistence,
traverse a relatively long distance in a straight stretch during a
typical time interval τ0 - the persistence time of the individual
bacteria. Clearly, on a timescale τ0, a self-propelled particle
can be simply considered to have made a “long-range hop”
of distance l = uτ0, with u being the typical speed of the
particles. For generic parameter values, the model violates
detailed balance, which is manifest in the formation of large
vacancy clusters. Indeed, an entire vacancy cluster can move
in unison and merge with neighboring vacancies to create an
even larger cluster, thus bringing in large vacancy fluctuation
and clustering, or cooperativity, in the system. The short-range
hops on the other hand favor fragmentation of clusters and
try to homogenize the system. In the limit of infinite-range
hopping and beyond the critical values of density and activity,
long-hops dominate over short-hops and vacancy clusters
grow up to macroscopic size and form a “condensate.”

To study the response of the system to a small external per-
turbation, we apply, following macroscopic fluctuation theory,
a small force field, which couples to local particle number by
making forward (along the force field) and backward particle-
hopping rates slightly asymmetric, i.e., the forward hopping
rates being slightly more favorable than the backward ones.
In that case, the large-scale hydrodynamic evolution of the
local density is governed by two density-dependent transport
coefficients—the bulk-diffusion coefficient D(ρ) and the con-
ductivity χ (ρ). When the typical long-range hop length is
finite, the two transport coefficients remain finite as a function
of density as well as activity. However, when the typical
long-range hop length diverges, as in the case of infinite-
range hopping considered in Sec. III B, the system organizes
itself in such a way that it undergoes a “superfluid” transition
upon tuning global density and activity. Upon approaching the
superfluid phase, say, by tuning the activity, the conductivity,
which is directly related to vacancy fluctuations, starts diverg-
ing and the “giant” number fluctuations appear in the system;
note that the diffusivity remains finite even at criticality. Upon
increasing the activity further into the ordered phase, diverg-
ing conductivity and giant-number fluctuations both persist.
Moreover, we demonstrate that, in both cases of finite- and
infinite-range hopping, the scaled subsystem number fluctua-
tion σ 2(ρ) is related to the ratio of the transport coefficients,
through an ER σ 2(ρ) = χ (ρ)/D(ρ). Indeed, for infinite-range
hopping, the ER establishes a direct connection between the
diverging conductivity and the “giant” number fluctuation in
the system. Furthermore, we argue, through additivity prop-
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erty and ER, how the singularity of the conductivity implies a
condensation transition from a disordered finite-conductivity
fluid phase to an infinite-conductivity “superfluid” phase with
a coexisting vacancy “condensate”—a macroscopic cluster of
vacancies or “holes.” In short, we demonstrate in a model of
self-propelled particles, called generalized long-hop model,
that superfluidity, condensation transition and giant number
fluctuations are intimately connected to each other.

It is quite remarkable that the above mentioned condensa-
tion or “clustering” transition, somewhat contrary to the naive
expectation, is actually induced by an instability in the con-
ductivity, not by the usual diffusive instability. In that sense,
the phase transition is truly a nonequilibrium one and, in the
classical regime, presumably does not have any equilibrium
counterpart. Thus the hydrodynamic theory of the generalized
long-hop model provides a definitive, but hitherto unantici-
pated, unified mechanism of anomalous transport and fluctu-
ations, both of which together, being typical of self-propelled
particles, characterize long-ranged correlations in the system.
In retrospect, in a self-propelled-particle system such as in
Ref. [1], it is perhaps not difficult to visualize large clusters of
highly mobile masses and the resulting long-ranged velocity
correlations setting in the system. Indeed, the coherent motion
of masses, as incorporated in the dynamical rules of gLHM,
helps the system organizing into an infinitely conducting
state, where the large mobility of masses contributes to the
enhancement of the “compressibility” [encoded in Eqs. (25)
and (26)], resulting in “giant” number fluctuations in the
system. The analytical results of this paper lend credence to
the scenario that the “giant” number fluctuations in active-
matter systems are actually be governed by an underlying
superfluidlike structure.

We believe our study could be relevant in the context
of collective behaviors of micro-organisms as in a bacterial
colony. It is interesting to note that superfluidlike transitions
have been observed experimentally in bacterial suspensions
[30], where viscous resistance to the bacteria moving in the
surrounding solvent medium is shown to be highly reduced.
Though the bacterial superfluidity can be influenced by fluid
dynamical interactions between swimming bacteria and the
solvent medium [22], our hydrodynamic theory could pro-
vide another route to understanding the above experimental
observations.

The generalized long-hop model elucidates not only the
delicate interplay between persistence and interactions in self-
propelled particles, but also connects to the paradigmatic
mass-aggregation processes, which have been studied inten-
sively [45–47]. Furthermore, to the question of what the sig-
nature of condensation and superfluid transition would be in
a self-propelled particle system, one can verify the following:
(a) bimodal cluster size distribution (of vacancies or particles)
having a power-law tail and a peak at a macroscopic value
and (b) the conductivity having a pole at a critical density and
diverging beyond; in generalized long-hop model, as demon-
strated here, superfluidity and condensation are inextricably
intertwined though. The above considerations indeed leave
open the intriguing possibility of characterizing a broad class
of self-propelled particles through the characteristics of a
superfluid transition [10,14,15,31]. Overall, we believe our
results would provide a fresh perspective on the collective

behaviors of self-propelled particles, which are often seen in
the light of motility-induced phase separation [23].
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APPENDIX

Here we provide calculation details of deriving the loss
and gain rates at a particular site for short- and long-range
hopping.

1. gLHM with hop-length distribution φ(l ′ ) = δl ′,l
having finite hopping range l

a. Hydrodynamics

In order to calculate conductivity in the hydrodynamic
time-evolution equation of density field, we bias the system
by applying a small force of magnitude F , say, in an anti-
clockwise direction. Due to the presence of a small constant
biasing force F , hopping rates are modified. We denote the
modified long-hop rates as qF

R (l ) and qF
L (l ) and the modified

short-hop rates as pF
R and pF

L , where the subscripts “R” and
“L” denote anticlockwise (in the direction of the biasing
force) and clockwise (opposite to biasing force) directions,
respectively. We explicitly write the lattice spacing a in the
equations below.

b. Gap size g < l

When gap size g < l where l is the maximum possible hop
length, the mass loss and gain in this case (including the short
hop) are shown below through all possible hopping events and
the corresponding gain and loss rates.

The rate of loss of mass from site i due to hopping of length
g and short hop to the right:

J−
R,<(i → i + g) = qF

R (g)

2
〈ηiηi+1 . . . ηi+gηi+g+1〉

+ pF
R

2
〈ηiηi+1〉

	 qF
R (g)

2
B(g+2)

i+g+1 + pF
R

2
〈ηi(1 − ηi+1)〉,

where we denote the correlation 〈ηi−1ηiηi+1 . . . ηi+g−1ηi+g〉 ≡
B(g+2)

i+g . For this particular hopping event to be possible, the
following conditions to be satisfied: (1) Site i must be occu-
pied, (2) the sites from (i + 1) up to (i + g) must be vacant
(so that the particle can jump a distance g), and (3) then the
site (i + g + 1) must be occupied [so that the particle does not
jump beyond site (i + g)]. Similarly, other possible gain and
loss terms can be constructed as given below.
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The rate of gain of mass from site i + g due to hopping of length g and short hop to the left,

J+
L,<(i + g → i) = qF

L (g)

2
〈ηi−1ηi . . . ηi+g−1ηi+g〉 + pF

L

2
〈ηiηi+1〉

	 1

2
qF

L (g)B(g+2)
i+g + 1

2
pF

L 〈(1 − ηi )ηi+1〉.
The rate of loss of mass from site i due to hopping of length g plus short hop to the left,

J−
L,<(i → i − g) = qF

L (g)

2
〈ηi−g−1ηi−g . . . ηi−1ηi〉 + pF

L

2
〈ηi−1ηi〉

= 1

2
qF

L (g)B(g+2)
i + 1

2
pF

L 〈(1 − ηi−1)ηi〉.
The rate of gain of mass at site i due to hopping of length g and short hop to the right,

J+
R,<(i − g → i) = qF

R (g)

2
〈ηi−gηi−g+1 . . . ηiηi+1〉 + pF

R

2
〈ηi−1ηi〉

= 1

2
qF

R (g)B(g+2)
i+1 + 1

2
pF

R〈ηi−1(1 − ηi)〉.
Therefore, net rate of change of mass at site i due to the above hopping processes can be written as

J+
L,<(l ) − J−

R,<(l ) + J+
R,<(l ) − J−

L,<(l )

=
l−1∑
g=1

[
J+

L,<(i + g → i) − J−
R,<(i → i + g) + J+

R,<(i − g → i) − J−
L,<(i → i − g)

]

= −q

2

l−1∑
g=1

[{(
1 + Fga

2

)
B(g+2)

i+g+1 −
(

1 − Fga

2

)
B(g+2)

i+g

}
−

{(
1 + Fga

2

)
B(g+2)

i+1 −
(

1 − Fga

2

)
B(g+2)

i

}]
,

− p

2

[(
1 + Fa

2

)
〈ηi(1 − ηi+1)〉 +

(
1 − Fa

2

)
〈(1 − ηi−1)ηi〉 −

(
1 − Fa

2

)
〈(1 − ηi )ηi+1〉 −

(
1 + Fa

2

)
〈ηi−1(1 − ηi)〉

]

= −q

2

l−1∑
g=1

[. . . ] + p

2
[〈ηi+1〉 − 2〈ηi〉 + 〈ηi−1〉] + p

2

Fa

2

[−(〈ηi+1〉 − 〈ηi−1〉) + 2(〈ηiηi+1〉 − 〈ηi−1ηi〉)
]
. (A1)

By denoting 〈ηi〉 = ρi and 〈ηi−1ηi〉 = B(2)
i , we obtain the net flux corresponding to the events when g < l as given below:

J+
L,<(l ) − J−

R,<(l ) + J+
R,<(l ) − J−

L,<(l ) = p

2
[ρi+1 − 2ρi + ρi−1] − p

2

Fa

2

[
(ρi+1 − ρi−1) − 2

{
B(2)

i+1 − B(2)
i

}]
− q

2

l−1∑
g=1

[{(
1 + Fga

2

)
B(g+2)

i+g+1 −
(

1 − Fga

2

)
B(g+2)

i+g

}

−
{(

1 + Fga

2

)
B(g+2)

i+1 −
(

1 − Fga

2

)
B(g+2)

i

}]
. (A2)

We now perform a small-gradient O(1/L) Taylor series expansion as given below:

B(k)
i+1 ≡ B(k)(x + 1/L)

	 B(k)[ρ(x)] + 1

L
∂xB(k)[ρ(x)] + 1

2L2
∂2

x B(k)[ρ(x)],

B(k)
i+g+1 ≡ B(k)[x + (g + 1)/L]

	 B(k)[ρ(x)] + (g + 1)

L
∂xB(k)[ρ(x)] + (g + 1)2

2L2
∂2

x B(k)[ρ(x)],

B(k)
i+g ≡ B(k)(x + g/L)

	 B(k)[ρ(x)] + g

L
∂xB(k)[ρ(x)] + g2

2L2
∂2

x B(k)[ρ(x)].
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In the diffusive scaling limit i → x = i/L, t → t/L2 and
a → 1/L, we can recast the net rate of change of mass in the
form of the divergence of a current up to O(1/L2),

J+
L,< − J−

R,< + J+
R,< − J−

L,< = ∂

∂x

[
D<(ρ)

∂ρ

∂x
− χ<(ρ)F

]
,

(A3)

where we denote

D<(ρ) = −q

2

∂

∂ρ

⎡⎣ l−1∑
g=1

gB(g+2)(ρ)

⎤⎦ + p

2

= −q

2

∂

∂ρ

⎡⎣ρ

l−1∑
g=1

gP(g|ρ ′)

⎤⎦ + p

2
, (A4)

χ<(ρ) = q

2

l−1∑
g=1

g2B(g+2)(ρ) + p

2
(ρ − B(2)(ρ))

= q

2
ρ

l−1∑
g=1

g2P(g|ρ ′) + p

2
(ρ − B(2)(ρ)), (A5)

by noting that the correlation B(g+2)(ρ) in gLHM with density
ρ is related to the single-site mass distribution P(g|ρ ′) in
UgLHM with density ρ ′ = 1/ρ − 1.

c. Gap size g � l

Let us first consider the case for which the gap in front of
the ith site is larger than or equal to l . In that case maximum
hop length is l . If a particle hops from the ith site to the (i +
l )th site, the corresponding mass-loss rate is given by

J−
R,�(i → i + l ) = q

2

(
1 + Fla

2

)
〈ηiηi+1ηi+2 . . . ηi+l〉

= q

2

(
1 + Fla

2

)
〈(1 − ηi )ηi+1ηi+2 . . . ηi+l〉,

(A6)

where we denote ηi = (1 − ηi ).

Similarly if a particle hops from the (i + l )th to ith site, the
corresponding mass-gain rate is given by

J+
L,�(i + l → i) = q

2

(
1 − Fla

2

)
〈ηi+lηi+l−1ηi+l−2 . . . ηi〉

= q

2

(
1 − Fla

2

)
〈(1 − ηi+l )ηi+l−1ηi+l−2 . . . ηi〉.

(A7)

The net gain rate from the right side of ith site is written as,
by adding the above two terms,

J+
L,�(i + l → i) − J−

R,�(i → i + l )

= q

2
{〈ηi+l−1ηi+l−2 . . . ηi〉 − 〈ηi+1ηi+2 . . . ηi+l〉}

−qFla

4

{〈ηi+l−1ηi+l−2 . . . ηi〉

+ 〈ηi+1ηi+2 . . . ηi+l〉 − 2〈ηiηi+1ηi+2 . . . ηi+l〉
}

= q

2

[
A(l )

i+l−1 − A(l )
i+l

]
− qFla

4

[
A(l )

i+l−1 + A(l )
i+l − 2A(l+1)

i+l

]
.

(A8)

Similarly, the net gain rate from the left side of site i can be
written as

J+
R,�(i − l → i) − J−

L,�(i → i − l )

= q

2

[
A(l )

i − A(l )
i−1

] + qFla

4

[
A(l )

i + A(l )
i−1 − 2A(l+1)

i

]
.

(A9)

Therefore the net rate of change of mass at site i due to
the above processes can be written by adding the above four
terms, which, in the diffusive scaling limit i → x = i/L, t →
t/L2 and lattice spacing a → 1/L, reduces to the divergence
of a hydrodynamic current up to O( 1

L2 ),

J+
L,� − J−

R,� + J+
R,� − J−

L,� = q

2

[{
A(l )[x + (l − 1)/L] − A(l )(x + l/L)

} − {
A(l )(x − 1/L) − A(l )(x)

}]
− qFla

4

[{
A(l )[x + (l − 1)/L] + A(l )(x + l/L)

} − {
A(l )(x − 1/L) + A(l )(x)

}
− 2

{
A(l+1)(x + l/L) − A(l+1)(x)

}]
⇒ J+

L,� − J−
R,� + J+

R,� − J−
L,� = ∂

∂x

[
D�(ρ)

∂ρ

∂x
− χ�(ρ)F

]
, (A10)

where we denote

D�(ρ) = −ql

2

∂A(l )(ρ)

∂ρ
,

χ�(ρ) = ql2

2

[
A(l )(ρ) − A(l+1)(ρ)

]
,

052611-12



HYDRODYNAMICS, SUPERFLUIDITY, AND GIANT … PHYSICAL REVIEW E 101, 052611 (2020)

and use Taylor series expansion,

A(l )
i+l ≡ A(l )(x + l/L)

	 A(l )[ρ(x)] + l

L

∂A(l )[ρ(x)]

∂x
+ l2

2L2

∂2A(l )[ρ(x)]

∂x2
+ . . .

and

A(l+1)
i+l ≡ A(l+1)(x + l/L)

	 A(l+1)[ρ(x)] + l

L

∂A(l+1)[ρ(x)]

∂x
+ l2

2L2

∂2A(l+1)[ρ(x)]

∂x2
+ . . . ,

and similarly for the other terms.

d. Continuity equation for local density

Considering all possible hopping events and summing over the corresponding gap sizes, we obtain the hydrodynamic time
evolution for the density field ρ(x, t ),

∂ρ(x, t )

∂t
= (J+

L,< − J−
R,< + J+

R,< − J−
L,<) + (J+

L,� − J−
R,� + J+

R,� − J−
L,�) = J+

R + J+
L − J−

R − J−
L

= q

2

[{
A(l )

i+l−1 − A(l )
i+l

} − {
A(l )

i−1 − A(l )
i

}] − qFl

4

[{
A(l )

i+l−1 + A(l )
i+l

} − {
A(l )

i−1 + A(l )
i

} − 2
{
A(l+1)

i+l − A(l+1)
i

}]
+

l−1∑
l ′=1

q

2

[{
B(l ′+2)

i+1 − B(l ′+2)
i

} − {
B(l ′+2)

i+l ′+1 − B(l ′+2)
i+l ′

}] −
l−1∑
l ′=1

qFl ′

4

[{
B(l ′+2)

i+l ′+1 + B(l ′+2)
i+l ′

} − {
B(l ′+2)

i+1 + B(l ′+2)
i

}]
+ p

2
[ρi+1 − 2ρi + ρi−1] + pF

4

[{ρi−1 − ρi+1} + 2
{
B(2)

i+1 − B(2)
i

}] ≡ − ∂

∂x

[
− Dl (ρ)

∂ρ

∂x
+ χl (ρ)F

]
, (A11)

where we denote J+
R = J+

R,< + J+
R,�, J+

L = J+
L,< + J+

L,�,
J−

R = J−
R,< + J−

R,� and J−
L = J−

L,< + J−
L,� and the transport

coefficients—the bulk-diffusion coefficient Dl (ρ) and the
conductivity χl (ρ), are given by

Dl (ρ) = D<(ρ) + D�(ρ)

= p

2
− q

2

∂

∂ρ

⎡⎣ l−1∑
g=1

gB(g+2)(ρ)

⎤⎦ − ql

2

∂A(l )(ρ)

∂ρ
,

χl (ρ) = χ<(ρ) + χ�(ρ)

= ql2

2

[
A(l )(ρ) − A(l+1)(ρ)

] + q

2

l−1∑
g=1

g2B(g+2)(ρ)

+ p

2
(ρ − B(2)(ρ)),

constituting the first main results of the main text.

2. Infinite-ranged gLHM with hop-length distribution
φ(l ′ ) = δl ′,l where l → ∞

In gLHM (exclusion version), a particle at a site i hops to
right or left (each direction chosen randomly with probability
1/2) with slightly biased rates qF

R /2 (pF
R/2, depending on long

or short hop) or qF
L /2 (pF

L /2), respectively, in the presence of
a small constant biasing force F according to the following
rules:

(A) Long hop: With rate qF
R (qF

L ), a particle hops, without
crossing any particle, symmetrically to right or left (with equal

probability 1/2) to the site adjacent to its nearest occupied
site, i.e., it hops g lattice spacing, provided its neighboring
empty stretch has length g.

(B) Short hop: With rate pF
R (pF

L ), a particle hops to its
right (left) nearest neighbor, provided the destination site is
unoccupied.

Below we consider all possible loss and gain terms and the
corresponding rates with which a particle leaves or enters a
site i. The rate of loss of mass or particle from site i due to
hopping of length g and short hop to the right,

J−
R (i → i + g) = 1

2 qF
R (l )〈ηiηi+1 . . . ηi+gηi+g+1〉

+ 1
2 pF

R〈ηiηi+1〉
	 1

2 qF
R (l )B(g+2)

i+g+1 + 1
2 pF

R〈ηi(1 − ηi+1)〉.
The rate of gain of mass from site i + g due to hopping of
length g and short hop to the left,

J+
L (i + g → i) = 1

2 qF
L (g)〈ηi−1ηi . . . ηi+g−1ηi+g〉

+ 1
2 pF

L 〈ηiηi+1〉,
	 1

2 qF
L (g)B(g+2)

i+g + 1
2 pF

L 〈(1 − ηi )ηi+1〉.
The rate of loss of mass from site i due to hopping of length g
plus short hop to the left,

J−
L (i → i − g) = 1

2 qF
L (g)〈ηi−g−1ηi−g . . . ηi−1ηi〉

+ 1
2 pF

L 〈ηi−1ηi〉
= 1

2 qF
L (g)B(g+2)

i + 1
2 pF

L 〈(1 − ηi−1)ηi〉.
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The rate of gain of mass at site i due to hopping of length g and short hop to the right,

J+
R (i − g → i) = 1

2 qF
R (g)〈ηi−gηi−g+1 . . . ηiηi+1〉 + 1

2 pF
R〈ηi−1ηi〉

= 1
2 qF

R (g)B(g+2)
i+1 + 1

2 pF
R〈ηi−1(1 − ηi )〉.

Therefore, the net rate of the change of mass at site i can be written as

∂ρi

∂t
=

∞∑
g=1

[J+
L (i + g → i) − J−

R (i → i + g) + J+
R (i − g → i) − J−

L (i → i − g)]

= −q

2

∞∑
g=1

[{(
1 + Fga

2

)
B(g+2)

i+g+1 −
(

1 − Fga

2

)
B(g+2)

i+g

}
−

{(
1 + Fga

2

)
B(g+2)

i+1 −
(

1 − Fga

2

)
B(g+2)

i

}]

− p

2

[(
1 + Fa

2

)
〈ηi(1 − ηi+1)〉 +

(
1 − Fa

2

)
〈(1 − ηi−1)ηi〉 −

(
1 − Fa

2

)
〈(1 − ηi )ηi+1〉 −

(
1 + Fa

2

)
〈ηi−1(1 − ηi )〉

]

= −q

2

∞∑
g=1

[{(
1 + Fga

2

)
B(g+2)

i+g+1 −
(

1 − Fga

2

)
B(g+2)

i+g

}
−

{(
1 + Fga

2

)
B(g+2)

i+1 −
(

1 − Fga

2

)
B(g+2)

i

}]

+ p

2
[ρi+1 − 2ρi + ρi−1] − p

2

Fa

2
[(ρi+1 − ρi−1) − 2{ρi+1(1 − c (ρi+1)) − ρi(1 − c (ρi ))}], (A12)

where we simply denote c(ρ) as the occupation probability in
UgLHM corresponding to the density ρ in gLHM.

We now perform a small-gradient O(1/L) Taylor series
expansion as done in the previous sections (also see main text)
and in the diffusive scaling limit i → x = i/L and t → t/L2,
we finally obtain the hydrodynamic time evolution of the
density field ρ(x, t ),

∂ρ(x, t )

∂t
= ∂

∂x

[
D(ρ)

∂ρ

∂x

]
− ∂[χ (ρ)F ]

∂x
, (A13)

where the transport coefficients, the bulk-diffusion coefficient
and the conductivity, are given by

D(ρ) = −q

2

d

dρ

⎡⎣ ∞∑
g=1

gB(g+2)

⎤⎦ + p

2

= −q

2

d

dρ

⎡⎣ρ

∞∑
g=1

gP(g|ρ ′)

⎤⎦ + p

2

= −q

2

d

dρ
[ρρ ′(ρ)] + p

2
= p + q

2
, (A14)

χ (ρ) = q

2

∞∑
g=1

g2B(g+2) + p

2
ρc [ρ ′(ρ)]

= q

2
ρ

∞∑
g=1

g2P(g|ρ ′) + p

2
ρc [ρ ′(ρ)]

= q

2
ρθ2[ρ ′(ρ)] + p

2
ρc [ρ ′(ρ)]. (A15)

Here we have used the relation B(2)(ρ) = ρP(g = 0|ρ ′) =
ρ[1 − c [ρ ′(ρ)]] where

c [ρ ′(ρ)] = ρ ′(1 − ρ ′

(1 + ρ ′)

is the probability that a site in UgLHM is occupied at a given
density

ρ ′(ρ) =
∑

g

gP(g|ρ ′) = 1

ρ
− 1,

ρ being the corresponding density in gLHM. For the deriva-
tion of occupation probability c (ρ ′) and second moment of
mass θ2[ρ ′(ρ)] as a function of density ρ ′ in UgLHM, see
the next section. Finally, using relation between c, θ2 and ρ ′
as a function of ρ in Eqs. (A14) and (A15), we obtain the
expressions for the two transport coefficients as function of
density ρ,

D(ρ) = p + q

2
; χ (ρ) = ρ(1 − ρ)[(p + q)ρ2 − 2qρ + q]

2[ρ2 − q/(p + q)]
,

which constitute the second main results of the paper, reported
in the main text.

3. Calculation of second moment 〈g2
i 〉 of local mass gi

in UgLHM with φ(l ′ ) = δl ′ l and l → ∞
We consider UgLHM with φ(l ′) = δl ′l and l → ∞. We

denote a configuration of UgLHM as a set of mass variables
{gi}. The dynamics in this special case of UgLHM consists of
two processes: chipping of a single unit of mass and diffusion
of entire stack of mass from any site i:

Chipping: With rate p, single unit mass at site i is chipped
off and transferred symmetrically to one of its nearest neigh-
bor site with equal probability 1/2:

gi → gi − 1; gi±1 → gi±1 + 1.

Diffusion: With rate q, an entire stack of mass at site i
diffuse symmetrically to one of its nearest neighbor site with
equal probability 1/2:

gi → 0; gi±1 → gi±1 + gi.
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The occupancy of the ith site is given by an indicator variable
c i at site i,

c i = (1 − δgi,0).

The local mass variable mi(t ) at site i and at time t evolves
in an infinitesimal time interval dt according to the following
stochastic dynamics:

gi(t + dt ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

gi(t ) + mi−1(t ) prob. ci−1
q
2 dt,

gi(t ) + mi+1(t ) prob. ci+1
q
2 dt,

gi(t ) − 1 prob. c i p dt,

gi(t ) + 1 prob. ci+1
p
2 dt,

gi(t ) + 1 prob. ci−1
p
2 dt,

0 prob. c iq dt,

gi(t ) prob. 1 − � dt,

(A16)

with

� =
[q

2
ci−1 + q

2
ci+1 + pc i + qc i + p

2
ci+1 + p

2
ci−1

]
.

Various moments 〈gn
i 〉 of local mass gi can be straightfor-

wardly calculated; see, e.g., Ref. [44]. Using the above time-
evolution dynamics, the second moment of local mass mi(t )
can be written as

d
〈
g2

i (t )
〉

dt
= 〈

g2
i (t )(−ciq)

〉 +
〈
g2

i+1(t )
ci+1

2
q

〉
+

〈
g2

i−1(t )
ci−1

2
q

〉
+ 2〈[gi(t )gi+1(t )ci+1q + gi(t )gi−1(t )ci−1q − gi(t )c i p]〉

+ p

2
〈gi(t )(ci+1 + ci−1)〉 + p

〈[
c i + ci+1

2
+ ci−1

2

]〉
,

which, in the steady state, leads to

0 = −q
〈
g2

i

〉 + q

2

〈
g2

i+1

〉 + q

2

〈
g2

i−1 + qρ2 − 2pρ
〉

+ qρ2 + 2pρ ′c (ρ ′) + 2pc (ρ ′),

where 〈gi〉 = ρ ′ is the density in UgLHM, 〈c i〉 = c (ρ ′) is
the occupation probability of a site in UgLHM. Note that, in
the above equation, we have used the following mean-field
assumptions: For k �= 0, 〈gigi+k〉 = ρ ′2; 〈gici+k〉 = ρ ′c (ρ ′).
This particular mean-field assumption is called the “inde-
pendent interval approximation,” which works very well in
various other mass transport processes as well. Indeed, in the
unbounded version of the model (i.e., UgLHM), finite-size
scaling analysis suggests that, for distance r �= 0, the corre-
lation function cu(r, L′) ≡ 〈gigi+r〉 − ρ ′2 	 (1/L′)C(r/L′) ∼
O(1/L′) where C(x) is bounded, implying that, in the ther-
modynamic limit, cu → 0 and therefore the above mean-field
assumption is exact.

Upon further algebraic manipulations, we obtain occupa-
tion probability in UgLHM as a function of density ρ ′,

c (ρ ′) = ρ ′(p − qρ ′)
p(1 + ρ ′)

. (A17)

Then using the time evolution of the third moment 〈g3
i 〉 and

the mean-field approximation as mentioned above, we get
the expression of the second moment 〈g2

i 〉 as a function of

density ρ ′,

〈
g2

i

〉 ≡ θ2(ρ ′) = p[1 + c (ρ ′)]ρ ′

p[1 − c (ρ ′)] − 2qρ ′ . (A18)

4. Calculation of single-site mass distribution P(g) in UgLHM
(equivalently, gap distribution in gLHM)

Assuming the approximation of independent intervals (or
independent gaps), we write the joint probability distribution
of masses, or gaps, in a product form,

prob.[{gk}] = 1

ZU

∏
k

w(gk )δ

(∑
k

gk − M

)
, (A19)

where masses or gaps {gk} are statistically independent of
each other (except for the conservation constraint) and, con-
sequently, the weight factor w(gk ) for mass or gap gk at site
k is assumed to depend on only the gap size gk (not the
neighboring gaps), M is the total mass or total gap size in
UgLHM and the normalization constant or the partition sum
can be written as

ZU =
∑
{gk}

∏
k

w(gk )δ

(∑
k

gk − M

)
. (A20)

Then the probability distribution P(gk = g) of gap size g can
be calculated as

P(gk = g) = w(g)

ZU

∑
{g′

k};k′ �=k

∏
k′

w(gk′ )δ

(∑
k′

gk′ − M + g

)
.

Provided the product form of Eq. (A19) and the knowledge
of the functional dependence of variance σ 2(ρ ′) = 〈g2

k〉 −
ρ ′2 = θ2(ρ ′) − ρ ′2 = ρ ′(1 + ρ ′)(1 + ρ ′2)/(1 − 2ρ ′ − ρ ′2) on
density ρ ′ where critical ρ ′

c = √
2 − 1 beyond which the

variance is diverging, one can analytically calculate. Indeed,
by following Ref. [44], one can show that Laplace transform
w̃(s) = ∫

w(g) exp(−sg) dg of weight factor w(g) is related
to Legendre transform of free energy density function fU (ρ ′)
in UgLHM (unbounded version of the model) as given below:

λ(s) = infρ ′ { fU (ρ ′) + sρ ′},
where λ(s) = − ln w̃(s) and free energy density function
fU (ρ ′) is calculated by integrating a fluctuation response rela-
tion d2 fU /dρ ′2 = 1/σ 2(ρ ′). The weight factor w(g) can then
be calculated from the inverse (discrete) Laplace transform.
As a consequence of the conductivity χ ∼ θ2 = ∑

g2P(g)
being proportional to the second moment of gap (in gLHM as
shown in the main text and also in UgLHM [48]) and the ER
σ 2 = χ/D (which holds also in UgLHM [48]), one can see
that the same pole-type singular structure (a simple pole) as in
the conductivity appears also in the variance σ 2(ρ ′) of gap
size, i.e., σ 2(ρ ′) ∼ (ρc − ρ ′)−1. This particular simple-pole
singularity in the variance σ 2(ρ ′) of gap implies that the
weight factor w(g), for large gap sizes g � 1, must have a
form of a power law [44],

w(g) 	 Cg−5/2, (A21)
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where C is an arbitrary constant factor. Consequently, the
probability distribution P(g) of gap size can be written as

P(g) ≡ prob.(gk = g) ∼ g−5/2eμ(ρ ′ )g, (A22)

where −μ(ρ ′) is a density-dependent cutoff; here μ can be
thought of as a nonequilibrium chemical potential (see the
discussion in the next section). As ρ ′ → ρ ′−

c (near criticality),
the chemical potential μ(ρ ′) → 0 and, at ρ ′ = ρ ′

c (criticality),
the mass (or gap) distribution P(g) ∼ g−5/2 becomes a pure
power law. Above the critical density ρ ′ > ρ ′

c, the excess mass
(or gap) of amount L(ρ ′ − ρ ′

c) forms a condensate of gap
(equivalently, a condensate of holes forms in the exclusion
version of gLHM).

5. Calculation of two-point correlation c(r) in gLHM
with φ(l ′ ) = δl ′,l and l → ∞

In this section, we calculate two-point density correlation
function using the mapping between gLHM and UgLHM (see
main text for the mapping) and the configuration probability
weight Eq. (A19) in UgLHM. Let us denote the weight factor
W (C) for a microscopic configuration C in gLHM. Then the
probability of a microscopic configuration C can be written as

P(C) = W (C)

Z (N, L)
, (A23)

where N and L are the total number of particles and lattice
sites, respectively and Z (N, L) is the corresponding partition
sum:

Z (N, L) =
∑

C

W (C). (A24)

It is not difficult to see that the partition sums ZU in UgLHM
[as in Eq. (A19)] and Z in gLHM are related to each other by
a simple prefactor [50],

Z (N, L) = L

N
ZU (N ′, L′), (A25)

where N ′ = L − N is the total mass or gap size and L′ = N is
the number of lattice sites in UgLHM (through the mapping
between gLHM and UgLHM, N ′ = L − N and L′ = N). The
generating function (discrete Laplace transform or the “grand-
canonical” partition sum) for the partition sum ZU (N ′, L′) is
given by

Z̃U (z, L′) =
∞∑

N ′=0

ZU (N ′, L′)zN ′ = [w̃(z)]L′
, (A26)

where z = eμ is the fugacity and w̃(z) is the generating
function (discrete Laplace transform) of the weight factor
w(g),

w̃(z) =
∞∑

g=0

zgw(g).

Let us now define two-point correlation function in gLHM
(the exclusion version) as c(r) = 〈nini+r〉 − ρ2, which we
calculate here by following Ref. [50]. The first term 〈nini+r〉
in the correlation function c(r) gives nonzero value when both
the ith and (i + r)th sites are occupied. Now consider a set
of configurations in which there are k holes present between

the ith and (i + r − 1)th sites. Using the mapping between
gLHM and UgLHM and summing over all such allowed
configurations, we get for large L and N [50],

〈nini+r〉 =
r−1∑
k=0

ZU (k, r − k)ZU (L − N − k, N − r + k)

Z (N, L)

= ρ

r−1∑
k=0

ZU (k, r − k)ZU (L − N − k, N − r + k)

ZU (L − N, N )
.

(A27)

Using Taylor series expansion,

ln

[
ZU (L − N − k, N − r + k)

ZU (L − N, N )

]
= (k − r)

∂[ln ZU (N ′ = L − N, L′ = N )]

∂L′

−k
∂[ln ZU (N ′ = L − N, L′ = N )]

∂N ′

= kμ − (r − k)P,

where μ = ∂F (N ′, L′)/∂N ′ and P = −∂F (N ′, L′)/∂L′ are
chemical potential and pressure function, respectively, and
F (N ′, L′) = − ln ZU (N ′, L′)] is a free energy function in
UgLHM, one obtains the following identity [50]:

〈nini+r〉 = ρerμ
r∑

k=0

ZU (r − k, k)e−k(μ+P). (A28)

The above identity (A28) can be used to obtain the generating
function G(y) = ∑∞

r=0 yrc(r),

G(y) =
[

ρ

1 − ye−Pw̃(yz)
− ρ2

1 − y

]
=

[
ρw̃(z)

w̃(z) − yw̃(yz)
− ρ2

1 − y

]
, (A29)

which is expressed here in terms of the (discrete) Laplace
transform w̃(z) of the weight factor w(g) and where fugacity
z = eμ and e−P = 1/w̃(z). Note that w̃(z) is calculated from
the explicit form of the weight factor as already obtained in
Eq. (A21). We now perform asymptotic analysis around the
critical point z = 1 (i.e., μ = 0). By replacing the variable
y = exp(−s) and then obtaining the leading order singularity
in small s = (1 − y) expansion of Eq. (A29), one can im-
mediately determine the large r behavior of the correlation
function c(r). In the limit of small s → 0, we get, from
Eq. (A21), w̃(yz)|z=1,y=1−s ∼ s3/2 and, consequently from
Eq. (A29), G(y = 1 − s) ∼ s−1/2. The asymptotic form of
the correlation function c(r) is obtained by doing the inverse
Laplace transform,

c(r) 	 1

2π i

∫ i∞

−i∞
dsesrG(s) ∼ r−1/2, (A30)

which is precisely the functional behavior of the correlation
function at criticality as mentioned in the main text. Note
that, although there are no spatial correlations in UgLHM (un-
bounded version), the spatial correlations in gLHM (exclusion
version) are indeed long-ranged.
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