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Waves in active matter: The transition from ballistic to diffusive behavior
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We highlight the unique wavelike character observed in the relaxation dynamics of active systems via a
Smoluchowski based theoretical framework and Brownian dynamic simulations. Persistent swimming motion
results in wavelike dynamics until the advective swim displacements become sufficiently uncorrelated, at which
point the motion becomes a random walk process characterized by a swim diffusivity, Dswim = U 2

0 τR/[d (d − 1)],
dependent on the speed of swimming U0, reorientation time τR, and reorientation dimension d . This change in
behavior is described by a telegraph equation, which governs the transition from ballistic wavelike motion to
long-time diffusive motion. We study the relaxation of active Brownian particles from an instantaneous source,
and provide an explanation for the nonmonotonicity observed in the intermediate scattering function. Using our
simple kinetic model we provide the density distribution for the diffusion of active particles released from a line
source as a function of time, position, and the ratio of the activity to thermal energy. We extend our analysis
to include the effects of an external field on particle spreading to further understand how reorientation events
in the active force vector affect relaxation. The strength of the applied external field is shown to be inversely
proportional to the decay of the wavelike structure. Our theoretical description for the evolution of the number
density agrees with Brownian dynamic simulation data.
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I. INTRODUCTION

Active systems have garnered significant attention for their
interesting phenomena such as motility induced phase sep-
aration and spontaneous self-assembly [1,2]. While much
work has been done to study the steady-state behavior of
active systems, the time dependent nature of these systems
and the interplay between their modes of relaxation have not
been studied in as much detail. Foundational work related
to this topic has been established [3–5], but with a focus
on the intermediate scattering function (ISF) [6–9]. Here,
we focus on the fundamental difference in the relaxation of
active systems compared to their passive counterparts and how
activity alters the characteristics of their short-time dynamics.
The persistent swimming motion of active particles results in
fundamentally different modes of relaxation, which leads to
interesting phenomena not present in either purely advective
or diffusive systems.

The initial relaxation response of a confined active system
results in a ballistic explosion, as observed by Takatori et al.
[5]. When active Janus particles are released from a trap they
initially explode outward and eventually become diffusive
after several reorientation times. The initial directed motion
results in a shock wave in density that radiates outward from
the trap until the persistent swimming motion becomes uncor-
related. This wave motion is a direct result of the swimming
and is present in all active systems.

In simple passive colloidal systems, thermal diffusion is
the only relaxation mode. However, for active colloidal par-
ticles there is an additional mechanism that originates from
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the activity. When probing times less than the timescale for
reorientation of an active particle there is a directed and
nonzero average for the active propulsive force. Since the
reorientation process is stochastic, at times long compared
to the reorientation timescale the active force has zero mean
and the ballistic motion becomes diffusive and scales with the
thermal energy plus the activity [10].

In this paper we bring to light the inherent wavelike behav-
ior exhibited by active systems relaxing from perturbed states
and provide a fundamental explanation for this phenomenon,
as well as its mathematical origins. In Sec. II we provide a
general theoretical framework for describing active relaxation.
In Secs. III and IV we apply the theory for the release of active
Brownian particles (ABPs) from an instantaneous source in
the limit of strong activity and when the thermal energy
scale becomes comparable to the activity, respectively. Then
in Sec. V we characterize the observed active waves in the
presence of an external orienting field, and predict further
instances of wavelike behavior in active systems. Finally, in
Sec. VI we discuss the criterion necessary to observe wave-
like behavior and provide concluding remarks. Our analysis
and characterization focus on dilute colloidal suspensions of
ABPs that self-propel with an inherent swim speed U0 with
orientation q and reorient on a characteristic timescale τR.
Interparticle and hydrodynamic interactions in the suspension
are neglected in this paper.

II. THEORETICAL FRAMEWORK

We define a simple model for ABPs using the Smolu-
chowski equation for the probability distribution of particle
positions and orientations. Unlike with passive, isotropic par-
ticles, the probability must be considered in positional (x) and
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orientational (q) space at each instant in time:

∂P(x, q, t )

∂t
+ ∇ · jT + ∇R · jR = 0. (1)

The translational and rotational fluxes are given by
jT = U0qP − DT ∇P and jR = −DR∇RP, respectively, where
∇R = q × ∇q is the rotational gradient operator. The contri-
butions to the translational flux are from the advective swim-
ming motion U0qP and from thermal diffusion, where the
translational diffusivity is defined using the Stokes-Einstein-
Sutherland relationship DT = kBT/ζ . The rotational flux is
only composed of a diffusive piece with rotational diffusivity
DR = 1/τR.

Analytic solutions to Eq. (1) are elusive, but insight into the
governing phenomena and wavelike structure can be obtained
by expanding the Smoluchowski equation in orientational
moments [11,12]. The first two orientational moments of
Eq. (1) are governed by the conservation equations [13,14]:

∂n

∂t
+ ∇ · jn = 0,

jn = U0m − DT ∇n, (2)

∂m
∂t

+ ∇ · jm + (d − 1)DRm = 0,

jm = U0Q + 1

d
U0nI − DT ∇m, (3)

where n(x, t ) ≡ ∫
P(x, q, t )dq is the number density,

m(x, t ) ≡ ∫
qP(x, q, t )dq is the polar-order field, Q(x, t ) ≡∫

(qq − I/d )P(x, q, t )dq is the nematic order field, and
d is the orientational dimensionality (i.e., 2 for planar
reorientations). Equations (2) and (3) are left as an open set of
coupled equations which depend on subsequent orientational
moments of P(x, q, t ).

Intuitively we understand that translational Brownian mo-
tion only gives rise to diffusion, which implies that the wave-
like character must result from activity. Therefore to isolate
this facet of particle motion we first focus on the limit of high
activity relative to thermal energy, or when DT → 0. As a first
order approximation we truncate the moment expansion by
assuming the nematic order is isotropic, i.e., Q(x, t ) = 0, thus
closing the above equations. Combining Eqs. (2) and (3) gives
rise to a telegraph equation:

∂2n

∂t2
+ (d − 1)

τR

∂n

∂t
= 1

d
U 2

0 ∇2n. (4)

For times short compared to the reorientation time τR,
Eq. (4) has a wavelike character with wave speed c = U0/

√
d

(similar to that obtained by Sevilla and Castro-Villarreal [9]),
but for times long compared to τR the behavior is diffusive
with the swim diffusivity Dswim = U 2

0 τR/d . Equation (4) in
this form is similar to the model created by Alharbi and
Petrovskii for population dynamics [15]. Fundamentally, ABP
dynamics exhibit both wavelike behavior at short times and
diffusive behavior at long times; this behavior is general for
all active systems.

III. WAVES FROM AN INSTANTANEOUS SOURCE

We consider the unsteady behavior of active systems from
an instantaneous source. That is, we focus on observing how
the density of an active system in an open domain relaxes
from a localized point source disturbance back to a uniform
distribution. The point source can be thought of as an instan-
taneous, local addition of particles to an empty domain or as a
local addition of particles overtop a homogeneous background
concentration of particles. This problem’s historical relevance
in the field of diffusion and its potential to further the under-
standing of bacterial film propagation on surfaces [16] make it
a prime initial example for comparing relaxation in active and
passive systems. For brevity we will only consider sources
in two spatial dimensions as these are most experimentally
relevant, but the following analyses are readily extensible to
three spatial dimensions.

The Green’s function for Eq. (4) in two dimensions with
radial symmetry is

n(r, t ) = 2θ [(t − r)/
√

2]√
t2 − r2

e− 1
2 t cosh

(√
t2 − r2

2

)
, (5)

where θ (x) is the Heaviside function, r is the radial displace-
ment from the source normalized by run length, l = U0τR, and
t is time normalized by τR. The Green’s function corresponds
to the release of active particles from an instantaneous source
with randomly distributed initial orientations. Number density
as a function of radial displacement is shown in Fig. 1 at
multiple time points. At short times, t < τR, particles swim
outward from the origin, which leads to a sharp peak in the
density. When t ∼ τR, particles have reoriented, reducing the
maximum in the density. A small fraction of particles have
retained a purely outward pointing trajectory which pushes
the leading edge of the density profile slightly in front of the
peak. The long wake is a result of the wavelike character
dominating in the short-time regime and is characteristic of
symmetric wave propagation in two spatial dimensions [17].
As t > τR the wavefront diminishes further and the density
profile more closely resembles that of a diffusive system at all
points away from the leading edge. When t � τR the density
profile looks diffusive (not shown) for all positions with a
diffusion coefficient given by the swim diffusivity.

FIG. 1. Density as a function of radial position normalized by
the run length, l = U0τR, in the limit of DT → 0 for the telegraph
equation at times t/τR = 1/3, 4/3, 4.
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FIG. 2. Intermediate scattering function n̂(k, t ) of ABPs for dif-
ferent values of dimensionless wave number, kl (increasing from
right to left), as a function of dimensionless time, t/τR, for different
levels of activity: (a) ksTs = 1 kBT , (b) ksTs = 10 kBT , and (c) ksTs =
100 kBT in two orientational dimensions.

Evidence of wavelike motion has been experimentally
observed in systems of active Janus particles released from
a two-dimensional, circular confining trap [5], but the experi-
mental data imply a faster transition to diffusive dynamics. We
believe the discrepancy between our simple model and these
experimental data arises from the closure approximation that
we have chosen, as evidenced by Fig. 3 in the following sec-
tion. By neglecting the flux of polar order generated through
nematic alignment, we have limited the diffusive character
of the activity on longer timescales and thus prolonged the
transition of the dynamics. This effect is exacerbated by
the lack of thermal diffusion, which provides an additional
mechanism through which the wavefront can relax, as will be
seen in the following section. The telegraph equation shows
the essential features of the ballistic to diffusive behavior [15],
but it is not sufficient to quantitatively capture the transitional
dynamics and is only strictly valid in the limit of high activity.

IV. THE EFFECTS OF DIFFUSION

In this section, we revisit the relaxation of ABPs from an
instantaneous source in the limit of finite activity to examine
the interplay between thermal and active energy in the short-
time dynamics. We again start with Eqs. (2) and (3), but keep
the translational diffusion terms. Scaling position and time by
the particle run length and reorientation time, respectively,

FIG. 3. Number density of particles as a function of position
from an infinite line source with ksTs = 100kBT . The solid lines,
dashed lines, and symbols represent closures Q = A : ∇m, B = 0,
and Brownian dynamic simulations, respectively. The red, blue, and
black colors correspond to t = τR/3, 4τR/3, and 4τR, respectively.

gives rise to a dimensionless parameter defined by the ratio
of thermal energy, kBT , to activity, ksTs ≡ ζU 2

0 τR/[d (d − 1)],
for d � 2 [18]. As in Sec. II we formulate the set of scaled
conservation equations as a single expression for the number
density. The telegraph structure is still readily seen by Fourier
transforming in position space, but now the first order time
derivative and Laplacian terms have k-dependent coefficients:

∂2n̂

∂t2
+ f

(
kBT

ksTs
, k

)
∂ n̂

∂t
= g

(
kBT

ksTs
, k

)
k2n̂, (6)

where n̂(k, t ) is the transformed density and k is the dimen-
sionless wave number. The spatially dependent coefficients
are

f = (d − 1) + 2k2

d (d − 1)

(
kBT

ksTs

)
,

g =
[

1 + kBT

ksTs
+ k2

d (d − 1)2

(
kBT

ksTs

)2
]

k2

d
. (7)

The transformed number density follows as

n̂ = e−( (d−1)
2 + k2

d (d−1)
kBT
ksTs

)t
{

cosh

(
(d − 1)

2
�t

)

+ 1

�
sinh

(
(d − 1)

2
�t

)}
, (8)

where � =
√

1 − 4k2/[d (d − 1)2]. The spatially transformed
density is equivalently the ISF as given by the Van Hove
correlation [19]. Our analytic form of the ISF is similar to
that obtained by Sevilla and Castro-Villarreal [9], though
we do not utilize a memory function for the active motion.
There has been broad interest in obtaining the ISF for ac-
tive particles both experimentally [20–22] through differen-
tial dynamic microscopy and analytically [6–8]. Kurzthaler
et al. numerically computed the ISF for anisotropic ABPs
and anisotropic Brownian circle swimmers from an infinite
expansion of the Smoluchowski equation in spherical har-
monic functions [6–8], and Schwarz-Linek et al. solved the
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Smoluchowski equation using a series of Mathieu functions
to compute the ISF of E. coli [22]. Our results show good
agreement with the aforementioned methods while offering a
more readily interpretable form. Figure 2 presents the ISF as
a function of time for various wavelengths at three different
levels of activity. When activity is comparable to thermal
energy the ISF decays monotonically for all wave numbers,
just as in a purely diffusive process [Fig. 2(a)]. As activity
increases the decay of the ISF becomes nonmonotonic and
has dampened oscillations at sufficiently large wave numbers
[Figs. 2(b) and 2(c)]. For large k the ISF decays monotonically
and the onset of the decay begins sooner. When k is large,
diffusion dominates over the ballistic behavior of the active
motion. As activity increases, the active contribution begins
to dominate over thermal diffusion at shorter times and larger
wave numbers, which extends the range of oscillations. These
features agree with the results obtained by Kurzthaler et al.
[6–8] for anisotropic and circle swimmers.

The oscillations in the structure factor correspond to time
dependent density fluctuations, and are equivalent to those
observed for the sinc function, which yields a dampened
wave. As time increases towards the steady-state uniform
distribution—approximately an order of magnitude beyond
the reorientation timescale—the swimming motion becomes
uncorrelated and each run length is a step in a random walk
process, with a diffusivity governed by activity [23]. This
transition corresponds to dampening of the oscillations ob-
served in the decay of the ISF at small wave numbers. Math-
ematically, this transition is the point where the arguments of
the hyperbolic functions in Eq. (8) become imaginary. That
is, � becomes imaginary when k > (d − 1)

√
d/2 and results

in a critical dimensionless wave number kcrit � 0.71 for our
two-dimensional system. This transition from monotonic to
oscillatory behavior as a function of wave number can be
observed in Figs. 2(b) and 2(c) by the change in character from
kl = 0.5 (red) to kl = 2.0 (black). We additionally computed
the transition point from correlated wavelike to diffusive
motion as a function of moment closure, the details of which
are given in Appendix A.

A key benefit of the moment expansion method over a full
numerical solution is the availability of an analytic form for
the ISF. Asymptotic analyses of this analytic form provide
insight into the physical nature of the observed phenomena
beyond locating the wave transition. For large displacements
(kl → 0) the density fluctuations decay as n̂ ∼ e−k2Defft with
an effective diffusivity, Deff = DT + 2Dswim, where Dswim is
the diffusivity—as presented in Sec. II—that results when the
swimming motion becomes uncorrelated. For small displace-
ments (kl → ∞) the fluctuations are governed by dampened
oscillations:

n̂ = e−( (d−1)
2 + k2

d (d−1)
kBT
ksTs

)t
{

cos

(
kt√

d

)

+
√

d (d − 1)

2k
sin

(
kt√

d

)}
. (9)

These oscillations in density capture the nondiffusive behavior
witnessed by Takatori et al. [5].

In the short-time limit t → 0, the mean-squared displace-
ment (MSD) is 〈x2〉 ∼ 2dDT t + U 2

0 t2, where the first term is
the expected contribution from thermal motion and the second
term arises from the ballistic swimming motion. This form
of the MSD matches the results obtained by Ebbens et al.
for their experimental catalytic swimmers [24]. The temporal
scaling of each term explains the initial monotonicity in the
decay of the ISF for times t < τR as t > t2 and how this
effect is reduced when activity is large. The ballistic scaling
from activity is responsible for the “explosion” observed by
Takatori et al. [5]. A full expression for the MSD is presented
in Appendix C.

The real-space density profile for active particles diffusing
from an instantaneous source can also be calculated. For the
following analysis we consider the case of diffusion from an
infinite line source for mathematical simplicity. Since this
is effectively a one-dimensional problem, the long wakes
present in Fig. 1 are no longer observed. The number density
as a function of distance from the line source is shown in
Fig. 3 at several instances in time for different closures to the
moment hierarchy with an activity of ksTs = 100kBT . While
the first order closure to the moment hierarchy works very
well for the ISF calculation, the large gradients in the initial
density require a more sophisticated closure to obtain the
real-space solution.

The transition from wavelike character is too slow with
the simple Q = 0 closure, and requires an additional mode
of relaxation. We do this by adding the effects of nematic
order, which have thus far been neglected. In the presence
of large spatial gradients Q is nonzero and therefore con-
tributes to the speed of the relaxation of the wave. We
rely on two different closures: assuming Q is slaved to the
gradient of the polar order (solid lines) and assuming the
third orientational moment B = ∫

[qqq − α · q/(d + 2)]Pdq
is zero (dashed lines), where α is the appropriate fourth
order isotropic tensor. The first alternative closure, Q ∼ A :
∇m ∼ ∇m, neglects B and higher order gradients of Q, with
constant tensor A = α − [(d + 2)/d]II (see Appendix B for
the exact closure) whereas the second closure only neglects B
while retaining the effects of thermal diffusion on the nematic
order.

For each closure, the density was calculated using a fi-
nite element method performed in FREEFEM++ [25], and
full Brownian dynamic (BD) simulations of ideal particles
were performed to corroborate our results. The details of our
simulations are outlined in Appendix D. Slaving Q to ∇m
(solid lines) correctly captures the short-time behavior of the
system, but still fails to relax the wavefront quickly enough.
Closing the expansion with B = 0 (dashed lines) matches
the BD simulations well for t � τR, but fails to capture the
strong wavelike character at short times. Correctly capturing
the behavior of the density for all times requires a more
sophisticated closure for the expansion.

Snapshots of a characteristic simulation of ABPs released
from a point source with ksTs = 100kBT are shown in Fig. 4.
The dense wave (yellow) at short times expands outward and
spreads until the system reaches a uniform density (purple)
after several τR. This representation is evidence for the pro-
duction of a relaxing wave that becomes diffusive, regardless
of the dimensionality of the initial source.
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FIG. 4. BD simulation snapshots for a system of ideal ABPs
released from a two-dimensional point source with ksTs = 100 kBT
at (a) t = τR, (b) t = 2τR, (c) t = 3τR, and (d) t = 4τR. A dense wave
of particles (yellow) can be seen spreading outward and diffusing
until the system reaches a uniform density (purple).

Sokolov et al. observed similar wavelike behavior after
cessation of rotation of a particle in a suspension of bacteria
[26]. The rotating particle creates a stagnation zone wherein
bacteria collect, which causes a large gradient in the radial
density. After cessation of the particle, the bacteria explode
outward in a wave, as indicated by Fig. 2(f) in [26] by the
shifting peak in the density with time. We see in this instance,
similar to the example of diffusion from an instantaneous
source, that the wavelike behavior appears to result from large
spatial disturbances in the density.

Thus far we have focused on suspensions of active Brow-
nian particles released from instantaneous sources and have
shown that the initial relaxation is ballistic and gets dampened
out as the active motion becomes uncorrelated. As the motion
decorrelates the relaxation resembles that of a diffusive pro-
cess. In the following section we study the effects induced by
the presence of an external orienting field and how this alters
the relaxation behavior.

V. EFFECTS OF AN EXTERNAL FIELD

Consider the relaxation of active particles in the presence
of an external orienting field. It is known that certain synthetic
and living swimmers can be controlled through the application
of external fields [27,28], but these works have focused on the
steady-state regime [27], the strength of long-time response
based on reorientation statistics [29], or how a strong pertur-
bation to the field direction affects a single swimmer [28]. To
study the relaxation we modify the rotational flux of Eq. (1) to

FIG. 5. The density profile as a function of displacement, at
different moments in time with field strengths (a) χR = 1, (b) χR =
10, and (c) χR = 100.

include the effects of an external orienting field. The rotational
flux expression becomes

jR = DR(χRq × ĤP − ∇RP), (10)

where Ĥ is the unit vector in the field direction and χR ≡ �cτR

is the Langevin parameter with �c being the magnitude of
the angular velocity imposed by the field. Taking orientational
moments results in the same expression for density conserva-
tion as before, but the expression for polar order becomes

∂m
∂t

+ ∇ · jm + (d − 1)

τR
m + χR

τR
Q · Ĥ

− (d − 1)χR

dτR
nĤ = 0,

jm = U0Q + 1

d
U0nI − DT ∇m. (11)

We once again consider particles released from an infinite
line source, with no initial polar order, but at time t = 0
we apply an external field in the positive x direction. The
densities of particles as a function of position at times less
than, comparable to, and greater than τR are presented in Fig. 5
for various values of the Langevin parameter for a highly
active system, ksTs = 100kBT . When χR is small [Fig. 5(a)]
the density distribution looks similar to that presented in
Fig. 3 when t < τR, but with some asymmetry in the field
direction. As time increases the peak moving opposite to
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the field relaxes faster while the peak moving in the field
direction persists longer than it would in the absence of the
field. As we increase the field strength to χR = 10 [Fig. 5(b)]
the particles initially moving opposite to the field direction are
quickly reoriented, resulting in a slight tailing of the density
distribution, and when t > τR the particles have reoriented,
thus reducing the tailing. Importantly, the spread in the density
peak then is primarily from translational diffusion. When
χR = 100 [Fig. 5(c)] the alignment effect is further enhanced
and all particles are aligned in the field direction almost
immediately after the field is turned on. This strong alignment
prevents fluctuations in orientation from activity, resulting in
a more persistent wavefront. The spread of the distribution
is almost exclusively from thermal noise as evidenced by
the mean and peak density speeds being equal to the swim
speed. A strong orienting field reduces the swim diffusivity
in the field direction as 〈Dswim

‖ 〉 ∼ O(χ−3
R ) and as 〈Dswim

⊥ 〉 ∼
O(χ−2

R ) in the transverse direction, as shown by Takatori and
Brady [27].

The persistence of the wave in the field direction and the
dissipation of the wave in the opposite direction are better
understood by calculating the mean-squared orientational dis-
placement. The evolution for the average orientation is

∂

∂t
〈q〉 = − (d − 1)

τR
〈q〉 − χR

τR
〈(qq · Ĥ − Ĥ )〉, (12)

where angled brackets represent an ensemble average. In the
linear response regime (where χR is small) the rightmost
term can be represented by 〈(qq · Ĥ − Ĥ )〉0 = ∫

[(qq · Ĥ −
Ĥ )]dq = −(d − 1)Ĥ/d . From this

〈q(t )〉 = χR

d
Ĥ[1 − e−(d−1)t/τR ] + q0e−(d−1)t/τR , (13)

where q0 = 〈q(0)〉. Multiplying Eq. (13) by q0 and using
〈(q(t ) − q(0))2〉 = 〈q2(t ) + q2(0) − 2q(t ) · q(0)〉 in the limit
of t/τR � 1 gives a mean-squared orientational displacement
of

〈(q(t ) − q(0))2〉 � 2(d − 1)
[
1 − χR

d
〈Ĥ · q(0)〉

] t

τR
. (14)

From Eqs. (13) and (14) we see mean-squared orientational
displacement is greatly reduced in the field direction and
enhanced in the opposite direction, resulting in the persistence
and expedited dissipation of the two wavefronts, respectively.
We can validate this result by computing the change to the av-
erage swim diffusivity 〈Dswim〉 ∼ L2

eff/τR, where Leff ∼ (U0 −
〈u〉)τR is the effective step size of a particle. The average
velocity is given by 〈u〉 = U0〈q〉, which is zero in the absence
of an external field and is χRĤ/d with an external field in
the linear response regime, as shown by taking the long-time
limit of Eq. (13). This gives the change in effective step size
as 	Leff ∼ χRU0τR and a scaling for the change in swim
diffusivity as 〈	Dswim〉 ∼ (U 2

0 τR)χ2
R , which is in agreement

with the predictions by Takatori and Brady [27]. Note that in
the presence of an external orienting field the swim diffusivity
is 〈Dswim〉 ∼ U 2

0 τR[1 + O(χ2
R )] and is anisotropic.

VI. CONCLUSIONS

We have provided a model for active dynamics that pro-
vides insight into the wavelike behavior observed in active

systems and have provided an explanation for how these dy-
namics relax. This motion and its transition to the steady-state
diffusive behavior were shown through the relaxation of a
dilute active system from an instantaneous source. The results
were corroborated through BD simulations and comparison
of the ISF with existing works [6–9]. At short times a strong
wavelike character is present, and as the swimming motion
becomes uncorrelated the overall motion becomes diffusive
with an effective diffusivity given by the sum of the trans-
lational, DT , and swim, Dswim, diffusivities and is described
via the telegraph equation. The wavelike behavior observed
for small displacements is supported by oscillations in density
fluctuations in the system as predicted by the intermediate
scattering function. We have calculated and correctly captured
this behavior using a simple expansion of orientational mo-
ments with different closures: Q = 0, Q ∼ ∇m, and B = 0.
While the majority of the relaxation results focus on diffusion
from a line source, the methods shown readily extend to
higher spatial dimensions.

The strength of an active wave can be maintained as shown
by extension of the instantaneous source diffusion problem
through the addition of an external orienting field. As the
field strength increases, active constituents become unable to
reorient, which is the primary mode of wave relaxation, thus
increasing the life of the wave and allowing for greater dis-
placements through more directed motion. The mean-squared
orientational displacement of active particles in the presence
of an orientating field compared to the unbiased case of free
swimmers supports the claim in Takatori and Brady [27] that
the persistence of the ballistic motion is primarily dependent
on how correlated particle orientations are in time.

Given the observations presented we propose that the only
criterion necessary for wavelike behavior is the existence
of a mechanism through which the particle orientations can
be recorrelated. This allows us to predict further instances
wherein waves could be observed in active systems. For
example, active suspensions near criticality should exhibit
wavelike behavior as noncritical nuclei form and melt. The
formation of noncritical nuclei results in large fluctuations in
the density and their melting is analogous to the explosion of
a “swimmer-crystal” observed by Takatori et al. [5] which, as
previously discussed, clearly showcases a wave after release
of the trap. Through our work we believe that waves are an
inherent part of many active systems as they transition from a
ballistic to diffusive motion.
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APPENDIX A: WAVE TRANSITION

Fourier transforming the conservation equations for the
orientational moments of the probability distribution function
P(x, q, t ) in space and subsequently Laplace transforming in
time generates a system of algebraic equations. The system of
equations can be rewritten as an explicit expression for n̂(k, s)
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with the following structure:

n̂(k, s) = 1

b0 + a1

b1+ a2
b2+···

, (A1)

which can be represented in continued fraction form as

n̂(k, s) =
[

b0 + K∞
j=1

a j

b j

]−1

, (A2)

where s is the frequency. The terms a j and b j are given by the
series

a j = (−1) j+1 j(d − 3 + j)U 2
0 k2

(d − 4 + 2 j)(d − 2 + 2 j)
,

bj = [s + k2DT + j(d − 2 + j)DR],

(A3)

where a j comes from the isotropic definition of the ( j + 1)
moment in the jth moment equation and b j comes from the
sink term on the jth moment equation.

This expression for n̂(k, s) is used to calculate the tran-
sition from wavelike to diffusive behavior. We demonstrate
this by calculating the transition obtained from choosing
the simplest moment closure of Q = 0. From the first two
moments we obtain

n̂(k, s) = 1

s + DT k2 + 1
d U 2

0 k2

s+DT k2+(d−1)DR

(A4)

for the transformed density. We then take the nondiffusive
limit (lim DT → 0), and nondimensionalize the wave num-
ber and frequency by k̄ = kl and s̄ = sτR, respectively. The
number density expression then becomes

n̂ = τR[s̄ + (d − 1)]

s̄2 + (d − 1)s̄ + 1
d k̄2

, (A5)

with poles given by

s̄2 + (d − 1)s̄ + 1

d
k̄2 = 0. (A6)

The transition from wavelike to diffusive behavior occurs
when the poles become imaginary, from which we have

s̄ = − (d − 1)

2
± 1

2

√
(d − 1)2 − 4

d
k̄2, (A7)

and they become imaginary when k̄2 > d (d − 1)2/4, which
matches the result we get from our analytic expression for the
Fourier transformed number density.

APPENDIX B: ALTERNATIVE CLOSURE FOR Q

The conservation equation for the nematic order with a
closure of B = 0 and neglecting high order spatial derivatives
of Q gives

∂Q
∂t

+ ∇ ·
(

U0

(d + 2)

(
α − (d + 2)

d
II

)
· m

)

+ 2d

τR
Q = 0, (B1)

FIG. 6. The mean-squared displacement as a function of time
normalized by the reorientation time at different levels of activity.

which can be rewritten as

Q = − U0

2d (d + 2)DR
(1 − e−2dDRt )∇(A : m), (B2)

where A = α − [(d + 2)/d]II and α is the appropriate
isotropic fourth order tensor, as defined in the main text.

APPENDIX C: MEAN-SQUARED DISPLACEMENT

The MSD is given by

〈x2〉 = −∇k∇kn̂(k, t )|k=0, (C1)

for any instant in time. The full MSD expression with Q = 0
closure is

〈x2〉 = 4α

d (d − 1)2
e−α

[(
1 + kBT

ksTs

)
cosh α

+
(

1 − 1

α
+ kBT

ksTs

)
sinh α

]
(C2)

where α = (d−1)
2 t and t is normalized by the reorientation

time τR. A plot of the MSD is presented in Fig. 6 for various
levels of activity. For t � τR the MSD scales linearly with
time because thermal diffusion wins out over active motion.
As time increases the MSD goes quadratically with time due
to the persistent and directed active swimming. For t > τR the
swimming motion becomes uncorrelated and the active par-
ticles become diffusive with an effective diffusivity which is
a combination of the thermal diffusivity and swim diffusivity
Dswim.

APPENDIX D: BROWNIAN DYNAMIC SIMULATIONS

We simulate suspensions of ideal ABPs using the over-
damped Langevin equations for translation and orientation:

0 = − ζU + ζU0 + FB, (D1)

0 = − ζR� + LR. (D2)

Here ζ is the hydrodynamic resistance coupling translational
velocity to force, U is the translational velocity, ζU0 is the
active—or swim—force [23], FB is the random Brownian
force, ζR is the hydrodynamic resistance coupling angular
velocity to torque, � is the angular velocity, and LR is the
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reorientation torque. The Brownian force is modeled using

the usual white-noise statistics with FB = 0 and FB(0)FB(t ) =
2kBT ζ δ(t )I. The reorientation torque is modeled in similar

fashion with LR = 0 and LR(0)LR(t ) = 2ζ 2
Rδ(t )I/τR.
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