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Dynamics and friction of a large colloidal particle in a bath of hard spheres: Langevin dynamics
simulations and hydrodynamic description
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The analysis of the dynamics of tracer particles in a complex bath can provide valuable information about the
microscopic behavior of the bath. In this work, we study the dynamics of a forced tracer in a colloidal bath by
means of Langevin dynamics simulations and a theory model within continuum mechanics. In the simulations,
the bath is comprised of quasihard spheres with a volume fraction of 50% immersed in a featureless quiescent
solvent, and the tracer is pulled with a constant small force (within the linear regime). The theoretical analysis
is based on the Navier-Stokes equation, where a term proportional to the velocity arises from coarse-graining
the friction of the colloidal particles with the solvent. As a result, the final equation is similar to the Brinkman
model, although the interpretation is different. A length scale appears in the model, k−1

0 , where the transverse
momentum transport crosses over to friction with the solvent. The effective friction coefficient experienced by
the tracer grows with the tracer size faster than the prediction from Stokes’s law. Additionally, the velocity
profiles in the bath decay faster than in a Newtonian fluid. The comparison between simulations and theory
points to a boundary condition of effective partial slip at the tracer surface. We also study the fluctuations in
the tracer position, showing that it reaches diffusion at long times, with a subdiffusive regime at intermediate
times. The diffusion coefficient, obtained from the long-time slope of the mean-squared displacement, fulfills the
Stokes-Einstein relation with the friction coefficient calculated from the steady tracer velocity, confirming the
validity of the linear response formalism.

DOI: 10.1103/PhysRevE.101.052607

I. INTRODUCTION

In soft matter, different time- and length scales are in-
volved, due to the presence, typically, of simple solvents and
macromolecules. This is usually tackled by integrating out
the fastest degrees of freedom, which leaves an equation of
motion for the relevant (macromolecular) ones [1–3]. A clear
example is the Langevin equation for the Brownian motion
of a colloidal particle, where the solvent is modelled only
through the friction and random forces acting on the particle.
This allows the calculation of parameters characterizing the
solvent by studying the diffusion of a single particle. This idea
has been elaborated further to study more complex fluids and
is the core of so-called microrheology.

In microrheology, a single colloidal tracer (or a very small
number of them) is introduced in a complex fluid to study
its mechanical behavior at the microscopic scale [4–8]. The
tracer can be left undisturbed to undergo diffusion in the
complex bath due to thermal and density fluctuations (passive
microrheology) or forced to probe the response of the bath
(active microrheology). Experiments [9–11] and simulations
of active microrheology [12–17] have shown that the effective
friction coefficient shows a linear dependence on the force for
small forces, allowing the definition of a microviscosity. A
nonlinear regime is entered for larger forces and a second lin-
ear regime, featuring a smaller viscosity, may be attained for

large forces. This overall phenomenology resembles that of
conventional (bulk) rheology, showing shear thinning, thick-
ening, or more complex scenarios [18–20]. Different possi-
bilites have also been reported in microrheology, depending
on the interactions considered [17].

The interpretation of the results from microrheology must
take into account all the degrees of freedom. While in dilute
cases, theory achieves to consider the bath particles explicitly
(e.g., by the direct interactions between the tracer and bath
particles, or among the bath particles) [7,21–26], a dense fluid
is often described within hydrodynamics. This implies that not
only the solvent but also the bath must be treated as continuum
fluid [18]. While the solvent is typically a Newtonian fluid,
the bath is a complex one, namely the transport coefficients
depend on the driving. The models used in microrheology,
thus, must describe the interaction of the tracer with these two
baths, either as fluids with different properties [27–30], sacri-
ficing a detailed structural description, or using a microscopic
theory to describe the motion of the tracer and bath particles
in a solvent [31–33].

In this work, we study the dynamics of a large tracer in a
dense bath of colloidal particles; the tracer is subjected to an
external constant force, small enough to remain in the linear
regime. All particles exhibit Langevin motion characterized
by a constant friction coefficient with the solvent, which also
provides the random forces. They are taken to be Gaussian
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and white, and the fluctuation dissipation relation holds. This
widely used model focuses on the collective interactions
among bath particles and tracer, while it neglects the solvent
flow, which leads to hydrodynamic interactions [2]. We have
run simulations with a tracer up to eight times larger than
the bath particles, and a bath volume fraction of φ = 0.50.
The results are analyzed using a hydrodynamic model, within
the formalism of continuum mechanics. It differs from the
(naively expected) Navier-Stokes hydrodynamics even in the
limit of macroscopic tracers. The model has been derived
coarse-graining systems of Langevin particles [34], and the
resulting hydrodynamic equation is the Brinkman equation,
which has been applied previously to diffusion in porous
systems [35], although our interpretation is different from
previous ones. Notably, the solution of the Brinkman equa-
tion brings out a length scale where transverse momentum
transport crosses over to friction with the solvent. The friction
coefficient thus grows with the tracer size much faster than
Stokes’s law while the velocity profile in the bath decays as
the inverse cubed distance to the tracer. After performing a
finite-size analysis in the simulation results, the friction coef-
ficient and velocity profile can be correctly rationalized within
the theoretical model. The effect of the different boundary
conditions on the tracer surface is also discussed. Finally,
we study the dynamics of the tracer using the mean-squared
displacement and confirm the validity of the Stokes-Einstein
relation for all tracer sizes.

II. MODEL

The system we aim to describe is a colloidal bath at high
density with a (colloidal) tracer particle equal or larger than
the bath particles. There are, therefore, three components
in the system: solvent, bath particles, and tracer particle.
While the system is in equilibrium, at time t = 0 a constant
external force starts to pull the tracer. Similar systems have
been considered to study microrheology both in simulations
[16,23,32,36–38] and in theory [14,21,22,39]. In our case, the
force is small enough to drive the system out of equilibrium
within the linear regime.

We approach this system from two points of view: us-
ing Langevin dynamics simulations and a theoretical model
based on continuum mechanics. In both cases, the solvent
is assumed to be at rest, its only effect being a friction
force proportional to the particles velocities, and a random
force which produces Brownian motion. This implies that
we neglect hydrodynamic interactions (HI) among all parti-
cles but allows us to run simulations of large systems and
proceed analytically in the theory, and connects with many
previous works where HI are also neglected. This may seem
a harsh approximation but its effect on the local cageing of
particles is only quantitative [17,40], not affecting the physical
behavior of the system, in particular at the high bath density
studied here.

A. Simulations

In the simulations, the system under study is composed
of N polydisperse particles, including a tracer (labeled with
j = 1), in a cubic box with periodic boundary conditions. All
particles undergo Brownian motion, which we model by the

Langevin equation [2]. For particle j, the equation of motion
reads:

mj
d2 r j

dt2
=

∑
i �= j

Fi j − γ j
d r j

dt
+ f j (t ) + Fextδ j1, (1)

where mj is the particle mass; Fi j is the interaction force
between particles i and j; γ j is the friction coefficient with the
solvent, assumed to be proportional to the particle radius aj ,
γ j = γ0a j , mimicking Stokes’s law; and f j is the Brownian
force. The latter is random, but its intensity is linked to the
friction force, as given by the fluctuation-dissipation theorem,
〈f j (t ) · f j (t ′)〉 = 6kBT γ jδ(t − t ′), where kBT is the thermal
energy and δ(x) is the Dirac-delta symbol [2]. Finally, the
external force, Fext, acts only on the tracer (as shown by the
Kronecker δ symbol, δ j1). The energy injected by this force is
dissipated by the friction of the tracer with the solvent and
the bath particles, keeping the kinetic temperature constant
in the stationary state. As mentioned above, hydrodynamic
interactions have been neglected in the equation of motion.

The interaction potential between particles i and j is de-
rived from the central inverse-power potential:

V (r) = kBT

(
r

ai j

)−36

(2)

with r = |r| the center-to-center distance between the parti-
cles and ai j = ai + a j . Due to the high value of the exponent,
this system behaves as colloidal hard spheres [41]. To avoid
crystallization at high density, a continuous size distribution
of width 2δ = 0.2a, with a the mean radius, is used for the
bath particles. The tracer has radius at � a. For the sake of
simplicity in the numerical algorithm, all particles, including
the tracer, have the same mass: mj = m (note that the tracer
particle gives a scale for the external force). The mean bath
particle radius a, the thermal energy kBT , and particle mass
m are the length, energy, and mass units, respectively. The
friction coefficient with the solvent of particle j is calculated
with γ0 = 5

√
mkBT /a, which gives a single-particle diffusion

coefficient of D0 = kBT/γ0 = 0.2 a
√

kBT/m for the mean
particle. The Langevin equations of motion are integrated
using the Heun algorithm [42], with a time step of δt =
0.0005 a

√
m/kBT .

In our simulations, the system containing the tracer is
equilibrated without external force. For t > 0, the constant
external force is applied onto the tracer in the z direction, and
its trajectory is monitored. The effective friction coefficient
experienced by the tracer is obtained from its long-time steady
velocity, 〈v〉, averaged over many independent trajectories,
and using the steady-state relationship Fext = γeff〈v〉. For
small forces, the tracer velocity presents a linear regime with
the external force, resulting in a constant friction coefficient,
followed by a decrease of γeff for larger forces (nonlinear
response) [43]. We focus here on the linear regime at small
forces. The connection to the hydrodynamic calculation of
the theoretical section below is then given by Onsager’s
regression hypothesis [8].

In hydrodynamics, it is well known that there are long-
range correlations in the fluid, decaying typically with the
inverse distance. Although our model predicts a faster de-
cay of these correlations, as shown below, it is mandatory
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FIG. 1. Snapshots of the systems with N = 15 625, with a tracer
with at = 3a (top panel) and at = 7a (bottom panel). The tracer is
marked in red, and the particles in front of it have been removed
for clarity.

to perform an analysis of finite-size effects. In fact, since
periodic boundary conditions are used, an infinite cubic array
dragged through a bath of particles is considered. We have
thus run simulations of systems with N = 216, 512, 1000,
2197, 4096, 8000, 15 625, and 32 768 particles and tracer sizes
from at = a to at = 8a. Figure 1 presents two snapshots of
the system with N = 15 625 particles, including a tracer of
size at = 3a [Fig. 1 (top)] and at = 7a [Fig. 1 (bottom)]. The
bath volume fraction is φ = 0.50 in all cases, and the volume
occupied by the tracer is not accounted for in the calculation
of the simulation box size [43]. The center of mass of the
system is not fixed when the external force is applied. For the
calculation of the friction coefficient, 500 tracer trajectories
have been analyzed. In addition to the tracer dynamics, the
density and velocity profile in the bath have been studied in

several cases to check the theoretical predictions; note that
Langevin dynamics gives directly the particle velocity.

Numerical implementation

From a computational point of view, the requirement of a
finite-size analysis implies running simulations with different
number of particles, N , for every tracer size, at . For this
purpose we have used high performance computing in two
ways: (i) programming in graphics processing units (GPU)
to speed up the simulation of a single trajectory, and (ii)
using a genetic algorithm (GA) to balance the load of all the
processing units of the computer cluster, taking into account
the different durations of the simulations with different N .

We have accelerated the computation of a single tracer
trajectory by means of GPU computing using the CUDA
interface [43–45]. Note that the full system with N particles
has to be simulated, although the trajectory of a single particle
(the tracer) is the most relevant. In particular, the calculation
of the interaction forces among all particles and the integration
of the equations of motion are very demanding, and have been
thoroughly optimized [46]. In addition to this CUDA-GPU
core, a standard sequencial FORTRAN code has been used
in the CPUs. It was checked that both codes give the same
results when the same sequence of random numbers is used
for the Brownian force.

The whole set of simulations to analyze the friction coeffi-
cient has been run on modern multi-GPU clusters, that provide
CPU cores and GPUs which can compute several simulations
in parallel. Since the simulations of systems with different
sizes are needed, the computational loads of the corresponding
tasks are also different. Therefore, an appropriate balance for
the execution is decisive. Here we have adapted a genetic
algorithm to achive the optimal parallel performance [47].
In our GA, a set of possible solutions of the scheduling
problem is the population. The algorithm evolves iteratively,
starting with a random population, using the mutation and
selection mechanisms until the optimal solution is reached, as
defined by the minimum spread in execution times among all
processing units. A code written in Python has been developed
to calculate the optimal distribution of tasks.

In our procedure, a single trajectory in every unit (CPU
core or GPU core) is executed for every size and a given
tracer radius, and the running times are recorded. With these
times, the optimal distribution of trajectories per unit is
calculated, ensuring that all units finish their tasks with a
minimum difference. This distribution is then passed to the
cluster to perform the whole set of simulations for a sin-
gle tracer size. As mentioned above, simulations with N =
216, 512, 1000, 2197, 4096, 8000, 15 625, and 32 768 parti-
cles have been run, ensuring that all particles can fit into the
simulation box (recall that the tracer volume is not accounted
for in the calculation of the simulation box size). Thus, for
large tracers, only the biggest systems are simulated. Every
trajectory has been recorded for 106 time steps, corresponding
to t = 500 a

√
m/kBT or t = 100a2/D0. This time is long

enough to reach the stationary state and provide a correct
estimation of the tracer velocity, as checked with longer
simulations in selected cases.

A cluster composed by four nodes with a multiprocessor
of 16 CPU cores (Bullx R424-E3 Intel Xeon E5 2650 with
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TABLE I. Runtime in seconds of the simulation of a single
trajectory for different sizes (N). The tGPU and tCPU columns show
the execution time for a single trajectory on a GPU NVIDIA Tesla
M2070/a and CPU-core Bullx R424-E3, respectively.

N tGPU tCPU

216 1580 790
512 1785 1860
1000 2240 3715
2197 2930 8710
4096 4450 18 065
8000 7650 43 080
15 625 12 050 113 940
32 768 20 012 479 313

8 GB RAM) and 2 GPUs NVIDIA Tesla M2070 has been
used. Table I shows the runtime on a CPU core and a GPU
to simulate a single trajectory (profiling stage) for the systems
with at = 3a. Note that GPU programming is particularly
advantageous for large systems (up to 24× faster), although
the sequencial code is faster for small systems.

B. Theory

We now search for a continuum mechanics description,
in order to understand the motion of a macroscopic tracer
in the bath of interacting Brownian particles. This search is
motivated by the success of Stokes’s calculation of the friction
of a macroscopic tracer in a Newtonian fluid. He obtained it
based on the Navier-Stokes equation (NSE) for the velocity of
a continuous Newtonian fluid subjected to external stresses or
forces. In colloid science, Stokes’s law describes an isolated
rigid particle immersed in a solvent which is dragged with
a constant velocity, with stick (or slip) boundary conditions
on the particle surface. The resulting friction force depends
linearly on the solvent viscosity and the bead radius and is
proportional to its velocity.

Here to describe the tracer in a colloidal bath we have to
coarse-grain the system of coupled Langevin equations for the
bath particles j = 2, . . . , N in Eq. (1). This was recently per-
formed using the Zwanzig-Mori projection operator technique
[48,49] and considering the long-wavelength limit [34]. The
presence of the solvent leads to the inclusion of an additional
friction term in the NSE, proportional to the bath particle
velocity field, u. This accounts for the local dissipation of the
bath particles in the solvent, and arises from coarse-graining
the drag forces on the particles [34]. In the stationary state, the
hydrodynamic equation reads:

∇P − η0∇2u = −ζ0u + Fext, (3)

where P is the pressure. This equation contains the hydrody-
namic friction with a bath of viscosity η0 (that represents the
colloidal system), and with an inert solvent, of friction coeffi-
cient ζ0 (representing the solvent) as well as an external force
acting on the system. Without hydrodynamic interactions, the
friction coefficient in incompressible systems is simply ζ0 =
nγ0 where n is the bath number density. For the calculation
of the analog of Stokes’s friction, the external force Fext is
assumed to be a point force acting on the tracer center. This

equation is complemented by the incompressibility condition:

∇ · u = 0. (4)

Equation (3) was already proposed by Brinkman to de-
scribe the motion of a tracer in a swarm of colloidal particles
[35], as a combination of Darcy’s equation and the NSE.
However, the interpretation of the parameters is different:
In the Brinkman model, the divergence of the stress tensor
represents the solvent, and the linear term in u is due to the
presence of the other particles, which act as a porous matrix.
Tam [50] used a more rigorous derivation to this equation
from first principles, albeit with the same interpretation. Due
to this interpretation, the Brinkman equation has been widely
used to study the diffusion in a porous medium [51]. It must
be also mentioned that the Brinkman equation is similar to the
Laplace-transformed unsteady Navier-Stokes equation.

It has been shown previously [34] that Eq. (3) holds with or
without hydrodynamic interactions. It requires that momen-
tum is not conserved (as holds in the Langevin simulations,
where the solvent relaxes the momenta), yet that the bath
viscosity η0 is large in order for a region (later identified
by the wave vector k0) to emerge where the NSE holds
in approximation. As any continuum mechanics description,
application of Eq. (3) requires smooth and slow fluctuations,
which translates into large tracer sizes. As specific approxima-
tion, Eq. (3) neglects the diffusive build-up of a density profile
around the forced tracer, which could become noticeable in
an appreciably compressible system. It is also interesting to
note that the Brinkman’s equation is not Galilei invariant,
which is different from the NSE. This is in agreement with
the Langevin equation, which is also not Galilei invariant. On
the other hand, this implies that the problem of the moving
sphere in a quiescent fluid is different from a fixed sphere in
an incoming fluid. The problem we are interested in is the
former one, namely, a moving tracer in a quiescent fluid.

This case has been solved previously in the literature, see,
e.g., Ref. [52], giving a velocity profile around the tracer
(located at r = 0):

u(r) = 1

8πη0
S (r) · Fs + uhom(r), (5)

where S (r) is a matrix of elements:

Si j (r) = δi j
A(r)

r
+ rir j

r3
B(r) (6)

with

A(r) = 2

(
1 + 1

k0r
+ 1

k2
0r2

)
e−k0r − 2

k2
0r2

, (7)

B(r) = −2

(
1 + 3

k0r
+ 3

k2
0r2

)
e−k0r + 6

k2
0r2

, (8)

and Fs = Fsêz is an effective surface force that depends on
the boundary conditions (see below). The inverse distance k0,
appearing in the expressions above is defined as k0 = √

ζ0/η0

and describes the length scale of the crossover from friction at
large distances, originating from the coupling of the particles
to the solvent according to the Langevin equation, to diffusive
transverse momentum transport intrinsic in the NSE based on
Newtonian dynamics, for short distances. The ratio between
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this length scale and the tracer size, viz. the dimensionless
parameter k0at , plays a central role in the following results;
for k0 → 0 the NSE description of a particle in a Newtonian
solvent is recovered, whereas for k0 → ∞ the innert solvent
is dominant. In particular, for small k0:

lim
k0→0

A(r) = lim
k0→0

B(r) = 1, (9)

which recovers the velocity profile for the Newtonian solvent
[53].

The second term in Eq. (5), uhom, is the velocity profile
without external force and pressure, which decays exponen-
tially:

uhom(r) = −êr
Fha2e−k0r

4πη0r3
(1 + k0r) cos θ

+êθ

Fha2e−k0r

8πη0r3

(
1 + k0r + k2

0r2
)

sin θ. (10)

Here Fh has to be determined by the boundary conditions, as
well as Fs. For stick boundary conditions,

u(at ) = u0, and u(r → ∞) = 0

with u0 the tracer velocity. This yields:

Fs = 6πη0at u0

(
1 + k0at + 1

3
k2

0a2
t

)

and

Fh = −4πη0at u0

(
1 + 3

k0at
+ 3

k2
0a2

t
− 3

ek0at

k2
0a2

t

)
. (11)

For slip boundary conditions, on the other hand, it is cus-
tomary to introduce a slip length, b, and replace the condition
of the surface velocity with

ur (at ) = u0 cos θ, and η[uθ (at ) + u0 sin θ ] = bτrθ ,

where ur and uθ refer to the radial and angular components of
the velocity field, and τrθ to the shear stress at the slip plane.
For pure slip boundary conditions b → ∞, resulting in [54]:

Fs = 6πη0at u0

[
2(1 + k0at ) + k2

0a2
t + k3

0a3
t /3

3 + k0at

]

and

Fh = −4πη0at u0

[
2
(
1 + k0at − ek0at

) + k2
0a2

t + k3
0a3

t /3

k2
0a2

t (1 + k0at/3)

]
.

(12)
The friction force experienced by the tracer, equal to Fext, is

calculated integrating the stress tensor over the tracer surface.
For stick boundary conditions, this leads to [52]:

Fext = 6πη0at u0

(
1 + k0at + 1

9
k2

0a2
t

)
. (13)

Note that this expression reduces to Stokes’s formula for a
Newtonian fluid, ζ = 0 (giving k0 = 0), while in the oppo-
site limit, k0 → ∞, or η0 → 0, the friction coefficient gives
Vtζ0/2, with Vt the volume of the tracer.

The velocity profile from the Brinkman equation, Eq. (5),
on the other hand, shows a faster decay than the NSE, as

FIG. 2. Inverse friction coefficient as function of the inverse
simulation box size for different tracer sizes (different colors and
symbols). From top to bottom: at = 1a, 2a, 3a, 4a, 5a, 6a, 7a,
and 8a.

shown by the ∼1/(k2
0r3) dependence at long distances. As

expected, for k0 = 0, the 1/r decay, typical of a Newtonian
fluid within the NSE, is recovered.

For slip boundary conditions the friction coefficient is
given by:

Fext = 6πη0at u0

(
2 + 2k0at

3 + k0at
+ 1

9
k2

0a2
t

)
, (14)

which reduces to 4πη0at for a Newtonian fluid, as expected.
In the opposite limit, k0 → ∞, the boundary condition is not
relevant and the friction coefficient is again Vtζ0/2.

We end this section by discussing a few important caveats
in the connection between the hydrodynamic theory and the
Langevin simulations. While one would directly identify ζ0

with nγ0 in Eq. (1), possible differences might be relevant
in comparisons. On the one hand, the minimum size of the
tracer for the hydrodynamic theory to apply is unknown; and,
on the other hand, the compressibility of the colloidal bath
(considering only the particles, not the solvent), might be
relevant, as the density is diffusive in Langevin systems. Even
more, the correct boundary condition on the tracer surface is
unknown.

III. RESULTS AND DISCUSSIONS

In this section we first test the theoretical results of the
modified NSE with simulations, and then analyze the dynam-
ics of a large forced tracer in a bath of colloidal particles.

A. Friction coefficient of the tracer

The friction coefficient is determined from the steady-state
tracer velocity, but due to long-range spatial correlations in
the bath, it may show importat finite-size effects. Figure 2
analyzes this effect by showing the inverse effective friction
coefficient as a function of the inverse box size for different
tracer sizes. This representation is motivated by the theoretical
analysis of the finite-size effects in a Newtonian solvent within
the NSE. Hasimoto [55] showed that the friction coefficient,
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FIG. 3. Friction coefficient extrapolated to the infinite system as
function of the tracer size (the error bars indicate the dispersion of
the data for large systems). The lines are the results from Brinkman’s
equation with stick or slip boundary conditions and Stokes’s law, as
labeled.

γeff, experienced by an array of tracers follows:

1

γeff
= 1

γ∞

(
1 − C

L

)
, (15)

where γ∞ is the friction coefficient measured in an infinite
system, C is a constant that depends on the array structure
(simple cubic, BCC, FCC, and so on) and L is the lattice
spacing, namely, the simulation box size. For the simple cubic
array, that corresponds to the periodic boundary conditions,
C = 2.8373 at [55]. Previous simulations of the diffusion of
a tracer in a bath of particles, with microscopic Newtonian
dynamics, have shown the validity of this result [56,57].
Furthermore, the value of the friction coefficient extrapolated
for the bulk, agrees with the Stokes value using the viscosity
(calculated with the Green-Kubo integration of the stress au-
tocorrelation function, as discussed below), and slip boundary
conditions.

The data in Fig. 2 shows that γ −1
eff grows for increasing

system sizes for small and intermediate L, but levels off for
large systems. These results clearly deviate from the predic-
tion for a Newtonian fluid, Eq. (15), as expected for Langevin
systems with a dissipative term. Notably, it also indicates
that the bulk value can be obtained from simulations of large
enough systems. In a previous work, it was shown that this
general result does not depend on the particular details of the
simulation [43] (considering the volume of the tracer in the
system volume, fixing the center of mass of the system, or
varying the friction coefficient with the solvent).

The values of the friction coefficient with an infinite bath,
to be compared with the theory, are taken from the plateau for
large systems. The results are plotted in Fig. 3 as a function of
the tracer size, with the error bars representing the dispersion
of the data. The simulation data deviates clearly from the
linear trend predicted by Stokes’s law for a Newtonian fluid,
while the Brinkman equation predicts the qualitative behavior
of the friction coefficient adjusting the only unknown param-
eter k0 (see below).

To make a more quantitative test of the theoretical models,
we calculate the shear viscosity of the bath of quasihard
particles. This is given by the Green-Kubo relation, namely
the integral of the stress autocorrelation function, which ac-
counts for the particle-particle direct interactions as well as
the kinetic energy [48]:

η0 = β

3V

∫ ∞

0
dt

∑
μ<ν

〈σμν (t )σμν (0)〉, (16)

where β = 1/kBT is the inverse thermal energy, V the system
volume, and σμν (t ) is the μν component of the stress tensor.
The sum runs over all off-diagonal terms of the stress tensor,
and 〈σμν (t )σμν (0)〉 is the stress autocorrelation function. The
time integral over the correlation function is more conve-
niently performed using the Einstein relation [58,59].

The Green-Kubo integration gives for the viscosity of the
bath η0 = (3.9 ± 0.1)

√
kT m/a2. With this value, the Stokes

prediction is plotted in Fig. 3 (blue continuous line), which
underestimates notably the simulation data for large tracers,
although the small size limit is correctly captured. The friction
coefficient obtained from the Brinkman equation has been
adjusted to reproduce the simulations, using k0 as fitting
parameter. The dashed lines in Fig. 3 show the fittings with
the calculations considering stick or slip boundary conditions
(red or green lines, respectively). Both fittings are equally ac-
ceptable, but they give different values of the fitting parameter
k0, as shown in the figure.

From the simulation, identifying ζ0 = nγ0, we expect k0 =√
nγ0/η0 = 0.39/a, which is within the range of values pro-

vided by both fittings. A small value of k0 corresponds to a
system controlled by the viscosity of the bath of particles, as
expected due to the high density of the bath (recall that the
volume fraction is φ = 0.50).

To further compare the model and the simulations, we
study the velocity profile in the bath. Figure 4 shows the
velocity of the bath particles in front of the tracer for two
tracer sizes and the system with N = 15 625 particles (only
the radial component is studied). The distribution of bath
particles surrounding the tracer, ρ(r), is also included in
the figure to facilitate the interpretation. The velocity profile
oscillates in phase with the bath density, and decays faster than
the inverse distance, the prediction for the Newtonian fluid,
irrespective of the boundary condition. Brinkman’s model,
Eq. (5), on the other hand, reproduces quite well the decay
of the velocity profile (as 1/r3), but also quantitatively with
the values of k0 obtained from the fitting of the friction coef-
ficient for both boundary conditions, and for both tracer sizes.
However, the theory fails to capture the oscillations due to the
finite size of the bath particles, as expected for a continuum
model for the bath. Again, both boundary conditions compare
equally well with the simulations, bracketing the simulation
results.

A more prominent difference between the stick and slip
boundary conditions is obtained if the angular component
of the velocity field in the direction perpendicular to the
external force is studied. This is tackled in Fig. 5 for the
same tracer sizes (the z component of the velocity, parallel
to the force, is studied). For small distances from the tracer,
the stick boundary conditions result in a positive velocity,
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FIG. 4. Velocity profile in the colloidal bath in front of the tracer
from simulations (continuous red line), for two tracer radii, as la-
beled. Theory results for a Newtonian fluid (thin red and green lines)
and the Brinkman equation with stick or slip boundary conditions
(dashed red and green lines, respectively) are also included. The
dash-dotted black line represents the density of bath particles around
the tracer.

which becomes negative further away, but the slip boundary
condition produces a negative velocity for all distances. The
simulation results agree with both cases for long distances
(negative velocity), but are close to zero near the tracer. This
result, in conjuction with all previous comparisons, proba-
bly indicates that a mixed boundary condition is optimal in
describing the friction and velocity fields of the tracer in a
colloidal bath with the Brinkman equation. For completeness,
the predictions from the NSE for stick and slip boundary
conditions are shown, indicating that the behavior observed
in the simulations cannot be reproduced.

B. Tracer dynamics

In this subsection, we analyze the transient dynamics of
the forced tracers of different sizes, for a small pulling force.
Figure 6 shows the mean-squared displacement of the tracer
perpendicular to the force direction and parallel to it (with
the drift velocity substracted). Long-time diffusion is reached
for all tracers, in particular in the longitudinal direction, i.e.,

FIG. 5. The z component of the velocity in the colloidal bath
in the plane perpendicular to the tracer for at = 3a (upper panel)
and at = 8a (lower panel). Simulations (continuous red line), and
theory results for a Newtonian fluid (thin red and green lines) and the
Brinkman equation with stick or slip boundary conditions (dashed
red and green lines, respectively) are shown. The dash-dotted black
line represents the density of bath particles around the tracer rescaled
to fit into the same scale.

superdiffusion is not observed for this density [16] (superdif-
fusion has been indeed observed in this same system for larger
densities). Notably, the self diffusion coefficient decreases
with increasing tracer size, developing a shoulder in the MSD
and a sublinear increase at intermediate times. The typical
distance corresponding to the height of the shoulder also
decreases with the size of the tracer. Recall that the length
unit is the bath particle radius, i.e., if the tracer radius is used,
the decrease in the localization length is enlarged, pushing to
a tiny fraction of the tracer radius (smaller than 10−4a2

t for the
biggest tracer).

The self-diffusion coefficients, obtained from the long-time
slope of the MSD in both directions, are shown in Fig. 7. Both
of them are very similar and follow the same trend, decaying
almost two decades in the range of tracer sizes studied here.
Indeed, not only the slopes of the MSD in both directions are
close to each other, but the MSD themselves are very similar
(the relative differences are below 20% in all cases, and
constant within the statistical noise). The equality of the MSD
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FIG. 6. Tracer mean-squared displacement in the direction per-
pendicular to the force (upper panel), and parallel to the force (lower
panel), for different tracer radii, as labeled (increasing from top to
bottom).

in both directions, and the concomitant diffusion coefficients,
despite the anisotropy induced by the external force, indicates

FIG. 7. Diffusion coefficients in the direction perpendicular and
parallel to the external force, as labeled.

FIG. 8. Diffusion coefficient in the force direction times the
friction coefficient. The blue line is the average over all data.

that the force is small enough to keep the system in the linear
regime.

Finally, we check the Stokes-Einstein relation for the tracer
by plotting the product of the diffusion coefficient times the
friction coefficient for all tracer radii. Figure 8 shows these
results as a function of the tracer size. The product is close
to 1 in all cases, fluctuating around a mean value of 0.986,
confirming the validity of the Stokes-Einstein relation, or
stated more generally, of the linear response formalism. The
mobility, viz. the inverse friction coefficient, of a tracer feeling
a small force is proportional to the diffusion coefficient of
the unforced tracer, and the prefactor is given by the thermal
energy, which is set to unity in the simulations.

IV. CONCLUSIONS

The dynamics of a large tracer pulled with a small force
in a bath of quasihard colloidal spheres has been studied with
Langevin dynamics simulations, and with continuum mechan-
ics. The force is small enough to keep this out-of-equilibrium
system in the linear response regime. The analysis of finite-
size effects in the simulations has shown that the correlations
in the bath, induced by the moving tracer, decay faster than
in a Newtonian fluid, and within the simulation box, if the
system is large enough. This has allowed the analysis of the
microviscosity without futher extrapolation with the theory.
The Navier-Stokes equation has been modified, adding a term
proportional to the fluid velocity, resulting in an equation
identical to the Brinkman equation, albeit our interpretation of
the terms is different. This two-fluid model provides a length
scale, k−1

0 , for the crossover from diffusive transverse mo-
mentum transport to friction with the solvent, which depends
on the viscosities of the two fluids. The resulting friction
coefficient for the tracer grows faster than linear, with both
stick and slip boundary conditions, and the velocity profile
decays as ∼1/r3 for finite k0. The results for a Newtonian
fluid are recovered in the limit k0 → 0.

The comparison of the simulations and theory gives semi-
quantitative agreement. Fitting k0, the simulation data can be
reproduced with the model, both the friction coefficient and
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velocity profile in the bath for long distances. The value of
k0 also corresponds to the expectation based on the viscosity
calculated from the Green-Kubo relation and the solvent fric-
tion coefficient. The two-fluid model describes satisfactorily
the physical phenomena in colloidal microrheology and shows
that a correct interpretation of the results requires accounting
for colloidal bath particles and solvent. Also, our results
apparently point to mixed effective boundary conditions be-
tween stick and slip.

The fluctuations of the tracer position have been studied to
obtain the mean-squared displacement in the direction parallel
to the force and perpendicular to it. Diffusion is attained in
both cases at long times, after a transient trapping with a
typical length decreasing for increasing tracer sizes. Because
the system is in the linear response regime, the diffusion
coefficients in both directions are similar despite the anisotry

provoked by the external force. Furthermore, the Stokes-
Einstein relation is fulfilled, confirming the validity of linear
response.
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