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At equilibrium, the structure and response of ordered phases are typically determined by the spontaneous
breaking of spatial symmetries. Out of equilibrium, spatial order itself can become a dynamically emergent
concept. In this article, we show that spatially anisotropic viscous coefficients and stresses can be designed
in a far-from-equilibrium fluid by applying to its constituents a time-modulated drive. If the drive induces
a rotation whose rate is slowed down when the constituents point along specific directions, then anisotropic
structures and mechanical responses arise at long timescales. We demonstrate that the viscous response of such
two-dimensional anisotropic driven fluids can acquire a tensorial, dissipationless component called anisotropic
odd (or Hall) viscosity. Classical fluids with internal torques can display additional components of the odd
viscosity neglected in previous studies of quantum Hall fluids that assumed angular momentum conservation. We
show that, unlike their isotropic counterparts, these anisotropic and angular momentum-violating odd-viscosity
coefficients can change even the bulk flow of an incompressible fluid by acting as a source of vorticity. In
addition, shear distortions in the shape of an inclusion result in torques. We derive how the odd-viscous
coefficients depend on the nonlinear, dissipative response of a fluid of rotating rods, i.e., odd viscosity is not
simply given by angular momentum density.
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In equilibrium phases of matter, large-scale structure is in-
tricately tied to the spontaneous breaking of translational and
rotational symmetries. Such equilibrium symmetry breaking
occurs at phase transitions when the balance of entropic and
energetic forces shifts. In the broken-symmetry state, spatial
symmetries (and conservation laws) determine the material’s
mechanical response. In addition to crystallization, this over-
arching mechanism includes the transition to intermediate
mesophases, such as nematic liquid crystals, in which only
rotational symmetries of the fluid are broken.

Systems far from equilibrium can display novel phases
having no equilibrium counterparts. Examples include active
materials in which energy-consuming components can spon-
taneously break rotational symmetry to form a flock [1], peri-
odically driven Floquet systems that exhibit topological order
[2–4], and quantum systems in which discrete time-translation
symmetry is spontaneously broken, leading to analogs of
crystals in the time domain [5–8]. In this article, we show how
to use a time-modulated drive to induce spatially anisotropic
mechanical responses in a many-body system. The resulting
nonequilibrium states differ from more conventional phases
with spontaneously broken symmetry. Unlike the more com-
mon examples of Floquet phases, we explore the dynamics
on timescales much longer than a period of the drive. As a
concrete example, we study an ordered liquid (e.g., a nematic)
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whose orientation is prescribed purely by a strong external
drive (or internal activity). The collective mechanical response
of these liquids with time-modulated drive emerges from
the interplay between the dynamically induced alignment
(which can be a single-particle effect) and the many-body
interactions between rotating constituents. Because of this
coupling, temporal modulations of the drive can generate an
anisotropic mechanical response that reflects the breaking of
both time-reversal and chiral symmetries. Such an anomalous
mechanical response is captured by time-averaged physical
quantities and does not require fine tuning of hydrodynamic
coefficients or driving fields.

The counterintuitive properties of these driven phases arise
from a simple observation: In equilibrium, time-averaging and
space-averaging operations must both be identical to ensem-
ble averaging by the ergodic theorem, whereas far from equi-
librium, different averaging operations correspond to different
physical quantities. We use this principle to design anisotropic
driven fluids with unusual mechanical properties, as illustrated
in Fig. 1. Consider rodlike particles in two dimensions for
which a time-averaged nematic order parameter can be ob-
tained by rotating the rods with a cyclically modulated rate.
Along a prescribed direction (defined by angle θ ), the rotation
rate slows down (corresponding to θ̈ < 0). In the opposite
phase of the cycle, the rods point perpendicularly to the
prescribed direction and are sped up (with θ̈ > 0). This pre-
scribed direction defines a dynamically induced nematic order
at long timescales (Fig. 1, right panel). The time-averaged
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FIG. 1. Constructing orientational order via cyclic drive. Con-
sider a fluid composed of rods (i.e., a nematic liquid crystal). In
the model we consider, each particle rotates around its center of
mass and the rate of rotation is modulated in time twice per cycle
(left panel). For this case, the rods rotate fastest when oriented
vertically and slowest when oriented horizontally (middle panel).
On average, this means that each rod spends more time pointing
horizontally, implying the emergence of a time-averaged nematic Q
tensor, whose amplitude (i.e., the order parameter 〈ei2θ 〉) is deter-
mined by the amplitude of drive modulation α. The original nematic
fluid and the rotated fluid share a C2 rotational symmetry. However
unlike equilibrium nematics, the fluid of rotating rods breaks both
time-reversal and parity symmetries, which endows this fluid with
additional mechanical response not seen in equilibrium.

nematic order parameter scales with the amplitude of the
modulation. If no modulation is present, then the fluid appears
isotropic at long timescales—this is the usual case of a chiral
active fluid with a uniform rate of rotation (e.g., Refs. [9–18]).

Whereas in static metamaterial, design exotic elastic re-
sponses, such as negative Poisson’s ratio, can be achieved
from periodic modulations in space [19] (for example by
introducing arrays of holes in the structure), and here we
design the viscous response using periodic modulations in
time. The emergent viscosity coefficients reflect the breaking
of time-reversal, parity, and rotational symmetries generated
by a time-modulated drive.

I. GENERAL FORMALISM AND OUTLINE

The present study focuses on two-dimensional fluids with
a dissipationless transport coefficient called odd viscosity
(equivalently, Hall viscosity) [20–26], which is represented
mathematically by the antisymmetric component of the vis-
cosity tensor ηi jkl . The viscosity tensor is the coefficient
of proportionality between the stress σi j and the strain rate
vkl . For a simple fluid with time-reversal symmetry, T , the
Onsager reciprocal relation (valid at equilibrium) dictates
that ηi jkl = ηkli j . Without T -symmetry, extra odd components
ηo

i jkl (= −ηo
kli j) can enter the viscosity tensor with the prop-

erty that both T and the parity operator P change the sign
of ηo

i jkl . The isotropic part of the odd viscosity tensor ηo
i jkl has

been studied in chiral active fluids in which each particle expe-
riences an intrinsic torque [27,28], in inviscid fluids composed
of vortices [29], and in two-dimensional conductors subject
to an external magnetic field [30,31]. This isotropic response
has also been measured experimentally in magnetized plasmas
[32,33], graphene [34] and colloidal chiral active fluids [35].
In chiral active fluids, odd viscosity arises not as a result
of broken spatial symmetry but rather as a result of broken
time-reversal symmetry, T .

To see how anisotropic terms in the odd viscosity tensor
affect the emergent fluid mechanics, we follow the approach
and notation developed in Ref. [36] for odd elasticity. The

stress σi j (= ηo
i jkl∂kvl ) is expressed as a vector with four

independent components: (1) antisymmetric stress (εi jσi j),
(2) isotropic pressure (Tr σ ), and [(3) and (4)] the two shear
stresses at 45◦ with respect to each other expressed in terms of
the Pauli matrices σ x

i j and σ z
i j . Similarly, we write the unsym-

metrized strain rates ∂kvl (i.e., gradients of the velocity field)
as a vector with four components: (1) vorticity ω (= εkl∂kvl ),
(2) compression ∇ · v, and [(3) and (4)] two shear-strain
rates. In the visual notation of Ref. [36], the antisymmetric
component of the viscosity tensor for two-dimensional fluids
takes the schematic matrix form:

(1)

The matrix in Eq. (1) is the most general form for a tensorial
odd viscosity: It is written down purely based on symmetry
considerations and holds irrespective of a specific microscopic
model. For clarity, we did not write any of the even, dissipative
viscosity terms in Eq. (1), which can instead by found in
Appendix B.

The six independent components in Eq. (1) can be split
into two groups: the two isotropic components ηo and ηA and
the four components that transform under rotation ηQ

α , η
Q
β ,

ηQ
γ , and η

Q
δ . The usual isotropic odd viscosity ηo (shown in

black) couples the two shear components corresponding to
σ x

i j and σ z
i j in a chiral fashion. By contrast, the ηA component

(shown in red) corresponds to local torques due to fluid com-
pression and explicitly violates the conservation of angular
momentum. Similarly, the anisotropic components ηQ

γ and η
Q
δ

(shown in red) generate antisymmetric stress and only appear
in fluids that violate the conservation of angular momentum.
The components ηQ

γ and η
Q
δ have not been considered in the

previous literature on tensorial odd viscosity [37–40] despite
being the only ones capable of changing the bulk flow of an
incompressible fluid, as we elucidate in the present paper.
By contrast, the angular-momentum conserving components
ηQ

α and η
Q
β (shown in blue) have been previously considered

in Refs. [37–40]. Whereas quantum Hall fluids (including
anisotropic ones) conserve angular momentum and have ηA =
0, chiral active fluids do exhibit a nonzero ηA even in the
isotropic case. The anisotropic components can be split into
two pairs: (1) η

Q
α,β (blue) leads to pressure (i.e., isotropic

stress) due to shear and vice versa, in a direction-dependent
way, and (2) η

Q
γ ,δ (red) leads to torque (i.e., antisymmetric

stress) due to shear and vice versa. Under a 45◦ coordinate
rotation, ηQ

α transforms into η
Q
β and ηQ

γ transforms into η
Q
δ

while the (squared) amplitudes (ηQ)2 ≡ (ηQ
α )2 + (ηQ

β )2 and

(ηK )2 ≡ (ηQ
γ )2 + (ηQ

δ )2 remain invariant.
In Secs. II and III, we present a minimal continuum model

of a rotating liquid crystal within which the values of all
the odd-viscosity components listed in Eq. (1) are derived
from the nonlinear, dissipative response coefficients of the
underlying equilibrium nematic: They are not simply given
by angular momentum density. We stress, however, that all
our key results are not dependent on microscopic models and
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apply to the general hydrodynamics of active fluids having
anisotropic odd viscosity represented by Eq. (1). In Secs.
IV and V, we start from Eq. (1) and determine how the
phenomenology of the anisotropic odd viscosity differs from
the previously investigated isotropic part. For an incompress-
ible fluid with conserved angular momentum, isotropic odd
viscosity (characterized by ηo) affects the pressure but not the
fluid flow profile [21,25,26]. Without angular momentum con-
servation, an isotropic incompressible fluid still exhibits no
signature of the extra odd viscosity ηA. Isotropic odd viscos-
ity cannot be measured from an incompressible flow profile
[21,27], making it a somewhat elusive transport coefficient.
By contrast, we show in Sec. IV that the angular-momentum
violating components of the anisotropic-odd-viscosity η

Q
γ ,δ

can qualitatively change the bulk flow of an incompressible
two-dimensional fluid, which greatly expands the potential
for chiral active microfluidic applications. In this case, the
equation of motion for the vorticity ω explicitly depends on
the symmetric traceless matrices M1 ≡ ηQ

γ σ x + η
Q
δ σ z and

M∗
1 ≡ η

Q
δ σ x − ηQ

γ σ z (i.e., M1 rotated by π/4). In Sec. IV,
we show that

ρDtω = η∇2ω − (∇ · M1 · ∇)ω + ∇2[∇ · (M∗
1 · v)]. (2)

The matrix M1 is proportional to the Q tensor, Qi j ∝ (n̂in̂ j −
δi j/2). Here n̂i defines the fluid’s anisotropy axis (see next
section for a concrete example) while ρ is the density and
η is the dissipative shear viscosity that enters the bottom
two diagonal components of Eq. 1. The last two terms in
Eq. (2) provide additional sources of vorticity that can sig-
nificantly modify the bulk flow of an incompressible fluid:
They represent torques induced by the shear components of
the strain rates due to the angular momentum–violating com-
ponents of the anisotropic odd viscosities η

Q
γ ,δ . In Sec. V, we

show that for a parity-violating fluid with conserved angular
momentum, anisotropic odd viscosity can still be measured
at the fluid boundaries, for example via torques on shape-
changing inclusions. References [25,26] show that isotropic
odd viscosity results in torques on an inclusion proportional to
the rate of change in area. Here we show that the anisotropic
odd viscosity components η

Q
α,β capture an additional effect

corresponding to torques that result from the change in the
shape of an inclusion at fixed area, i.e., from the shear distor-
tions of the inclusion’s boundary (see Fig. 2).

II. ANISOTROPIC FLUIDS FROM
TIME-MODULATED DRIVE

In this section, we connect the general formalism presented
in Eqs. (1) and (2) to the coarse-grained description of a
fluid composed of rapidly rotating anisotropic objects. Define
the director to be n̂(t ) = [cos θ (t ), sin θ (t )] and modulate the
orientational dynamics of the rods via the angle θ (t ):

θ (t ) = �t − α sin(2�t + δ), (3)

where α is the modulation amplitude, � = 〈θ̇ (t )〉 is the aver-
age rotation rate, δ is the rotation phase, and the averaging is
over a period of rotation from t = 0 to t = 2π/�.

In the context of equilibrium spontaneous symmetry break-
ing, the constituent shape determines mesophase order. For
example, at high density or low temperature, rod-shaped con-

(a)

(b)

- I

- Q

I

Q

Qij Qij

FIG. 2. Schematics of the physics of tensorial odd viscosity.
(a) The response characteristic of isotropic odd viscosity, corre-
sponding to ηo = Tr(ηo

i j )/2: For an object with time-varying area
a(t ), isotropic odd viscosity is related to the ratio of torque τI to areal
rate of change ȧ: ηo = τI/(2ȧ) [25,26]. For a given fluid chirality (in
this case, ηo > 0), the torque changes sign depending on whether the
object is contracting (ȧ < 0 and τI < 0, left) or expanding (ȧ > 0 and
τI > 0, right). (b) If the areal rate of change is zero but the shape is
sheared, then the torque τQ is given by the anisotropic component
of the odd viscosity tensor. This nematic odd viscosity has two
independent components captured by the traceless symmetric tensor
Qi j [= S(nin j − δi j/2)], which control the amplitude and shear-angle
dependence of the resulting torque. Specifically, this torque depends
on the angle of the shear relative to the director ni and is proportional
to the (signed) shear rate. For example, for a sheared circle, a rotation
of the shear by π/2 is equivalent to a shear of opposite sign and
therefore corresponds to a torque τQ of the opposite sign (right). The
orientation at angle π/4 at which the shear is diagonal corresponds
to zero torque.

stituents can form nematic (twofold rotationally symmetric)
phases. By contrast, in our case, anisotropic responses and
structure emerge from dynamics. In order to characterize
such structures on long timescales, we average over the fast
timescale of a single rotation period. We formally define this
time averaging via the integral

〈χ (t )〉 ≡ �

2π

∫ 2π/�

0
dt χ (t ) (4)

for an arbitrary periodic function χ (t ). For example, substitut-
ing Eq. (3), with δ = 0, into the orientational order parameter
ei2θ and evaluating the average using Eq. (4), we find

〈ei2θ (t )〉 = J1(2α) ≈ α + O(α3), (5)

where J1(x) is a Bessel function of the first kind [41]. This
order parameter connects the modulation defined by Eq. (3) to
time-averaged orientational order with 2π rotational symme-
try. In the isotropic case, the system becomes a fluid composed
of objects rotating at a constant rate [9–18]. The mechanics
of matter composed of such chiral active building blocks is
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crucial for biological function [42–50] and synthetic materials
design [51–55]. One exotic feature in the mechanics of these
fluids are local torques due to antisymmetric components of
the stress tensor [56–58].

The order parameter captures the appearance of nematic
anisotropy in a fluid with a cyclically modulated drive. Rota-
tions of time-averaged order are captured by the modulation
phase δ that enters the nematic Q tensor. (The order parameter
S ≡ |〈ei2θ (t )〉| does not depend on rotations by δ.) For a fluid
with nematic symmetry, the time-averaged Q tensor is defined
by 〈Qi j〉 ≡ 2(〈nin j〉 − 〈nin j〉α=0), where 〈nin j〉α=0 = δi j is
the average in the isotropic case (δi j is the Kronecker δ). Using
Eq. (3), we find:

〈Qi j〉 = S

2

[
cos 2δ sin 2δ

sin 2δ − cos 2δ

]
. (6)

In this time-averaged sense, the fluid is not an ordinary
nematic, which would have a spontaneously broken symmetry
and long, slow variations in Qi j (x, t ) over time and space.
Instead, in the driven fluid such fluctuations are suppressed
because rotational symmetry is explicitly broken by the drive.
Qi j is prescribed and constant in both time and space.

For this nematic fluid, the naive time average of the di-
rector n̂ is zero by symmetry: 〈n̂〉 = 0. Nevertheless, a time-
averaged director n̂a can be defined from the time-averaged
Q: 〈Qi j〉 = 〈ei2θ (t )〉[n̂a

i n̂a
j − δi j/2]. This quantity is defined by

the phase δ, n̂a = (cos δ, sin δ). The two parameters α and δ

determine, respectively, the magnitude and orientation of the
time-averaged order in the emergent nematic fluid (as does the
equivalent description using the Q tensor).

III. DERIVATION OF ODD VISCOSITY COEFFICIENTS

A fluid with orientational order has a direction-dependent,
i.e., anisotropic, mechanical response. Here we ask the follow-
ing more subtle question: Can time-modulated drive generate
anisotropic viscous stresses that are not present in equilibrium
nematics? To probe the anisotropic odd viscosities captured
by the general symmetry analysis of Eq. (1), we consider
timescales for which θ̇ is fast and the strain rates ∇iv j

are slow. We begin the discussion of our concrete example
with a coarse-grained description of an equilibrium nematic
liquid crystal and add rotational drive. Such a description is
appropriate if θ̇ is slow compared to the microscopic collision
processes between the fluid particles, allowing us to keep only
the lowest-order terms in θ̇ . In our description, the fast director
is averaged over a rotational period, and only the slow velocity
field remains (see Fig. 1).

For general two-dimensional fluids that conserve angular
momentum, the odd viscosity encoded in the tensor ηo

i jkl (=
−ηo

kli j) represented pictorially in Eq. (1) has only three inde-

pendent components η
Q
α,β and ηo [21]. Because the rotational

drive is a clear source and sink for angular momentum in the
overdamped fluid that we consider, we expect odd viscosity
to includes the three extra components η

Q
γ ,δ and ηA. Whereas

the components ηo,A are isotropic, the η
Q
α,β,γ ,δ rotate like the

components of the Q tensor for a nematic liquid crystal.
Therefore, for fluids with threefold rotational symmetry (or
higher), only the two isotropic components ηo,A will remain

[21]. Note that for any odd viscosity tensor ηo
i jkl , the resulting

stress ηo
i jklvkl is dissipationless. This can be evaluated from

the rate ∂t s of entropy production, ∂t s ≈ ∑
i jkl ηo

i jklvi jvkl = 0,
using the antisymmetry of ηo

i jkl .
For two-dimensional quantum fluids, an anisotropic gen-

eralization of odd viscosity has recently been proposed in
Refs. [37–40]. Odd viscosity is a useful tool to study parity-
broken quantum systems such as quantum Hall states, Chern
insulators, and topological superconductors [23,59–62], be-
cause it helps to identify topological phases of matter. In these
cases, the fluid has inversion symmetry as well as angular
momentum conservation, and the full information about odd
viscosity is encoded into a symmetric rank-2 tensor ηo

i j :

ηo
i j = ηoδi j + ηQ

α σ x
i j + η

Q
β σ z

i j, (7)

where the traceless part of ηo
i j is the symmetric matrix ηQ

α σ x +
η

Q
β σ z. As an example, if the nematic director aligns with

the x axis, then δ = 0. Physically, this means that only the
horizontal pure shear leads to either a torque or a pressure
change.

While isotropic odd viscosity ηo has been observed, the ne-
matic components of odd viscosity have not yet been realized
in any experimental context. In order to estimate anisotropic
odd viscosity in chiral active fluids, we consider the over-
damped orientational dynamics of an anisotropic classical
fluid, i.e., a nematic liquid crystal [63,64]. Typical nematics
are composed of anisotropic, rodlike constituents (called ne-
matogens) on molecular or colloidal scales. When the rods
align with their neighbors, they carry no angular momentum
or inertia. Vibrated rods can order into a nematic pattern as
a nonequilibrium example of a system with liquid-crystalline
order [65]. Nematogens can transition between a disordered
state at high temperature (or low density) and an aligned state
at low temperature (or high density). In the nematic state, the
rods tend to all point in the same direction, and the mechanical
response varies relative to this alignment. The Leslie-Ericksen
coefficients characterize the linear response of the fluid stress
to either the strain rate or the rotation rate of the nematic
director.

We now consider the nonlinear generalization of the
Leslie-Ericksen stress to lowest orders in nonlinearities [66]
(see Appendix B for full expression). After averaging over
the fast dynamics of the nematic director, the terms linear
in strain rate Ai j contribute to the viscous components of the
stress tensor. However, terms even in ˙̂n [i.e., order ( ˙̂n)2p for
integer p, including p = 0, which are those independent of ˙̂n]
do not break time-reversal symmetry and cannot contribute
to odd viscosity. We focus on those terms that contribute to
the odd viscosity tensor, which therefore must be odd in ˙̂n
(ṅi = −θ̇ εi jn j , where εi j is the two-dimensional Levi-Civita
symbol defined via εxy = −εyx = 1 and εxx = εyy = 0) and
linear in Akl . For positive integers β (= 1, 2, 3, . . .), these
terms, of order θ̇2β−1, are [66]

σ
EL,β
i j = θ̇2β−2

[
ξ

β

10npAipṅ j + ξ
β

11npAj pṅi + ξ
β

12niA j pṅp

+ ξ
β

14n jAipṅp + ξ
β

16ninpnqApqṅ j + ξ
β

17n jnpnqApqṅi
]
.

(8)
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We focus on the stress components σ EL,1 and σ EL,2, which
have similar forms but different orders of θ̇ and, in general,
different sets of coefficients {ξβ

κ }. The local forces ρ0∂t v
are calculated using gradients of the time-averaged stress,
resulting in the equation for the flow v: ρ0∂tvi = ∇ j〈σ EL

i j 〉,
where ρ0 is the fluid density. For modulations with n = 2, we
obtain the following expression for the isotropic odd viscosity:

ηo = −�

8
ξ 1

L − �3

8
(1 + 2α2)ξ 2

L + O(�5), (9)

where ξ
β
L ≡ 2[ξβ

10 + ξ
β

11 − ξ
β

12 − ξ
β

14] + ξ
β

16 + ξ
β

17 is a linear
combination of the ξβ

κ coefficients. The first right-hand-side
term in Eq. [9] comes from the lowest-order nonlinearities
in the equilibrium fluid stress, whereas the higher-order term
involves higher-order nonlinearities and will in general be
subdominant. Despite constraints (stemming from stability at
equilibrium) on the signs of ξ

β
i , the resulting expression (9)

for ηo can change sign either via reversal of the spinning rate
� or by changing the relative magnitudes of ξβ

κ that enter
Eq. (9) with different signs.

In many contexts, odd viscosity goes hand in hand with
inertia. In vortex fluids, the vortex circulation encodes both
fluid inertia and odd viscosity [29]. For chiral active fluids in
which collisions conserve angular momentum, a simple argu-
ment gives the value of odd viscosity: If an inclusion changes
its area, then the torque on the inclusion is given by the rate
of change in area times the odd viscosity or, equivalently, by
the expelled angular momentum. As a result, odd viscosity is
given by half of the angular momentum density [26,27]. For
fluid phenomena at the smallest scales, dissipation dominates
over inertia. In this limit, chiral active fluids composed of
colloidal particles have the broken-T symmetry necessary
for odd viscosity to arise. However, the arguments based on
angular momentum cannot give an accurate estimate of the
value of odd viscosity because momentum plays no role in
the mechanics. Instead, in the dissipative, overdamped model
that we propose, isotropic odd viscosity ηo arises from the
lowest-order nonlinear coupling between director rotation and
fluid strain rate, see Eq. (9).

To analyze the tensorial (angular momentum conserving)
components of the odd viscosity tensor ηo

i jkl , we calculate
the rank-2 odd viscosity tensor ηo

i j using [37–39] ηo
i j =

(δniδk jεml + δmiδl jεnk )ηo
nmkl/4. From 〈σ EL,2

i j 〉, we find

ηQ = α�3

4

(
ξ 2

16 + ξ 2
17

) + O(�5), (10)

where again ηQ is defined via (ηQ)2 ≡ (ηQ
α )2 + (ηQ

β )2. Be-
cause effects of modulated drive enter via terms of the stress
σi j higher order in the rotation rate θ̇ , ηQ scales as �3

in contrast to ηo, which scales as �. If α → 0, then the
driven fluid loses anisotropy and the nematic odd viscosity ηQ

vanishes. In addition to the components of the odd viscosity
tensor that conserve angular momentum, the chiral active
fluid also includes the components η

Q
γ ,δ and ηA that couple

explicitly to the antisymmetric component of the stress and
which therefore correspond to induced microscopic torques.
From the averaging procedure, these extra responses can be

read off as

ηA = �

4

(− ξ 1
9 + ξ 1

10 − ξ 1
14

) + O(�3), (11)

ηK = α�3

4

(
2ξ 2

11 + 2ξ 2
12 − ξ 2

16 + ξ 2
17

) + O(�5), (12)

to lowest orders in �, where ηK is defined via (ηK )2 ≡
(ηQ

γ )2 + (ηQ
δ )2.

IV. EQUATION OF MOTION WITH ANISOTROPIC
ODD VISCOSITY

In this section, we elucidate the general consequences of
tensorial odd viscosity on fluid flow anticipated in Eq. (2).
Using the Helmholtz decomposition in two dimensions, the
fluid flow can be expressed in terms of the compression
rate ∇ · v and the vorticity ∇ × v. To derive the equation of
motion for vorticity, we follow the usual route by taking the
curl of the velocity equation. This simplifies the equation by
removing the gradient terms due to isotropic stress (because
εi j∂i∂ jσkk = 0). Without any odd viscosity contributions,
the equation of motion would become the two-dimensional
vorticity-diffusion equation. We find that whereas isotropic
odd viscosity contributes only compression-rate-dependent
terms [27], anisotropic odd viscosity changes the vorticity
profile even for an incompressible fluid. We do so by substitut-
ing the expression for the stress σi j = ηi jklvkl into the velocity
equation ρDtv j = ∂iσi j . We begin with the full antisymmetric
viscosity tensor ηo

i jkl from Eq. (1) and, for brevity, only
the isotropic shear viscosity η from the symmetric, dissipa-
tive viscosity (see Appendix B for a detailed discussion of
the anisotropic dissipative viscosity tensor.) Taking the curl,
we arrive at the (pseudo-scalar) vorticity equation (see Ap-
pendix E for details):

ρDtω = η∇2ω − (∇ · M1 · ∇)ω + ∇2[∇ · (M∗
1 · v)]

+ (ηo + ηA)∇2(∇ · v) − (∇ · M2 · ∇)(∇ · v),

(13)

where Dt is the convective derivative, and

M1 ≡ ηQ
γ σ x + η

Q
δ σ z, (14)

M2 ≡ ηQ
α σ x + η

Q
β σ z,

and M∗
1 ≡ η

Q
δ σ x − ηQ

γ σ z (i.e., M1 rotated by π/4). For
incompressible flow, ∇ · v = 0, and the last two terms in
Eq. (13) proportional to the odd viscosity components ηo, ηA,
and M2 all vanish [21]. This reduces Eq. (13) to Eq. (2). This
feature distinguishes components of anisotropic odd viscosity
M1 (and ηK ) from both isotropic odd viscosities ηo and ηA:
M1 can be measured directly from the flow of an incom-
pressible fluid in the bulk. The expression ∇ · (M∗

1 · v) can
be interpreted as a shear-strain rate associated with v (because
Q and M1,2, like shear transformations, are all symmetric and
traceless). Alternatively, we can rewrite the last term in Eq. (2)
using the nematic director rotated by π/4, which we call m̂,
finding the term proportional to ∇2[(m̂ · ∇)(m̂ · v)], where we
used ∇ · v = 0. This form demonstrates that anisotropic odd
viscosity induces torques due to (the Laplacian of) gradients
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that are rotated by π/4 relative to the nematic director of the
velocity component along the same direction.

A further simplification to these expressions can arise in
fluids with nematic symmetry. In that case, we expect both
M1 and M2 to be proportional to the nematic Q tensor,
which implies that the angle δ defined in Eq. (6) is the same
for the two tensors M1,2. This implies a relation between
components η

Q
α,β,γ ,δ that reduces the number of indepen-

dent anisotropic viscosities from four to three. This relation
between the four anisotropic odd viscosities is expected to
hold for a wide range of models of anisotropic fluids with
odd viscosity and without angular momentum conservation,
including the one we consider in this work.

V. TORQUES ON AN INCLUSION

Whereas the anisotropic component, ηK , can be measured
directly from the flow of an incompressible fluid, the other
tensorial odd viscosity, ηQ, requires the measurement of
forces on a boundary. Below we show how tensorial odd
viscosity ηQ determines the mechanical forces that the fluid
exerts on immersed objects. For simplicity, consider the case
in which ηA = ηK = 0. This case also applies to the quantum
Hall fluid, because the conservation of total angular momen-
tum is preserved. We find that such a fluid exerts torques due
to the shape change of the object. We calculate the torque on
a shape-changing object by integrating the local force over
the object’s boundary. We focus on expressions that apply to
both inertial and overdamped fluids by only considering the
instantaneous forces f j on the boundary element of the object
(and not the flow away from the boundary). These forces are
determined from the instantaneous velocity v via the fluid
stress tensor σi j :

f j = miσi j , (15)

where mi is the normal to the boundary at that point. We then
substitute into the odd-viscosity stress σi j (= ηo

i jkl∂kvl ) the
(general) expression [37–39]

ηo
i jkl = 1

2

(
εikη

o
jl + ε jkη

o
il + εilη

o
jk + ε jlη

o
ik

)
. (16)

The force on an element of the boundary of an inclusion is
given by

f j = 1
2

(
mkη

o
jl∂

∗
k vl + miη

o
il∂

∗
j vl + miη

o
k j∂kv

∗
i + miη

o
ik∂kv

∗
j

)
,

(17)

where we have used the notation v∗
i ≡ εi jv j .

The total torque τ on a compact inclusion is given by
the integral of the local torque T acting on an infinitesimal
boundary element, τ = ∮

T (s)ds, where s is an arc-length
parametrization of the boundary. The local torque is given by
the standard expression T = εi jxi f j = �x × �f . For example, in
the isotropic case ηo

i j = ηoδi j , one obtains the relation derived
in Refs. [25,26]:

τI = 2
∮

Niη
o
i jv j = 2ηo

∮
vN = 2ηoȧ, (18)

where ȧ the rate of change of area for the inclusion and Ni is
the normal to the inclusion boundary. Substituting Eq. (7) into

the expression for the integrand of the torque, we find

Niη
o
i jv j = ηovN + ηQ

α σ x
i jNiv j + η

Q
β σ z

i jNiv j . (19)

Thus, the contribution τQ to the torque due to nematicity is

τQ = 2ηQ
α

∮
σ x

i jNiv j + 2η
Q
β

∮
σ z

i jNiv j . (20)

For a circle of radius r0 at the origin, a deformation with a
zero change in area and a nonzero shear rate (applied affinely,
i.e., uniformly across the entire shape) is captured by the
second angular harmonic of the velocity field,

f2(γ ) =
∫

dθ cos(2θ − 2γ )vN (θ ), (21)

where vN (θ ) = v(r = r0, θ ) · N̂ is the normal (i.e., radial) dis-
placement of the circle’s boundary (see Fig. 2). The parameter
γ sets the angle of the applied shear. To better intuit Eq. (21),
the angular dependence can be contrasted with areal defor-
mation, which corresponds to the zeroth angular harmonic,∫

dθvN (θ ) (=ȧ), and a net translation at fixed shape, which
corresponds to the first harmonic,

∫
dθ [cos θ, sin θ ]vN (θ )

(=[vx, vy]). To evaluate τQ, we assume that M2 is propor-
tional to Qi j , use the relation M2

i jNiNj = ηQ cos(2θ − 2δ),
and assume that vi = vN Ni, i.e., the velocity is normal to the
boundary. We then find

τQ = 2
∮

M2
i jNiNjvN = 2ηQ f2(δ), (22)

where we used Eq. (21). The torque magnitude is set by the
nematic part of the odd viscosity tensor, ηQ, and the angular
dependence is set by the nematic director angle δ. The ηQ

component of the nematic odd viscosity can be measured from
the ratio τQ/ f2(δ), i.e., measuring the torque τQ due to a shear
rate f2(δ) in a direction along which f2(δ) �= 0 (see Fig. 2).
Note that η

Q
α,β are two independent components of the odd

viscosity tensor: These could be defined, for example, in terms
of the torque amplitude and the direction of largest torque. In
two dimensions, measuring the torques due to both a uniform
expansion and an area-preserving shear of the inclusion would
allow one to determine the three independent components of
the odd viscosity tensor ηo

i jkl present in a fluid with conserved
angular momentum.

VI. CONCLUSIONS

In the design of active materials with tailored mechanical
characteristics, a basic question is: What is the relationship
between activity and mechanical response? Whereas fluids
that break both parity and time-reversal symmetries can gener-
ically exhibit an anomalous response called odd viscosity, it
remains a challenge to determine the value of this mechanical
property. When inertial effects dominate, odd viscosity is
related to the angular momentum density � via ηo = �/2 [27].
In thermal plasmas, odd viscosity is proportional to temper-
ature [33]. We explore a different regime, in which the fluid
constituents are anisotropic and the dynamics do not conserve
angular momentum. In this regime, the equilibrium stress
tensor of the fluid without drive determines the effective odd
viscosity of the active fluid once the drive is turned on. This
odd viscosity is proportional to the dissipative coefficients of
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nematohydrodynamics but in addition depends on the angular
velocity � of the drive. By modulating � in time, we design
a classical fluid with tensorial odd viscosity.

With this work, we aim to inspire the design of metafluids
in which anomalous response can be engineered to order and
observed experimentally. Whereas in mechanical metamateri-
als the arrangement of the constituents leads to unusual elastic
responses, in these metafluids the unusual viscous responses
arise from time-modulated drive. These phases present an
array of unexplored physical phenomena which combine the
anisotropy of liquid crystals with the far-from-equilibrium
nature of active matter. In addition, experimental tests of
anisotropic odd viscosity could help to elucidate this unex-
plored property of quantum Hall fluids in a classical fluid
context.

There are two distinct experimental signatures of
anisotropic odd viscosity. First, unlike its isotropic counter-
part, anisotropic odd viscosity can modify the flow in the
bulk of an incompressible fluid by acting as a source of
vorticity, see Eq. (2). Second, anisotropic odd viscosity gen-
erates torques on inclusions: Isotropic odd viscosity results
in torques on an immersed object proportional to rate of
change in its area, whereas nematic odd viscosity results in
torques due to the rate of area-preserving shear distortion of an
inclusion’s shape, see Fig. 2. This conversion between torque
and shape change may inspire the design of soft mechanical
components and active devices at the microscale.
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APPENDIX A: EQUILIBRIUM NONLINEAR
HYDRODYNAMICS

We are interested in a fundamentally nonlinear effect:
How does the rotation rate of the nematic director affect the
response to velocity gradients? To gain insight into this ques-
tion, we examine contributions to the viscous stress which
are higher order than the Ericksen-Leslie theory. Specifically,
terms of the form ˙̂n∇v in the stress tensor σi j have a factor of
both the director-rotation and shear rates and contribute to the
effective viscosity when the director dynamics is externally
prescribed and averaged over. Furthermore, terms with an
odd number of factors of the director-rotation rate ˙̂n average
out to zero unless the director dynamics breaks time-reversal
symmetry (i.e., as long the director tip rotates by a full cycle,

thereby enclosing nonzero area). We show that terms of the
order ˙̂n∇v, ( ˙̂n)3∇v, and ( ˙̂n)5∇v all contribute to an effective
odd viscosity when the director n̂ rotates with externally
prescribed dynamics and that only terms of order ( ˙̂n)3∇v or
higher contribute to the anisotropic odd viscosity. The term
˙̂n∇v, averaged over rotations depends only on the average
rotation rate 〈 ˙̂n〉 and contributes to the isotropic odd viscosity
only.

We now proceed to describe the nematohydrodynamic the-
ory that includes higher-order coupling between the Q tensor
and the rotation ˙̂n. The equation for v is

ρDtvi = −∇i p − ∇ jσ
0
i j + ∇ jσ

EL
i j , (A1)

where σ 0
i j = −(∇ink )∂ f /∂∇ jnk is the elastic stress tensor ( f

is the Franck free energy density), p is the pressure, and σ EL
i j

is the Ericksen-Leslie stress on which we focus [67–70].
In the usual formulation of nematohydrodynamics, the

nematic director n̂(x, t ) is a dynamical field that obeys a
separate equation of motion. By contrast, within our model,
the nematic director is completely enslaved to an external
drive. In an experiment, this could be achieved by applying an
external electric or magnetic field so strong as to overwhelm
all other terms in the equation for n̂(x, t ). Note that we assume
this field and the director to be uniform in space, i.e., n̂(x, t ) =
n̂(t ). This in turn significantly simplifies Eq. (A1): σ 0

i j can be
neglected.

APPENDIX B: HYDRODYNAMIC STRESSES

We now focus on the expression for (the nonlinear gen-
eralization of) the Ericksen-Leslie stress σ EL

i j , which is the
essential ingredient in our model. There are two equivalent
approaches for writing down the form for σ EL

i j in terms of the
strain rate components ∇kvl , the nematic director components
nk , and the director time derivative ˙̂nk . The original linear
approach due to Ericksen and Leslie [67–70] and subsequent
nonlinear generalizations [66] include all terms allowed by
symmetry, up to a given order corresponding to the number
of (hydrodynamically small) factors of ˙̂nk and ∇kvl (but any
number of factors of the unit vector nk). This approach has the
advantage of finding all terms in a single step. However, the
approach lumps together two physically distinct contributions
to σ EL

i j : (1) anisotropic dissipative contributions to viscous
stress due to strain rate ∇kvl which takes into account the
director n̂ and (2) reactive contributions to the stress due to
the nematic dynamics described by ˙̂n.

The approach of, e.g., Refs. [71–73], separates these dis-
sipative and reactive contributions. The dissipative contribu-
tions are constructed using an approach parallel to that of
Ericksen and Leslie: All terms consistent with symmetries
are written down to a given order in Akl ≡ (∇kvl + ∇lvk )/2
(but not ˙̂nk). The difference lies in the approach to reactive
terms stemming from variation of the nematic Franck free
energy F [n̂(x)], see Refs. [63,64]. These contributions enter
the stress σ EL

i j via the term λki jδF/δnk . To make connection
with the approach of Ericksen and Leslie, we review how
these reactive terms can be rewritten in terms of the nematic
director dynamics ˙̂nk . To do so, we use the equation of motion
for the director (and include higher-order, nonhydrodynamic
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contributions). This nonlinear generalization of the Oseen
equation reads

Dni

Dt
= λi jkAk j + O(A2, A ˙̂n, [ ˙̂n]2) − 1

γ

δF

δni
, (B1)

where D/Dt is the material derivative of ni. The Oseen equa-
tion (B1) can be solved for δF/δni, and the result substituted
into σ EL

i j . Note that this substitution can lead to corrections of
the terms in σ EL

i j which are nonlinear in A. More significantly,
these reactive terms result in all of the dependence of σ EL

i j on

˙̂n, including terms O( ˙̂n), O([ ˙̂n]2), O(A ˙̂n), and higher-order
generalizations. This approach highlights the fact that all
stresses that depend on the director dynamics (i.e., ˙̂n) must
ultimately arise from reactive cross-talk between the director
and the flow. The extra step of using the Oseen equation has
the advantage of providing physical intuition for the origin of
the various terms in σ EL

i j . However, the forms of both the linear
Ericksen-Leslie terms and their nonlinear generalizations are
identical whichever approach is used to construct σ EL

i j .
The expression for σ EL

i j , to lowest nonlinear order [66],
reads

σ EL
i j = α1[i jkp]Akp + α2[i]Nj + α3[ j]Ni + α4Ai j + α5[ip]Aj p + α6[ j p]Aip

+ ξ1[i j pqrs]ApqArs + ξ2[ipqr]Aj pAqr + ξ3[ j pqr]AipAqr + ξ4ApqAi j + ξ5[i j]ApqApq

+ ξ7[pq]AipA jq + ξ8AipA j p + ξ9NiNj + ξ10[p]AipNj + ξ11[p]Aj pNi

+ (ξ12Np + ξ13[q]Apq )[i]Aj p + (ξ14Np + ξ15[q]Apq )[ j]Aip + ξ16[ipq]ApqNj + ξ17[ j pq]ApqNj, (B2)

where αn (n = 1, . . . , 6) are the linear nematohydrody-
namic Leslie-Ericksen coefficients, ξm (m = 1, . . . , 17) are
the next-lowest-order nonlinear nematohydrodynamic coef-
ficients (ξm = ξ 1

m from the main text), Ni ≡ ṅi − Wi jn j =
−(θ̇ − ω)εi jn j is the rotation of the nematic director rela-
tive to the fluid, and Wi j ≡ 1

2 (∇iv j − ∇ jvi ) = ω′εi j is the
antisymmetric component of the strain-rate tensor (note the
difference of factor of 1/2 between ω and ω′). For outer
products of the nematic director with itself, we have adopted
from Ref. [66] the notation [i jk · · · ] = nin jnk · · · .

Note that in equilibrium, terms ξm with m =
{1, . . . , 5, 16, 17} can be thought of as renormalizing the
Leslie-Ericksen coefficients. However, in the calculation we
consider some of these terms play distinct and important
roles. In equilibrium, the viscosity tensor ηi jkl is strictly
symmetric. This 4 × 4 matrix can be expressed in analogy
with expression Eq. (1):

11 12 13 14

12 22 23 24

13 23 33 34

14 24 34 44

(B3)

The Ericksen-Leslie terms αn can be re-expressed in terms
of the shear viscosities and the coupling between shear and
antisymmetric stress. Note, however, that these do not include
separate contributions for the isotropic bulk viscosity η22. By
counting the independent components, we can conclude that
all of the otherviscosity terms are represented by the Ericksen-
Leslie coefficients. These are the (i) shear viscosity η33 + η44,
(ii) amplitude η2

34 + (η33 − η44)2/4 of the anisotropic shear-
shear coupling (forming the symmetric traceless component
of the lower-right 2 × 2 block in Eq. (B3)), (iii) amplitude
η2

23 + η2
24 of coupling shear rate to isotropic stress, (iv) ampli-

tude η2
13 + η2

14 of coupling shear rate to antisymmetric stress,
(v) η11 coupling of vorticity to antisymmetric stress, and (vi)
η12 coupling of vorticity to isotropic stress. In equilibrium,
an Onsager reciprocity relation α6 − α5 = α2 + α3 further

reduces these six viscosities to five independent coefficients
[74].

APPENDIX C: TIME AVERAGES

The time-average of a quantity ẊY having one time deriva-
tive depends only on the average rotation rate �:

〈ẊY 〉 = �

2π

∫ 2π/�

0
dt

dX

dt
Y = �

2π

∫ X (2π/�)

X (0)
Y dX. (C1)

We compute time-averaged expressions using

〈niṅ j〉 = �

2π

∫ 2π/�

0
dt ni(t )ṅ j (t )

= �

2π

∫ 2π

0
dθ ni(θ )nm(θ )εm j = �

2
εi j (C2)

〈niṅ jnknl〉 = �

2π

∫ 2π/�

0
dt ni(t )ṅ j (t )nk (t )nl (t )

= �

2π

∫ 2π

0
dθ ni(θ )nm(θ )nk (θ )nl (θ )εm j

= − �

16
(εikδ jl + εilδ jk + ε jkδil + ε jlδik − 4εi jδkl )

≡ − �

16
(τi jkl − 4εi jδkl ). (C3)

The last expression can be checked term by term. These
expressions differentiate the chiral active fluid from thermal
averages in an isotropic equilibrium fluid: In equilibrium
fluids, there is no average rotation, and these expressions
would be zero.

We proceed by evaluating 〈σ EL
i j 〉 using these expressions

and find
〈
σ EL

i j

〉 =
(

α1
Akk

4
+ 1

2
ξ9[� − ω′]2

)
δi j + 1

4
(2[α3 − α2]

+ [ξ16 − ξ17]Akk )[� − ω′]εi j + 1

2
(2α4+α5 + α6)Ai j

+ 1

2
(2ξ7 + ξ8 + ξ13 + ξ15)AipA j p

052606-8



ANISOTROPIC ODD VISCOSITY VIA A … PHYSICAL REVIEW E 101, 052606 (2020)

+
(

ξ1χi j pqrs + ξ2φipqrδ js + ξ3φ j pqrδis + ξ4δirδ js

+ ξ5

2
δi jδprδ js

)
ApqArs − � − ω′

2
(ξ10ε jkδil Akl

+ ξ11εikδ jlAkl − ξ12εilδ jkAkl − ξ14ε jlδikAkl )

− � − ω′

16
(ξ16 + ξ17)τi j pqApq. (C4)

From 〈σ EL
i j 〉, we can read off the form of ηo in Eq. [10] of the

main text.

APPENDIX D: EXPRESSIONS FOR ODD VISCOSITY

In the average stress tensor in Eq. (C4), the different odd
viscosity components have different prefactors ξκ . However,
once the forces ∇ j〈σ EL

i j 〉 are calculated in the equation for the
flow v, only a single odd viscosity term remains (of the form
ηo∇2v∗, where ηo is a constant). This term has a prefactor of
odd viscosity that can be read off from Eq. (C4) as:

ηo = −�

8
ξ 1

L , (D1)

where ξ
β
L ≡ 2[ξβ

10 + ξ
β

11 − ξ
β

12 − ξ
β

14] + ξ
β

16 + ξ
β

17 is a linear
combination of the ξβ

κ coeffiecients. Whereas the isotropic
terms from the lowest-order nonlinearities σ EL

i j result in
the expression ηo

i j = ηoδi j , where ηo is given by Eq. (D1),

the terms from higher-order nonlinearities such as 〈σ EL,2
i j 〉 in

the main text have contributions with magnitude

ηQ = α�3

4

(
ξ 2

16 + ξ 2
17

) + O(�5) (D2)

to O(α3).
To obtain the expressions for components ηA and η

Q
γ ,δ , we

consider the ω-dependent stress and the antisymmetric com-
ponent of the stress εi jσ

EL
i j /2. This results in the expression

ηA = �

4

(− ξ 1
9 + ξ 1

10 − ξ 1
14

) + O(�3). (D3)

The anisotropic component is again higher order in the
rotation rate �:

ηK = α�3

4

(
2ξ 2

11 + 2ξ 2
12 − ξ 2

16 + ξ 2
17

) + O(�5). (D4)

APPENDIX E: DERIVATION OF THE EQUATION
OF MOTION

Starting from the velocity equation, ρDtv j = ∂iσi j , we
substitute the stress σi j = ηi jklvkl to arrive at

ρDtv j = −∂ j p + η∇2v j + ∂iη
o
i jklvkl , (E1)

where the first terms come from the usual treatment of pres-
sure p and dissipative isotropic shear viscosity η and where
ηo

i jkl is the tensor in Eq. (1). Defining the two components
of the shear strain rate as sχ ≡ σ x

jk∂ jvk and sζ ≡ σ z
jk∂ jvk , we

express the equation of motion as

ρDtv j = ∂ j
( − p − ηAω − ηQ

α sζ + η
Q
β sχ

) + η∇2v j

+ ηo∇2(ε jkvk ) + ε jk∂k
(
ηA∇ · v + η

Q
δ sχ − ηQ

γ sζ
)

+ σ z
jk∂k

(
ηQ

γ ω + ηosχ + ηQ
α ∇ · v

)
+ σ x

jk∂k
(− η

Q
δ ω − ηosζ − η

Q
β ∇ · v

)
, (E2)

where the first term corresponds to the pressure (i.e., the trace
of the stress tensor) and vanishes in the vorticity equation.
Taking the curl, the skew gradient becomes the Laplacian:
ε jl∂lε jk∂k = δkl∂k∂l = ∇2. This results in Eq. (13):

ρDtω = η∇2ω − (∇ · M1 · ∇)ω + ∇2[∇ · (M∗
1 · v)]

+ (ηo + ηA)∇2(∇ · v) − (∇ · M2 · ∇)(∇ · v),

(E3)

where Dt is the convective derivative and

M1 ≡ ηQ
γ σ x + η

Q
δ σ z, (E4)

M2 ≡ ηQ
α σ x + η

Q
β σ z

and M∗
1 ≡ η

Q
δ σ x − ηQ

γ σ z (i.e., M1 rotated by π/4).
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