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We present a study of the landscape structure of hard and soft spheres as a function of the packing fraction
and of the energy. We find that, on approaching the jamming transition, the number of different configurations
available to the system increases steeply and a hierarchical organization of the landscape emerges. We use the
knowledge of the structure of the landscape to predict the values of thermodynamic observables on the edge of
the transition.
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I. INTRODUCTION

In this exploratory study, we investigate the properties
of the landscape near jamming, starting from independent
configurations in the same cage. We follow the line of research
of [1–3]. We look at the landscape local minima both at jam-
ming and in the overcompressed region. The overcompressed
phase near the jamming point is expected to present a similar
physics to hard spheres at jamming [4–6]; in particular, we ex-
pect to find the same values for most of the critical exponents.
Therefore, in both cases, we expect to find a Gardner-like
landscape [7–12], in which each cage is broken into a fractal
hierarchy of subcages. Beyond the Gardner transition, the
replica symmetry becomes continuously broken (full replica
symmetry breaking) [13] and the subcages are organized in
an ultrametric structure.

The presence of the Gardner transition in finite-
dimensional glasses is still a matter of debate:
Renormalization-group studies yield controversial
results [14–16], while numerical simulations suggest that
the existence of the Gardner transition may be model
dependent [3,17–21]. However, in hard-sphere systems the
jamming transition presents universal critical properties
which seem to be independent of both the preparation
protocol and the dimension of the system,1 showing the same
features from infinite to two dimensions [10].

We present a direct inspection of the existence of the
Gardner phase in sphere systems in three dimensions near
jamming, looking at the properties of the landscape local
minima. We study the packing fraction and the energy distri-
bution of the local minimum packings, as well as their relative
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1In finite dimensions different effects might come into play, due,

for instance, to the rattlers and the bucklers [1].

distance in the configuration space, both at jamming and in the
overcompressed region. We look for the ultrametric structure
of the landscape at jamming. Furthermore, we predict how the
shape of key thermodynamical observables is modified when
approaching the transition point both in temperature and in
pressure.

Our analysis shows that the system undergoes a roughness
transition, which brings about isostaticity on approaching
jamming [9]. The transition is characterized by a steep in-
crease in the number of local minima that, at the jamming
point, are organized in an ultrametric way. The deepest min-
ima are close in terms of both the packing fraction and the
distance in the configuration space. They also have large
basins of attraction. Moreover, in the overcompressed region,
the cumulative distribution of the number of local minima
at small energies behaves as a power law with a packing-
fraction-dependent exponent.

The plan of the paper is as follows. In Sec. II we describe
the general framework and the model. The results of the
numerical simulations on the landscape structure at jamming
are presented in Sec. III. In Sec. IV we describe the results
in the overcompressed region. Section V is devoted to the
extrapolation of the landscape properties at finite temperatures
and pressures. In Sec. VI we summarize our findings and we
discuss prospective studies.

II. GENERAL FRAMEWORK

This section is devoted to summarizing the main features of
the hard-sphere phase diagram in infinite dimensions [10,22].

The control parameters of a hard-sphere system are the
pressure and the packing fraction φ.2 Different regions of the

2The packing fraction φ is defined as the fraction of volume
occupied by the particles. In a monodisperse system, φ = 4

3 πr3ρ,
where ρ = N

V is the density and r is the radius of the spheres.
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phase diagram are identified by the behavior of the mean-
square displacement (MSD) �(t ) = 1

N

∑N
i=1 |ri(0) − ri(t )|2.

When the pressure is small, the system is ergodic and
limt→∞ �(t ) = ∞. An equilibrium compression of the liquid
can be carried out only up to φd , the dynamical transition
point. At φd , the phase space becomes clustered into an
exponential number of glassy states. These clusters are mu-
tually inaccessible and trap the dynamics at infinite times:
limt→∞ �(t ) = �liq < ∞. For φg > φd , it is possible to de-
fine a restricted equilibrium state [23], known as the stable
glass phase: The system can completely relax inside the
metastable state but long-time diffusion is forbidden. The
particles of a stable glass are caged by their neighbors and
vibrate around their amorphous equilibrium positions in cages
whose typical size is �liq.

Compressing further the stable glass up to φG(φg), one
encounters the Gardner transition where even the restricted
equilibrium is lost: The stable glass state breaks into a hier-
archical structure of marginal states (landscape marginal sta-
bility). This implies the existence of delocalized soft modes,
diverging susceptibilities [24], and anomalous rheological
properties [25].

Finally, compressing the system up to the point where the
pressure diverges, the system jams. At jamming, the packings
are mechanically rigid and isostatic, meaning that the number
of mechanical constraints is equal to the number of degrees
of freedom [26]. Isostaticity implies that the system is me-
chanically marginally stable. Hence, at the jamming point, the
number of soft modes is enhanced.

Validating the mean-field picture for finite-dimensional
systems would greatly increase the global understanding of
the glass transition [27–29]. In finite dimensions, the dy-
namical transition reduces to a crossover because the energy
barriers between metastable states are finite. For this reason,
it is possible to numerically generate equilibrated glassy con-
figurations even at φg > φd via improved Monte Carlo sim-
ulations, known as swap Monte Carlo [30–32]. Nevertheless,
in conventional dynamics, the time spent by the system in a
metastable state can be considered, to a good extent, infinite.

A. Methods

Beyond the Gardner transition, the number of minima of
each cage is expected to diverge in a way that depends expo-
nentially on the number of components of the system [33].
Therefore, we choose to restrict our study to 100 three-
dimensional spheres. In order to enhance the equilibration
process, the spheres diameters are drawn from the contin-
uous probability distribution P(σ ) ∝ σ−3, with σmin/σmax =
0.45 [32]. The equilibration has been achieved via the
constant-pressure swap Monte Carlo algorithm to produce five
glassy configurations at φg = 0.647 (φd = 0.594), which are
in different cages and whose position in the phase diagram
is represented by the green square of Fig. 1. We study the
landscape near jamming, starting from independent glassy
configurations in the same cage.

The absence of spatial order and long-time diffusion are
key features of glasses. Hence, we first study the structure
of the five initial glassy configurations, computing the radial
distribution function [34], and we investigate their dynamical

FIG. 1. Phase diagram of a polydisperse hard-sphere system in
three dimensions. The equilibrated initial glassy configurations are
represented in the phase diagram as a green square. The green and
the white squares lie on the equation of state of the liquid at various
φg; the red line represents the Gardner transition line φG(φg) and the
line with blue triangles represents the jamming line φJ (φg). (Figure
has been adapted from [3].)

properties, measuring the MSD as a function of time. Our
analysis does not show any sign of crystalline order, phase
separation, or long-time diffusion.

1. Sample generation and compression protocols

Using an NV T Monte Carlo dynamics,3 we evolve in time
each of the starting configurations. At t = τcage, the system
enters the caging regime, signaled by a plateau in the MSD.
Saving the time-evolved configurations every 3τcage sweeps,
we create a set of independent configurations belonging to the
same cage, called clones. The set of clones generated from the
same initial configuration is called a sample. To prevent long-
time diffusion and the breaking of the cage, we periodically
restart the dynamics from the starting configuration. Indeed,
due to the stochasticity of the Monte Carlo dynamics, we are
guaranteed to sample different trajectories at each restart. We
end up with a set of 2 × 105 independent glassy configurations
in the same cage.

Furthermore, via a fast compression4 of the starting con-
figuration, we generate a new glassy configuration at higher
packing fraction φ = 0.68. The fast compression does not
distort the jamming landscape, but pushes the system into
one of the subcages if at that packing fraction the cage is

3In a sweep of the NV T Monte Carlo dynamics, we propose the
displacement of each particle of the system. If the displaced particle
overlaps another particle, the movement is refused. We measure the
time in units of Monte Carlo sweeps.

4We move the particles via the NV T Monte Carlo dynamics and
after a fixed number of steps we increase all the diameters by a factor
γ = 10−3. If in the new packing some spheres do overlap, we move
the particles further. The procedure stops when the packing fraction
of the configuration reaches φ = 0.68. We call this fast compression
because it carries the system out of equilibrium.
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already broken into subcages. From the new configuration,
we produce another set of 2 × 105 packings in the same
(sub)cage. Therefore, studying the jamming landscape from a
sufficiently compressed configuration, we expect to retrieve a
subset of the local minima found starting from the equilibrated
glassy configuration.5

Thus, we follow three compression protocols: (i) Taking
each sample at φ = 0.647, we bring each clone to the jam-
ming point, via an instantaneous linear programming (LP)
compression (Appendix A); (ii) we repeat the same procedure
for each sample at φ = 0.68; and (iii) we take 105 clones
from each sample at φ = 0.647 and we bring them to several
packing fractions beyond the jamming point. Then we locally
relax them via the FIRE algorithm [35].

2. Studying the landscape at jamming

To study the landscape at jamming, we reach the jamming
point via the LP algorithm [36,37] (Appendix A). Linear
programming works in the uncompressed region,6 meaning
that overlaps among particles are not allowed during the
compression protocol.

In the uncompressed region, the probability of having hard-
sphere packing at φ is proportional to e−N p/φ , where p is
a proxy for the pressure and N is the system size. Hence,
the jamming transition is reached at p = ∞ and the jammed
packings maximize φ. In this exploratory study, we present
the analyses of the jamming landscape of four cages, reaching
the jamming point from both φ = 0.647 and φ = 0.68.

3. Studying the landscape in the overcompressed region

To investigate the overcompressed region it is necessary
to introduce a soft-sphere potential. We choose to employ a
harmonic repulsive potential [26]

U ({r}) = ε

2

∑
i< j

(
1 − ri j

σi j

)2

θ (σi j − ri j ), (1)

where ri j = |ri − r j | is the distance between the centers of
two particles, σi j = σi+σ j

2 is the sum of their radii, and ε is
a constant that fixes the energy unit.

We can study how the system behaves in the overcom-
pressed phase when a finite temperature β−1 is introduced,
weighting each energy minimum with its Gibbs measure
proportional to e−βE . Temperature is measured in units of
ε/kB.

5This method can also be employed to study the heights of the
landscape barriers. Given φ > φg, one can generate many com-
pressed configurations at φ via independent fast compressions and
from each of the compressed configurations generate a sample. Each
sample can then reach the jamming transition via LP. Repeating the
procedure at increasing values of φ and studying which landscape
local minima survive in different samples, a full map of the landscape
can be constructed, including the heights of landscape barriers.

6The uncompressed region is known as the SAT phase in the con-
text of constraint satisfaction problems, while the overcompressed
region is called the UNSAT phase [5].

III. LANDSCAPE AT JAMMING

In this section we present our results on the study of the
landscape local minima at jamming. Notice that larger values
of the jamming packing fraction φJ correspond to minima
which are deeper in the landscape, while smaller values of
φJ coincide with minima higher in the landscape.

Most of the jammed packings obtained using the LP al-
gorithm are isostatic (Appendix B), i.e., they verify Nc =
N iso

c ≡ (N − 1)d + 1,7 consistently with the mean-field so-
lution. Since several works [1,38–41] have highlighted the
importance of having Nc = N iso

c to observe key aspects of
jamming criticality, in this study we restrict our analysis to
the packings with Nc = N iso

c .

A. Local minima

Compressing the clones of a sample up to jamming, we find
many jammed packings with the same φJ . This is especially
true for high values of φJ . Furthermore, the packings with
the same φJ present also the same arrangement of particles
but for a rigid translation,8 i.e., they represent the same local
minimum at jamming.

In each different cage, we find that the jamming local
minima coming from φ = 0.68 are a subset of those com-
ing from φ = 0.647, meaning that at φ = 0.68 the starting
cage is already broken into subcages. For each sample, we
compute the local minimum distribution at jamming. The
local minimum distributions, shown in Fig. 2, have different
supports, depending on the depth of the basin of that cage.
The φJ distributions are not self-averaging quantities. The
average φJ values, merging the data from different cages, are
φJ,0.647 = 0.6955 and φJ,0.68 = 0.6957.

Two important features of the landscape are summarized
by Fig. 2: Many deep local minima are found with high
probability and are characterized by similar φJ values. We
argue that the first feature means that their basins of attraction
are large.

We find that the φJ distributions may be wider or narrower.
The average differences between the highest and the low-

est jamming packing fractions are �φ
max-min
J,0.647 = 0.0035 and

�φ
max-min
J,0.68 = 0.0016. The average ratios between the num-

ber of distinct local minima found and the total number of
clones in the same sample are, respectively, f0.647 = 0.32 and
f0.68 = 0.20.

7Here Nc = (N − 1)d + 1 is the isostaticity condition for a finite
system under periodic boundary conditions [1], with Nc the number
of contacts in the jammed packing, N the number of particles
[excluding the rattlers (Appendix A)], and d the dimension of the
system.

8The rigid translation is due to the translational invariance of the
system. The effect has been taken into account in all the results
shown in the present study. In particular, in computing the distance �

[Eq. (4)] and the overlap Q [Eq. (5)], we subtracted the displacement
of the center of mass between the two configurations.
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FIG. 2. Probability distribution of the local minima at jamming,
obtained by compressing about 2 × 105 clones. Plotted on the x
axis is �φJ = φJ − 〈φJ〉, where 〈φJ〉 is the mean jamming packing
fraction of the cage considered, and on the y axis is the probability
of finding φJ . Results are for all the cages generating the clones at
(a) φ = 0.647 and (b) φ = 0.68.

Ordering in a progressive way the jamming packing frac-
tions, we can define

δn = φn+1 − φn � 0, (2)

0 � rn = min{δn, δn−1}
max{δn, δn−1} � 1. (3)

If the φJ are uniformly distributed, one expects the level statis-
tics to be Poissonian [42] and thus PPoisson(r) = 2/(1 + r)2

with 〈r〉Poisson � 0.386. Computing 〈r〉 in each sample, the
Poisson statistics turns out to be almost valid. Indeed, the
averages over all the samples are 〈r〉0.647 = 0.384 ± 0.001 and
〈r〉0.68 = 0.382 ± 0.002.

B. Structure in the configuration space

Since at jamming, in each sample, we find a huge number
of distinct local minima (�104–105), here we study in detail
the arrangement in the landscape only of a subset of them,
the 1000 deepest minima. First of all, we want to understand
how the deepest minimum (i.e., the one with the highest φJ )
of each sample is located in the configuration space. To do so,

 0
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FIG. 3. (a) Data of cage 1 generating the clones at φ = 0.647.
Shown on the y axis are the distances � among the deepest minimum
and the 200 deepest and 200 highest minima of the same sample,
normalized to the MSD of cage 1 (�liq = 0.0066). On the x axis the
index increases as φJ decreases. (b) The � distributions combining
the data of all the cages. Shown on the x axis is � is normalized to
�liq = 7.3 × 10−3. Shown in dark purple and blue are the distance
distributions among the 200 deepest minima starting the compres-
sions up to jamming from φ = 0.647 and φ = 0.68, respectively. In
green and yellow are the same plots considering the 1000 deepest
minima of each sample.

we compute its square distance

� ≡ �2
αβ = 1

M

M∑
i=1

(
xα

i − xβ
i − δ

)2
(4)

from the other 200 deepest and the 200 highest minima
of the same sample. Here α and β are the minimum in-
dices and i is the particle index; M is the total num-
ber of particles excluding the rattlers of both α and β

and δ is the distance of the centers of mass of the two
minima (Appendixes B and C). The � values have to
be compared with the average values of the MSD in the

caging regime, which are �liq ≡ MSD0.647
plateau = 7.3 × 10−3

and �0.68
liq ≡ MSD0.68

plateau = 2.6 × 10−3. Figure 3(a) shows the
result for cage 1 generating the clones at φ = 0.647. The
deepest minimum of this sample appears to be located in a
deep well where there are many other very deep minima of
the cage (dark purple line). Moreover, the deepest minimum

052605-4



EXPLORATORY STUDY OF THE GLASSY LANDSCAPE … PHYSICAL REVIEW E 101, 052605 (2020)

is far from the highest minima (green line). We find almost the
same behavior in all the samples.

Figure 3(b) shows the � distributions among the 200 and
1000 deepest minima, having combined the results of all the
cages. It is clear that the deepest minima of the landscape in
each sample are usually close to one another.

In a sample, the configuration corresponding to the deepest
minimum is usually found many times, but it is not the one
with the greatest number of occurrences. We refer to the latter
as the most probable minimum. Performing the same analyses
as in Fig. 3 on the most probable minimum, we find that it
is close to many other highly probable minima; hence, in the
landscape at jamming, there is a large basin of attraction made
up of large subbasins of attraction.

Furthermore, studying in the same way the properties of
the highest minima, we find that they are far apart from all the
other minima and do not form a well. They have small basins
of attraction. We can imagine them as narrow ponds on the
walls of the landscape basins.

Another observable useful to understand the relative posi-
tion of two local minima at jamming is the overlap [32]. It is
defined as

Q ≡ Qαβ = 1

M

1,M∑
i, j

�
(
a − ∣∣xα

i − xβ
j − δ

∣∣). (5)

As in Eq. (4), the sum is restricted to the M particles which
are nonrattlers in neither of the two configurations α and
β, δ is the distance of the centers of mass of α and β

(Appendixes B and C). In addition, � is the Heaviside step
function. We choose a = 0.03. When the number of displaced
particles decreases, Q → 1.

Here Q gives complementary information to �. For in-
stance, a high value of � can be due to the presence of only
one particle which has very different positions in the two
packings α and β; if it is so, Q has a large value. Otherwise,
if many particles are displaced by a small amount, the same
� can correspond to a small value of Q. Figure 4 shows
the behavior of the overlap Q for the same minima used in
Fig. 3(b). In our results, given a couple of minima α and β,
there is not a direct correspondence between a high value of
Q and a small value of �. However, Figs. 3(b) and 4 show
that the deepest minima of each sample on average are close
in terms of both Q (few particles are displaced) and � (small
distance). This confirms our description of the landscape
structure in terms of deep wells in which the deepest minima
are contained.

C. Hierarchical structure

According to the mean-field picture, we expect to find an
ultrametric structure of the basins. To verify this hypothesis,
we construct the heatmaps9 of the 1000 deepest minima
of each sample, using the distance � as the dissimilarity
measure.

Figure 5 shows the heatmaps of cages 1 and 3 for the sam-
ples at φ = 0.647 and φ = 0.68, respectively. To provide a

9The heatmaps are made with R [43], using the average method.
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FIG. 4. Probability distributions of Q joining the data of all the
cages. Shown in dark purple and blue are the Q distributions among
the 200 deepest minima starting the compressions up to jamming
from φ = 0.647 and φ = 0.68, respectively. In green and yellow are
the same plots considering the 1000 deepest minima of each sample.

quantitative characterization of the clustering properties of the
selected minima, we compute the agglomerative coefficient
(AC) for each heatmap.10 The averages over all the samples
are AC0.647 = 0.994 and AC0.68 = 0.995. These high values
of AC tell us that the minima have a good clustering structure
and so present a nearly ultrametric structure.

D. Interim discussion: Main features
of the landscape at jamming

Summarizing, the following are the main features of the
landscape at jamming.

(i) All the samples show a huge number of distinct local
minima at jamming. The landscape appears very complex.

(ii) The deepest minima of the landscape are found more
often than the highest and so we argue that their basins of
attraction are larger.

(iii) The dendrograms constructed with the 1000 deepest
minima of each sample have good clustering properties (high
values of AC). This is evidence in favor of an ultrametric
structure of the landscape. In particular, the landscape seems
to be more ultrametric when we reach the jamming point
coming from φ = 0.68. Notice that a rigorous ultrametric
structure can be seen only considering all the minima of
a basin. Indeed, when we reach jamming from φ = 0.68,
we have pushed the initial equilibrated configuration into a
subcage: We are sampling a smaller basin and we expect to
detect better the ultrametricity.

(iv) The arrangement of the local minima is compatible
with several studies on disordered systems [44]: The deepest
minima are close in the configuration space and form a large

10Here 〈AC = 1 − m(i)〉. For each observation i, m(i) is the dissim-
ilarity to the first cluster it is merged with divided by the dissimilarity
of the merger in the final step of the algorithm.
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FIG. 5. Heatmaps constructed with the 1000 deepest minima of a
sample. (a) Heatmap for cage 1 coming from φ = 0.647, with AC =
0.996. (b) Heatmap for cage 3 coming from φ = 0.68, with AC =
0.997. The clusters are created using the average method.

deep well; in contrast, the highest minima do not form a well
and have small probabilities of being found.

(v) A small square distance � often means a high value
of Q: There are few displaced particles between the two
configurations; however, there are cases in which many par-
ticles are slightly moved.

(vi) The level statistics at jamming seems to be determined
by Poisson statistics, meaning that there is no level repulsion.

 0

 1000

 2000

 3000

 4000

 0  0.02  0.04  0.06  0.08  0.1

N
IS

δφ

FIG. 6. Number of inherent structures as a function of the excess
packing fraction δφ. In performing the computation, we coalesced
minima whose difference in energy was less than 10−14. On ap-
proaching the jamming point, the number of different minima in-
creases abruptly and seems to diverge at jamming.

In the next section we will study the landscape in the over-
compressed region where, near the jamming point, we expect
to find a similar physics to hard spheres at jamming [4–6].

IV. LANDSCAPE IN THE OVERCOMPRESSED REGION

Since the point at which a sample jams depends on
the preparation protocol [45], we independently determine
the jamming packing fraction φJ for each cage through
compression-decompression cycles [1], extrapolating the
point at which the energy reaches zero. We then instan-
taneously inflate each clone to an excess packing fraction
φe = φ − φJ , ranging from φe = 5 × 10−3φJ to φe = 100 ×
10−3φJ , and we locally relax it to the closest energy minimum,
i.e., the inherent structure [46], via a FIRE routine [35].

A. Local minima

In Fig. 6 we depict the number of different inherent struc-
tures NIS as a function of δφ = φe

φJ
. Figure 6 clearly shows that,

as jamming is approached, the number of distinct inherent
structures steeply increases, passing from a few units at the
highest packing fractions to several thousand, consistently
with a roughening of the landscape at jamming.

In Figs. 7(a) and 8 we show the cumulative distributions
of the number of inherent structures as a function of the
inherent structure energy11 N (E − E0) (E0 denotes the energy
of the deepest minimum of the cage). Figure 7(a) presents
the results averaged over all the samples for several packing
fractions, ranging from δφ = 5 × 10−3 to δφ = 40 × 10−3,
while Fig. 8 shows the behavior in different samples at δφ =
5 × 10−3. Three regimes are present: (i) seemingly exponen-
tial at small energies, probably in connection with finite-
size effects [47], (ii) a power law with a packing-fraction-

11Note that ln N (E ) is related to the configurational entropy of the
system.
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FIG. 7. (a) Cumulative distribution of the number of inherent
structures, averaged over different cages, as a function of the energy
difference E − E0, where E0 is the energy of the deepest minimum of
the cage. The red lines correspond to power-law fits with exponents
α = 1.54, 1.22, 1.05, and 0.63. (b) Probability distribution of the
energy of the inherent structures for the same packing fractions as
in (a). The energy minima that lie in the region where the cumulative
distribution saturates are 102 times less likely than those belonging
to the power-law regime.

dependent exponent α(φ) at intermediate energies, and (iii)
plateau at high energies.

To better understand the origin of the plateau, we look at
the probability distribution of the inherent structure energies,

101
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cage 0
cage 1
cage 2
cage 3
cage 4

average

FIG. 8. Cumulative distribution of the number of inherent struc-
tures as a function of E − E0, where E0 is the energy of the deepest
minimum of the cage, for the five cages at δφ = 5 × 10−3.

in Fig. 7(b). It appears highly concentrated around values
close to the deepest minimum of the landscape. It follows
that the highest-energy minima have very narrow basins of
attraction [48,49] that are visited with very small probability
by the equilibrium dynamics, even though they contribute
significantly to the configurational entropy of the system [44].
Therefore, in Figs. 7(a) and 8 the saturation of N (E − E0) at
high energies is likely due to the inability of the algorithm
to sample all the minima in the cage. As a consequence,
Figs. 7(a) and 8 provide a good representation of N (E − E0)
only at low and intermediate energies. Hence, Figs. 2 and 7
represent landscapes with the same features: The deepest min-
ima of the cage are more likely to be found, while the highest
have narrow basins of attraction and are hardly sampled by
gradient-descent-like algorithms.

Moreover, Fig. 8 gives evidence of the presence of the
Gardner physics: Even though the cumulative distributions
N (E − E0) of the five starting cages have the same qualitative
behavior, the total number of detected states has very large
sample-to-sample fluctuations. This leads to the loss of the
self-averaging property when the jamming transition is ap-
proached.

B. Harmonic properties of the local minima

The analysis of the harmonic properties of the minima is
carried out by studying the Hessian matrix

Hαβ
i j = ∂2U

∂rα
i ∂rβ

j

= δi j

∑
k∈∂i

[
nα

iknβ

ik + εik

rik

(
nα

iknβ

ik − δαβ
)]

− δ〈i j〉

[
nα

i jn
β
i j + εi j

ri j

(
nα

i jn
β
i j − δαβ

)]
, (6)

where α, β = x, y, z are position vector components, εi j =
σi j − ri j is the overlap between two spheres, 
ni j = (
r j −

ri )/ri j is a unit vector, both δi j and δαβ are Kronecker deltas,
δ〈i j〉 indicates a contact between a pair of particles, and ∂i
denotes the set of neighbors of i. The matrix (6) has three zero
modes corresponding to the global translational invariance
of the system plus a set of clone-dependent zero modes
connected to the presence of rattlers, which are particles that
are not part of the force network [1] and therefore play no role
in the thermodynamics of the system.12 Given the eigenvalues
of the Hessian {λ}, we define the logarithm of the curvature as

� = 1

NDOF

NDOF∑
i=1

ln(λi ), (7)

where NDOF = 3(N − 1 − nratt ) is the total number of degrees
of freedom, with nratt the number of rattlers.

Figure 9 tracks the evolution of the curvature as a func-
tion of the packing from δφ = 35 × 10−3, where a Gaussian
profile first appears, to δφ = 5 × 10−3. At larger packing
fractions, the Gaussian profile is not present.

12The rattlers are removed before computing the Hessian.
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FIG. 9. Probability distribution of the curvature at δφ = 5 ×
10−3, 15 × 10−3, and 35 × 10−3. The red curves are Gaussians with
the same mean and standard deviation as the experimental data. Error
bars are computed with the jackknife method.

Gaussianity implies that large finite-size effects O(1/
√

N )
take place approaching the jamming transition. We can also
notice that the distribution shifts towards smaller values of �

as the packing fraction is decreased, compatibly with the onset
of mechanical marginal stability at jamming. Indeed, smaller
values of � are associated with larger basins of attraction
of the inherent structures. Error bars are computed with the
jackknife method [50] on the five samples and their height is
a consequence of the large sample-to-sample fluctuations, as
already highlighted in Sec. IV A.

V. THERMODYNAMIC PROPERTIES
OF THE LANDSCAPE

Building on the knowledge of the landscape structure,
we try to predict how physical observables would change
on approaching the jamming transition at finite temperature
in the overcompressed region and at finite pressure in the
undercompressed one. In the first case, we start our analysis
from the potential energy landscape of Sec. IV, while in the
second case we start from the landscape at jamming studied
in Sec. III.

For two systems with the same disorder (in this context,
two clones) we define the probability distribution of their
distance [see Eq. (4) and Appendix C] as

P(�) = 1

Z2

∫
Dr (1)Dr (2)e−βH (r(1) )e−βH (r(2) )

× δ(� − �12), (8)

where Dr represents the integration over all the config-
urational degrees of freedom and Z = ∫

Dr e−βH (r) is the
partition function. In the presence of ergodicity break-
ing, the Gibbs measure can be decomposed over pure
states [13,51,52], yielding

Z =
∑

α

∫
r∈α

Dr e−βH (r) =
∑

α

Zα, (9)

where

Zα =
∫

r∈α

Dr e−βH (r) (10)

and α is the pure state index. Whenever Eq. (9) is valid,
we can rewrite Eq. (8) by taking explicitly into account the
contribution of different pure states

P(�) =
∑
αβ

wαwβδ(� − �αβ ), (11)

where wα = Zα/Z is the statistical weight of the state α. The
sum runs over all the minima and includes the case α = β. We
define its average over different realizations of the disorder as
P(�) = ∑

αβ wαwβδ(� − �αβ ).
In the low-temperature limit, we can expand the integral in

Eq. (10) around the energy Eα of the corresponding inherent
structure getting, to the first order, Zα ∼ e−βEα . Analogously,
by repeating the same analysis for the uncompressed region,
where the control parameter is the pressure, we get Zα ∼
e−N p/φα

J , where p is a proxy for the pressure, N is the system
size, and φα

J is the jamming packing fraction of state α.
Substituting these approximations into Eq. (11), we obtain

that the distance distribution is given by

Pp(�) = Np

∑
αβ

e−N p/φα
J e−N p/φβ

J δ(� − �αβ ),

PT (�) = NT

∑
αβ

e−βEα e−βEβ δ(� − �αβ ),
(12)

where Np and NT are normalization constants, in both cases
equal to the square of the partition function. Qualitatively,
P(�) displays a δ peak at � = 0, coming from the self-
part of the summation (α = β), and a continuous band that
originates from the exchange part (α = β). The former can
be used to predict a crossover at which the weight of the
entropic term becomes more important than the energetic one.
The presence of the continuous band from the exchange part
is in agreement with the infinite-dimensional picture which
predicts the presence of a huge number of states at jamming
due to the Gardner transition. The continuous band contains
the details of the organization of the states.

We define the coefficient of the self-part as W 0
T,p = ∑

α w2
α .

From Eq. (12) we see that W 0
T,p becomes more and more

important when T decreases or p increases. Indeed, if T = 0
or p = ∞ the only contribution comes from the deepest min-
imum of the basin with itself and W 0

T,p = 1. On the contrary,
at high T or low p, we expect to have also the continuous part
of the distribution P(� = 0). When T = ∞ or p = 0 all the
minima contribute with the same weight and W 0

T,p = N−1
minima.

In the overcompressed phase, we can easily take into account
the harmonic corrections to get

PT,vib(�) = NT,vib

∑
αβ

e−βF (h)
α e−βF (h)

β δ(� − �αβ ), (13)

where F (h)
α denotes the free energy in the harmonic approxi-

mation

F (h)
α = Eα + T [3�α − 3N ln(T )]. (14)
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FIG. 10. (a) Plot of W 0
T for several packing fractions as a function

of the inverse temperature β. (b) Inverse crossover temperature β∗ =
(T ∗)−1 as a function of the excess packing fraction δφ.

A. Finite temperature

In Fig. 10(a) we show the behavior of W 0
T , the coeffi-

cient of the self-part, as a function of the temperature. We
observe the presence of a crossover between the low- and
the high-temperature behavior, where we go from a situation
in which the thermodynamic properties are determined by a
finite number of states, whose energy is close to that of the
deepest minimum, to a regime in which all the minima are
equally important.

We define the crossover temperature T ∗ via the condition
W 0

T ∗ = 1/3. The result is shown in Fig. 10(b): We see that, as
the packing fraction decreases, and consequently the number
of states increases, smaller temperatures are needed to over-
come the entropic contribution. From Fig. 10(a) we also see
that the crossover becomes steeper with decreasing δφ. We
notice that, since this crossover involves just a finite number
of states of low energy, it is not affected by the plateau at high
energies found in the cumulative distributions of the number
of inherent structures (Fig. 7). In other words, the presence in
the cage of a number of inherent structures larger than what
can be sampled by our algorithm affects only Fig. 10(a) at
very small values of β, but leaves the qualitative picture and
the determination of β∗ = 1/T ∗ intact.

Now let us focus on the continuous branch of the dis-
placement distribution PT (�). In Fig. 11(a) we show the
distributions at β = 0 and δφ = 5 × 10−3 for all the samples.
We find that the distribution has support over a continuous

range of � values, covering nearly five orders of magnitude,
compatibly with the existence of many states as predicted
by the mean-field theory. Here PT (�) exhibits a nearly flat
behavior. We notice that, as already highlighted in Fig. 8, there
are large sample-to-sample fluctuations, but the overall shape
of the probability distribution is preserved.

In Figs. 11(b) and 12(a) we consider how the distribution
PT (�) is modified when the packing fraction or the tem-
perature is changed. Here the overline indicates the average
over all the samples. We see that the probability of finding
two local minima of the landscape at smaller � increases
when the temperature is lowered or the packing fraction is
increased. The former can be easily explained by observ-
ing that the Boltzmann weight e−βE strongly suppresses the
pairs of configurations with the highest energy, which in our
system also correspond to those at a larger distance. The
dependence on the packing fraction can be understood by
noticing that, given any minimum, the number of neighboring
minima increases with the distance. Since with decreasing
δφ the landscape roughens and the number of local minima
increases, there will be more configurations at large distances
giving rise to a peak at high-� values. We also notice that in
Fig. 12(a) the probability distribution is rather insensitive to
temperature changes up to the crossover temperature, where
the states close to the ground state start to dominate the
partition function.

Finally, in Fig. 12(b) we present PT,vib(�) for several
temperatures, where we have included the harmonic terms
as prescribed by Eqs. (13) and (14). Their effect is to make
more uniform the behavior of the distribution at different β

by enhancing small � probabilities. However, the qualitative
picture of PT (�) is not altered.

B. Finite pressure

In analogy with Secs. III B and III C, in the uncompressed
region we compute Pp(�) considering only the 1000 deepest
minima of each sample.

In Fig. 13 we present the behavior of W 0
p as a function of

the pressure for two samples reaching the jamming point from
φ = 0.68. As in Sec. V A, this plot allows us to determine the
crossover from the entropy-ruled and the ground-state-ruled
landscape.

Figure 14 shows the Pp(�) for the same samples as in
Fig. 13. In both cages, the probability Pp(�) at low p is
almost flat. Furthermore, as expected, the distribution presents
isolated peaks when p increases.

How the distribution changes with pressure is different in
each cage because of the high heterogeneity of the landscape
basins. For instance, in cage 1 at p = 106, P(� = 0) = 0
because the sum in Eq. (12) has a residual contribution from
the second deepest minimum, which has φJ very close to
the one of the ground state. At low pressure, all the minima
contribute.

VI. CONCLUSION AND OUTLOOK

In this exploratory study we investigated the structure
of the landscape near the jamming transition in three-
dimensional soft-sphere systems, in the light of the existence

052605-9



ARTIACO, BALDAN, AND PARISI PHYSICAL REVIEW E 101, 052605 (2020)

10–4

10–2

100

102 (a)

10–4

10–2

100

102

10–4 10–3 10–2 10–1 100

(b)

P
T
(Δ

/Δ
liq

)

cage 0
cage 1
cage 2
cage 3
cage 4
average

P
T
(Δ

/Δ
liq

)

Δ/Δliq

δφ = 5x10–3

δφ = 15x10–3

δφ = 25x10–3

δφ = 35x10–3

δφ = 45x10–3

FIG. 11. (a) and (b) Distance distributions at β = 0 as a function
of �/�liq, where �liq = 7.3 × 10−3. In particular, (a) PT (�/�liq )
at δφ = 5 × 10−3 has large sample-to-sample fluctuations that,
however, do not affect the qualitative shape of the distribution.

(b) PT (�/�liq ) at various δφ. Upon decreasing the packing fraction,
states at small distances are observed less frequently because they
are geometrically disadvantaged. Since the singular term at � = 0
has been taken into account, all the probability distributions are
normalized to 1 − W 0

T .

of the Gardner transition in the exact solution of hard spheres
in infinite dimensions. We followed two different but comple-
mentary approaches.

In the first one, we brought the system to the jamming point
from the uncompressed phase, starting from two different
packing fractions. This approach pointed out the presence of
subcages and of a huge number of local minima at jamming,
in agreement with the fractal nature of the landscape in infinite
dimensions. We found that, in many cases, the deepest minima
are close in the landscape and located in a deep well. They
usually have large basins of attraction. Instead, the minima
corresponding to smaller values of φJ are scattered in the
entire jamming landscape and they usually have small basins
of attraction. The ultrametric structure of the landscape and
the clustering properties of the jammed configurations seem to
be verified by the high value of the agglomerative coefficients,
even though tested on a small bunch of minima. Furthermore,
our study showed the possibility of using in an efficient way a
linear programming algorithm to reach the jamming point in
a finite-dimensional hard-sphere system.

On approaching jamming from the overcompressed region,
we observed the emergence of a critical behavior in the
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FIG. 12. Thermal behavior of the average distance distribution

PT (�/�liq ), where �liq = 7.3 × 10−3. (a) Distance distribution av-
eraged over all the samples at δφ = 5 × 10−3 for several β val-
ues. Cooling enhances the probability of finding states at small �.
(b) Same as in (a) but including the harmonic corrections of Eqs. (13)
and (14). Their effect is to make the behavior of the distribution at
different temperatures more uniform. Distributions are normalized to
1 − W 0

T .

landscape properties: The number of inherent structures as a
function of the packing fraction seems to diverge in a power-
law fashion when φ → φJ and the cumulative distribution of
the number of inherent structures at low energies behaves
as a power law in a wide range of packing fractions, with
a φ-dependent exponent. Moreover, the onset of the critical
behavior is accompanied by the emergence of large sample-to-
sample fluctuations, which can be seen both in the cumulative
distribution of the inherent structures and in the distribution
of the curvatures from the Hessian matrix. Furthermore, the
latter displays a Gaussian behavior.

The study of the distribution of the distances in both the
uncompressed and overcompressed regions, as a function of
p and T , respectively, revealed the existence of a crossover
between ground-state-ruled and entropy-ruled landscapes. We
found the presence of an isolated peak at zero distance and of
a continuous part of the distribution at larger distances. The
latter displays an almost flat behavior across several values
of pressure, temperature, and packing fraction. The existence
of a continuous part extended over five orders of magnitude
shows that the landscape is made up of a huge number of states
which have a continuous distribution of distances, in agree-
ment with the infinite-dimensional picture. The inclusion of
harmonic corrections does not change in a significant way the
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FIG. 13. Plot of W 0
p for cage 1 (dark purple squares) and cage 2

(green circles) generating the clones at φ = 0.68. We consider only
the 1000 deepest minima of the samples. At low pressure W 0

p = 10−3

because all the jamming local minima have the same weight; in
contrast it saturates to 1 when the only contribution to Pp(�) comes
from the deepest minimum of the basin.

behavior of the distribution that is therefore correctly captured
already at a purely energetic level.

The pictures of the landscape that emerge from the study
at jamming and in the overcompressed region are in agree-
ment and consistent with the mean-field predictions. However,
we observe that quantities like P(�) are very atypical and
therefore a conclusive analysis should be done over a larger
number of local minima and averaging over several different
cages. Indeed, increasing the number of starting metabasins
would allow one to perform better disorder averages and have
deeper control over sample-to-sample fluctuations. Moreover,
repeating the same analysis with systems of different sizes and
dimensions would allow us to determine the entity of finite-
size effects and to properly extrapolate the thermodynamic
limit of the observables. Furthermore, since it is known [2,3]
that the starting point of the compression plays an important
role in determining the strength of the Gardner transition, it
would also be important to repeat the analysis by starting from
different points along the equation of state and identify, in a
clear way, the universal features of the behavior at jamming.
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APPENDIX A: LINEAR PROGRAMMING ALGORITHM

A linear programming algorithm is a method to solve linear
optimization problems. An LP problem is the problem of
minimization or maximization of a linear function subjected
to linear constraints [53,54]. Our LP problem has the objective
to maximize the particles’ radii. The inflation rate has to be
equal for all the particles to leave unchanged the degree of
polydispersity. The variables are the inflation rate α and the

FIG. 14. Plot of Pp(�/�liq ) for the same samples studied in
Fig. 13 constructed with the 1000 deepest minima of the samples.
Shown on the x axis is � divided by �liq = 7.3 × 10−3. The distri-
butions are normalized such that

∫
d� Pp(�) = 1 − W 0

p . Results are
shown for (a) cage 1 and (b) cage 2 generating the clones at φ = 0.68.

particles’ displacements � [3(N − 1) scalar variables].13 The
constraints of the problem are

(xi − x j )
2 + 2(xi − x j )(�i − � j ) + (�i − � j )

2 − ασ 2
i j � 0,

(A1)

where σi j = σi+σ j

2 is the sum of the radii, |�x,y,z
i | � c, and 0 �

α � c′ for c and c′ reasonable values with respect to the linear
dimensions of the system.

To use LP we need a linear problem. We can neglect
the term (�i − � j )2 supposing that the displacements are
small. This assumption is asymptotically justified because,
after some iterations, the increase of the particles’ radii will
reduce the magnitude of the possible displacements. In the
end, the problem can be written as a maximization problem
with an objective function α.

For each couple of particles, the constraint in Eq. (A1) is
satisfied and the inflation α is maximized when the spheres
go as far as possible along the direction orthogonal to the

13We fix the position of a sphere to avoid the rigid translation of the
entire system.
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FIG. 15. Planar representation of the LP optimal solution for the
compression, i.e., inflation, of two hard spheres. Shown in red is the
segment joining the two spheres, in green the LP constraint, and in
blue the arrow of the optimal displacement.

constraint and they are inflated until the constraint is saturated
(Fig. 15). Since each sphere has many neighbors and all the
constraints have to be satisfied simultaneously, the displace-
ments would not be only along this orthogonal direction and
the constraint will not be saturated after only one iteration. We
need some iterations [∼O(10)] to reach the jamming point.
The LP algorithm we used is in the GLPK library.14

APPENDIX B: RATTLERS

In jammed hard-sphere packings in finite dimensions some
particles are not part of the force network. They are called
rattlers and they have Z < d + 1 contacts. Typically, their
neighbors are part of the force network and form a cage in
which the rattlers can move freely. In this study, we compute
the observables excluding the rattlers. The distance between
two packings is computed as the distance of their backbones
intersection (i.e., we excluded the rattlers in common and not
in common between the two packings).

In a polydisperse system, the number of rattlers is bigger
than in a monodisperse one. Indeed, it is easier for a particle
with a small radius to be trapped by the others. At jamming,
we find that the average number of rattlers per jammed
configuration is N ratt = 15.

With the LP algorithm of the GLPK library, after each
iteration, one finds that most of the rattlers computed on the
LP constraints have three contacts. This means that they are
leaned against the walls of the virtual box of the constraints of
the LP problem. This is not what one would expect because
rattlers should be free to move and so they typically have
zero contacts. Furthermore, the final jammed packings are not
isostatic on the physical contacts. We believe this result is due
to a computer rounding on the forces acting on the rattlers,
which moves them arbitrarily.

14GLPK uses the symplectic method. The reference manual can be
found in [55].

To solve this problem, we define a smooth potential which,
minimized at each LP iteration, moves the rattlers in the
middle of their virtual box. This potential is defined for each
group of nearest rattlers. In the case of an isolated rattler, the
potential is defined as

F (h, ε) = −
N ′∑

i=1

×
{

ln (hi ) for hi > ε[ hi−ε
ε

+ ln (ε)
]

for hi < ε,

where the sum is over all the N ′ nonrattlers of the packing, hi

is the gap between the considered rattler and the particle i, and
ε = 10−12. The generalization to the case of a group of rattlers
is straightforward. For the minimization of the potential, we
use the nmsimplex2 algorithm in the GSL library [56].

In this way, the resulting jammed configurations are iso-
static in the physical gaps, except for a small percentage of
nonisostatic packings.15 Despite the potential expedient, we
find that the rattlers’ positions in the jammed packings are
random. Indeed, looking at the rattlers in different clones
that have reached the same local minimum, we see that they
have different positions. Hence, to avoid spurious contribu-
tions from the rattlers we compute the distance between two
packings as the distance of the backbones’ intersection (see
Appendix C).

APPENDIX C: DISTANCE AMONG JAMMED PACKINGS

The distance of two configurations is defined as [Eq. (4)]

� = 1

M

M∑
i=1

(
xα

i − xβ
i − δ

)2
, (C1)

while the overlap is [Eq. (5)]

Q = 1

M

1,M∑
i, j

�
(
a − ∣∣xα

i − xβ
j − δ

∣∣), (C2)

where α and β are the minimum indices, i is the particle index,
M is the number of spheres in the backbones’ intersection,
i.e., M is the total number of particles which are nonrattlers in
neither packing α nor β, and δ is the distance of the centers
of mass of α and β. Indeed, as highlighted in Sec. III A,
when we compute observables such as � and Q we need to
avoid spurious effects coming from the system’s translational
invariance. Hence, to compute � and Q we perform a rigid
translation in order to have α and β with coincident centers of
mass: We compute the average displacement of the particles
between the two configurations as δ = 1

M

∑M
i=1(xα

i − xβ
i ) and

we subtract δ in each term of the sum xα
i − xβ

i . From Eqs. (C1)
and (C2) it is clear that, in this way, packings representing the
same local minima have � = 0 and Q = 1.

In the LP protocols, before doing any analysis, we com-
puted the distance distribution among the 1000 deepest min-
ima in each sample. Studying them in logarithmic scale, we

15The percentage of nonisostatic packings is 9%. The percentage
is much smaller when the second cage is excluded from the average
(both starting from φ = 0.647 and φ = 0.68) and becomes 2%. The
jammed configurations of cage 2 are more difficult to reach with our
LP algorithm. This might be due to the presence of more rattlers than
in the other cages.
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found that at very small distances the distributions present
some isolated peaks. Moreover, the same feature is present
in the logarithmic distribution of the packing-fraction differ-
ences �φJ . After careful analysis, we argued that configura-
tions with both a very small � and a very small �φJ should

be considered degenerate because they represent the same
local minimum of the landscape. Looking at those logarithmic
distributions, we fixed two threshold values �∗ � 10−9 and
�φ∗

J � 10−9. Whenever two configurations have � � �∗ and
�φJ � �φ∗

J , we considered them as degenerate.
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