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Learning to grow: Control of material self-assembly using evolutionary reinforcement learning
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We show that neural networks trained by evolutionary reinforcement learning can enact efficient molecular
self-assembly protocols. Presented with molecular simulation trajectories, networks learn to change temperature
and chemical potential in order to promote the assembly of desired structures or choose between competing
polymorphs. In the first case, networks reproduce in a qualitative sense the results of previously known protocols,
but faster and with higher fidelity; in the second case they identify strategies previously unknown, from which
we can extract physical insight. Networks that take as input the elapsed time of the simulation or microscopic
information from the system are both effective, the latter more so. The evolutionary scheme we have used is
simple to implement and can be applied to a broad range of examples of experimental self-assembly, whether or
not one can monitor the experiment as it proceeds. Our results have been achieved with no human input beyond
the specification of which order parameter to promote, pointing the way to the design of synthesis protocols by
artificial intelligence.
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I. INTRODUCTION

Molecular self-assembly is the spontaneous organization
of molecules or nanoparticles into ordered structures [1–6].
It is a phenomenon that happens out of equilibrium, and
so while we have empirical and theoretical understanding
of certain self-assembling systems and certain processes that
occur during assembly [7–20], we lack a predictive theoretical
framework for self-assembly. That is, given a set of molecules
and ambient conditions, and an observation time, we cannot
in general predict which structures and phases the molecules
will form and what will be the yield of the desired structure
when (and if) it forms. As a result, industrial processes that use
self-assembly, such as the crystallization of pharmaceuticals,
require an empirical search of materials and protocols, often
at considerable time and cost [21–24].

Absent a theoretical framework for self-assembly, an alter-
native is to seek assistance from machine learning in order to
attempt to control self-assembly without human intervention.
In this paper we show that neural-network-based evolutionary
reinforcement learning can be used to develop protocols for
the control of self-assembly, without prior understanding of
what constitutes a good assembly protocol. Reinforcement
learning is a branch of machine learning concerned with
learning to perform actions so as to achieve an objective [25],
and has been used recently to play computer games better than
humans can [26–43]. Neuroevolution [43–50] is an approach
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to reinforcement learning that is much less widely applied
than value-based methods [25], but is a simple and powerful
method that is naturally suited to “sparse-reward” problems
such as self-assembly, where the outcome of assembly (good
or bad) is not always apparent until its latter stages. Here
we apply neuroevolutionary learning to stochastic molecu-
lar simulations of patchy particles, a standard choice for
representing anisotropically interacting molecules, nanoparti-
cles, or colloids [10,51–57]. While a neural network cannot
influence the fundamental dynamical laws by which such
systems evolve [58], it can control the parameters that appear
in the dynamical algorithm, such as temperature, chemical
potential, and other environmental conditions. In this way
the network can influence the sequence of microstates visited
by the system. We show that a neural network can learn to
enact a time-dependent protocol of temperature and chemical
potential (called a policy in reinforcement learning) in order to
promote the self-assembly of a desired structure, or choose be-
tween two competing polymorphs. In both cases the network
identifies strategies different to those informed by human
intuition, but which can be analyzed and used to provide
new insight. We use networks that take only elapsed time as
their input, and networks that take microscopic information
from the system. Both learn under evolution, and networks
permitted microscopic information learn better than those that
are not.

Networks enact protocols that are out of equilibrium, in
some cases far from equilibrium, and so are not well de-
scribed by existing theories. These “self-assembly kinetic
yield” networks act to promote a particular order parameter
for self-assembly at the end of a given time interval, with no
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FIG. 1. In this paper we show that neural-network policies trained by evolutionary reinforcement learning can enact efficient time- and
configuration-dependent protocols for molecular self-assembly. A neural network periodically controls certain parameters of a system, and
evolutionary learning applied to the weights of a neural network (indicated as colored nodes) results in networks able to promote the self-
assembly of desired structures. The protocols that give rise to these structures are then encoded in the weights of a self-assembly kinetic yield
net.

consideration for whether a process results in an equilibrium
outcome or not. It is therefore distinct from feedback ap-
proaches designed to promote near-equilibrium behavior [59].
Our approach is similar in intent to Ref. [60], in which dy-
namic programming is used to find protocols able to promote
colloidal crystallization using an external field. One important
difference between that work and ours is that our scheme
does not require measurement of the order parameter we wish
to promote (except at the end of the experiment), making it
applicable to molecular and nanoscale systems whose micro-
scopic states cannot be observed as they evolve. We also use
a neural network to encode the assembly protocol rather than
a model of discretized states. Our approach is also similar to
that of Ref. [61] in the sense that we use evolutionary search
to optimize assembly, but we allow the learning procedure
to respond to both temporal and microscopic information via
the use of a neural network. Our approach is complementary
to efforts that use machine learning to analyze existing self-
assembly pathways [62,63] or to infer or design structure-
property relationships for self-assembling molecules [64–66].
The present scheme is simple and can be straightforwardly
altered to observe an arbitrary number of system features, and
to control an arbitrary number of system parameters, and so
can be applied to a wide range of experimental systems.

In Sec. II we describe the evolutionary scheme, which
involves alternating physical and evolutionary dynamics. In
Sec. III we show that it leads to networks able to promote
the self-assembly of a certain structure faster and better than
intuitive cooling protocols can. In Sec. IV we show that
networks can learn to select between two polymorphs that
are equal in energy and that form in unpredictable quanti-

ties under slow cooling protocols. The strategy used by the
networks to achieve this selection provides new insight into
the self-assembly of the system under study. We conclude in
Sec. V. Networks learn these efficient and new self-assembly
protocols with no human input beyond the specification of
which target parameter to promote, pointing the way to the
design of synthesis protocols by artificial intelligence.

II. EVOLUTIONARY REINFORCEMENT LEARNING OF
SELF-ASSEMBLY PROTOCOLS

We sketch in Fig. 1 an evolutionary scheme by which
a self-assembly kinetic yield net can learn to control self-
assembly. We consider a computational model of molec-
ular self-assembly, patchy disks of diameter a on a two-
dimensional square substrate of edge length 50a. The sub-
strate (simulation box) possesses periodic boundary condi-
tions in both directions. Disks, which cannot overlap, are
minimal representations of molecules, and the patches denote
their ability to make mutual bonds at certain angles. By
choosing certain patch angles, widths, and binding-energy
scales it is possible to reproduce the dynamic and thermody-
namic behavior of real molecular systems of a broad range
of length scales and material types [56]. The disk model is a
good system on which to test the application of evolutionary
learning to self-assembly, because it is simple enough to
simulate for long times, and its behavior is complex enough
to capture several aspects of real self-assembly, including the
formation of competing polymorphs and structures that are
not the thermodynamically stable one. Choosing protocols to
promote the formation of particular structures within the disk
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model is therefore nontrivial and serves as a meaningful test
of the learning procedure.

Two disks receive an energetic reward of −ε/kBT if their
center-to-center distance r is between a and a + a/10 and
if the line joining those disks cuts through one patch on
each disk [67]. In addition, we sometimes require patches
to possess certain identities in order to bind, mimicking the
ability of, e.g., DNA to be chemically specific [68]. In this
paper we consider disk types with and without DNA-type
specificity. Bound patches are shown green in figures, and
unbound patches are shown black. In figures we often draw
the convex polygons formed by joining the centers of bound
particles [56]. Doing so makes it easier to spot regions of
order by eye. Polygon counts serve as a useful order parameter
for self-assembly, because they are related (in some cases
proportional) to the number of unit cells of the desired ma-
terial. We denote by Nα the number of convex α-gons within
a simulation box.

We simulated this system in order to mimic an experiment
in which molecules are deposited on a surface and allowed
to evolve. We use two stochastic Monte Carlo algorithms to
do so. One is a grand-canonical algorithm that allows disks to
appear on the substrate or disappear into a notional solution
[58]; the other is the virtual-move Monte Carlo algorithm
[69,70] that allows disks to move collectively on the surface
in an approximation of Brownian motion [71]. If M is the
instantaneous number of disks on the surface, then we attempt
virtual moves with probability M/(1 + M ) and attempt grand-
canonical moves otherwise. Doing so ensures that particle
deposition occurs at a rate (for fixed control parameters) that is
roughly insensitive of substrate density. The acceptance rates
for grand-canonical moves are given in Ref. [56] (essentially
the textbook rates [58] with the replacement M → M + 1 to
preserve detailed balance in the face of a fluctuating proposal
rate). One such decision constitutes one Monte Carlo step
[72].

The grand-canonical algorithm is characterized by a chem-
ical potential μ/kBT , where kBT is the energy scale of thermal
fluctuations. Positive values of this parameter favor a crowded
substate, while negative values favor a sparsely occupied
substrate. If the interparticle bond strength ε/kBT is large,
then there is, in addition, a thermodynamic driving force for
particles to assemble into structures. (In experiment, bond
strength can be controlled by different mechanisms, depend-
ing on the physical system, including temperature or salt
concentration; here, for convenience, we sometimes describe
increasing ε/kBT as “cooling,” and decreasing ε/kBT as
“heating.”) For fixed values of these parameters the simulation
algorithm obeys detailed balance, and so the system will
evolve toward its themodynamic equilibrium. Depending on
the parameter choices, this equilibrium may correspond to an
assembled structure or to a gas or liquid of loosely associated
disks. For finite simulation time there is no guarantee that
we will reach this equilibrium. Here we consider evolutionary
simulations or trajectories of t0 = 109 individual Monte Carlo
steps (not sweeps, or steps per particle), starting from sub-
strates containing 500 randomly placed nonoverlapping disks.
These are relatively short trajectories in self-assembly terms:
The slow cooling protocols of Ref. [68] used trajectories about
100 times longer.

Each trajectory starts with control-parameter values
ε/kBT = 3 and μ/kBT = 2, which does not give rise to
self-assembly. As a trajectory progresses, a neural network
chooses, every 10−3t0 Monte Carlo steps, a change �(μ/kBT )
and �(ε/kBT ) of the two control parameters of the system
(and so the same network acts 1000 times within each tra-
jectory). These changes are added to the current values of
the relevant control parameter, as long as they remain within
the intervals ε/kBT ∈ [0, 20] and μ/kBT ∈ [−20, 20] (if a
control parameter moves outside of its specified interval then
it is returned to the edge of the interval). Between neural-
network actions, the values of the control parameters are held
fixed. Networks are fully connected architectures with 1000
hidden nodes and two output nodes, and a number of input
nodes appropriate for the information they are fed. We used
tanh activations on the hidden nodes; the full network function
is given in the Appendix.

Training of the network is done by evolution [43]. We
run 50 initial trajectories, each with a different, randomly
initialized neural network. Each network’s weights and biases
{w} are independent Gaussian random numbers of zero mean
and unit variance. The collection of 50 trajectories produced
by this set of 50 networks is called generation 0. After these
trajectories run we assess each according to the number Nα

of convex α-gons present in the simulation box; the value
of α depends on the disk type under study and the structure
whose assembly we wish to promote. The five networks
whose trajectories have the largest values of Nα are chosen
to be the “parents” of generation 1. Generation 1 consists of
these five networks, plus 45 mutants. Mutants are made by
choosing at random one of the parent networks and adding
to each weight and bias a Gaussian random number of zero
mean and variance 0.01. After simulation of generation 1 we
repeat the evolutionary procedure in order to create generation
2. Alternating the physical dynamics (the self-assembly tra-
jectories) and the evolutionary dynamics (the neural-network
weight mutation procedure) results in populations of networks
designed to control self-assembly conditions so as to promote
certain order parameters.

Each evolutionary scheme used one of three types of net-
work. The first, called the time network for convenience, has a
single input node that takes the value of the scaled elapsed
time of the trajectory, t/t0 ∈ [0, 1]. The second, called the
microscopic network for convenience, has P + 1 input nodes,
where P is the number of patches on the disk. Input node
i ∈ {0, 1, . . . , P} takes the value Si, the number of particles in
the simulation box that possess i engaged patches (divided by
1000). The third neural network type has P + 2 input nodes
and takes both t/t0 and the Si as inputs. We chose the time
network so as to explore the ability of a network to influence
the self-assembly protocol if it cannot observe the system at
all. We chose the microscopic network to see if a network able
to observe the system can do better than one that cannot. We
do not intend for its input to be a precise analog of an experi-
mental measurement, but there are several experimental tech-
niques able to access similar information, such as the averaged
number of particles in certain types of environment, or the
approximate degree of aggregation present in a system [13].

It is important to note that these microscopic inputs are not
related in a simple way to the evolutionary parameters Nα , the

052604-3



STEPHEN WHITELAM AND ISAAC TAMBLYN PHYSICAL REVIEW E 101, 052604 (2020)

number of convex α-gons in the box, that we wish to optimize.
For instance, in Sec. III, both dense disordered networks (with
small values of N12) and well-assembled structures (with large
values of N12) can contain similar numbers of maximally
coordinated particles. In Sec. IV, the two polymorphs we
ask a network to choose between, one described by N6 and
the other by N4, have identical coordination numbers. Thus a
network must learn the connection between the data it is fed
and the evolutionary order parameters we aim to maximize.
Our intent was to mimic an experiment in which which some
microscopic information about a system is available, but the
quality of assembly can only be assessed after the experiment
has run to completion. The success of the learning scheme
in the absence of any system-specific information, and our
finding that the more information we feed a network the better
it performs, suggests that the evolutionary scheme can be
applied to a wide variety of experimental systems.

Dynamical trajectories are stochastic, even given a fixed
protocol (policy), and so networks that perform well in one
generation may be eliminated the next. This can happen if,
for example, a certain protocol promotes nucleation, the onset
time for which varies from one trajectory to another. By the
same token, the best yield can decrease from one generation to
the next, and independent trajectories generated using a given
protocol have a range of yields. To account for this effect one
could place evolutionary requirements on the yield associated
with many independent trajectories using the same protocol.
Here we opted not to do this, reasoning that over the course
of several generations the evolutionary process will naturally
identify protocols that perform well when measured over
many independent trajectories. We demonstrate this feature in
Sec. III, where independent trajectories produced under slow
cooling display a wide variety of outcomes, but independent
trajectories generated by evolved protocols display relatively
well-defined ones.

III. PROMOTING SELF-ASSEMBLY

In Fig. 2 we consider the “3.12.12” disk of Ref. [68],
which has three chemically specific patches whose bisectors
are separated by angles π/3 and 5π/6. This disk can form a
structure equivalent to the 3.12.12 Archimedean tiling (a tiling
with one 3-gon and two 12-gons around each vertex). The
number of 12-gons N12 counts the number of unit cells of the
structure and so is a suitable order parameter for evolutionary
search. This structure is a difficult target for self-assembly
because its unit cell is large and must form from floppy
intermediates, the nature of which gives plenty of scope for
mistakes of binding and kinetic trapping. As a result, while
intuitive protocols allow assembly to proceed, they do so
with relatively low fidelity. In Fig. 2(a) we show the outcome
of “cooling” simulations done at three different rates. As
for evolutionary simulations, we start from control-parameter
values ε/kBT = 3 and μ/kBT = 2, where the equilibrium
state is a sparse gas of largely unassociated disks. Every
t�T Monte Carlo steps we increase ε/kBT by a value 0.075.
We carried out 50 independent simulations at each cooling
rate. As the rate of cooling decreases, the yield increases,
but achieving much more than 50 unit cells of the target
material is time-consuming: Single trajectories at each of the

FIG. 2. (a) A 3-patch disk with chemically selective patches can
form a structure equivalent to the 3.12.12 Archimedean tiling [68], a
tiling with one 3-gon and two 12-gons around each vertex (inset).
Slow cooling simulations, in which the disk interaction strength
ε/kBT is increased by 0.075 every t�T Monte Carlo steps, give rise to
the numbers of 12-gons N12 (the number of unit cells of the desired
structure) shown in the plot: We show 50 independent trajectories at
each of three cooling rates. Neural networks learn to control ε/kBT
and μ/kBT in order to greatly exceed these yields, in a fraction of
the time (green line at left). Panels (b) and (c) show snapshots of
structures produced by slow cooling and a neural-network protocol,
respectively, with 12-gons colored green.

cooling rates take, respectively, of order an hour, a day, and a
week of CPU time on a single processor. Clearly, substantial
improvement using this protocol would require prohibitively
long simulations.

Search using evolutionary learning results in protocols that
can greatly exceed the yield of cooling simulations, in a
fraction of the time [an example is shown at left in Fig. 2(a)].
In Figs. 3(a)–3(c) we show results obtained using the time
network within the evolutionary scheme of Fig. 1. Generation-
0 trajectories are controlled by essentially random protocols,
and many (e.g., those that involve weakening of interparticle
bonds) result in no assembly (see Fig. 4). Some protocols
result in low-quality assembly (comparable to that seen in the
fastest cooling protocols of Fig. 2), and the best of these are
used to create generation 1. Fig. 3(a) shows that assembly gets
better with generation number: evolved networks learn to pro-
mote assembly of the desired structure. The protocols leading
to these structures are shown in Figs. 3(b) and 3(c): Early
generation networks tend to strengthen bonds (“cool”) quickly
and concentrate the substrate, while later-generation networks
strengthen bonds more quickly but also promote evacuation
of the substrate. This strategy appears to reduce the number of
obstacles to the closing of the large and floppy intermediate
structures. The most advanced networks further refine these
bond-strengthening and substrate-evacuation protocols.

The microscopic network [Figs. 3(d)–3(f)] produces
slightly more nuanced versions of the time-network protocols
and leads to better assembly. Thus, networks given access
to configurational information learn more completely than
those that know only the elapsed time of the procedure, even
though the information they are given does not directly relate
to the quality of assembly. In Fig. 5 we show in more detail
a trajectory produced by the best generation-18 microscopic
network. The self-assembly dynamics that results is hierar-
chical assembly of the type seen in Ref. [68], in which trimers
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FIG. 3. Evolutionary learning of self-assembly protocols using the 3.12.12 disk of Fig. 2. (a) The time network used with this disk, within
the evolutionary scheme of Fig. 1, produces progressively better yields of 12-gons with generation. We show the top 5 yields per generation,
with the best shown in blue (dark gray). The protocols leading to these yields are shown in (b) and (c), the better yields corresponding to rapid
cooling and evacuation of the substrate. (d) The microscopic network used in the same evolutionary scheme produces better yields than the
time network, using (e) and (f) similar but slightly more nuanced protocols. Networks that take both temporal and microscopic information, or
two networks used in sequence, produce better yields still: see Fig. 7.

(3-gons) form first and networks of trimers then form 12-gons,
but is a more extreme version: In Fig. 5 we see that almost all
the 3-gons made by the system form before the 12-gons begin

to form. Thus the network has adopted a two-stage procedure
in an attempt to maximize yield.

Networks given either temporal or microscopic informa-
tion have therefore learned to promote self-assembly, without
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FIG. 4. (a) Generation-0 trajectories of the time network applied to the 3.12.12 disk; most networks fail to produce assembly.
(b) Generation-18 trajectories generally result in much better assembly. However, note that some networks, although they are offspring of
successful generation-17 networks, result in low-quality assembly.
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FIG. 5. A self-assembly trajectory produced by the best
generation-18 microscopic network of Fig. 3(d)–3(f). Panel (a) and
the time-ordered snapshots in (d) show the dynamics to be hierar-
chical in an extreme way, with most 3-gons (blue) forming before
12-gons (green) are made. Snapshot times are t/t0 = 0.17, 0.25, 1,
from top to bottom. Defects, such as disordered regions and 10- and
14-gons, also form. Panel (b) shows the temperature and chemical
potential protocols chosen by the network, and (c) shows the inputs
to the network.

any external direction beyond an assessment, at the end of the
trajectory, of which outcomes were best. Moreover, the quality
of assembly considerably exceeds the quality of intuition-
driven cooling procedures, and proceeds much more quickly.
In Fig. 6 we compare trajectories and assembled structures
produced by cooling and by two different networks: The
networks produce better structures, even though they are con-
strained to act over much shorter times. Here we observe the
counterintuitive result of rapidly varying nonequilibrium pro-
tocols producing better-quality assembly than a slow-cooling
procedure designed (at least in an intuitive sense) to promote
“near equilibrium” conditions [73].

Yield under the evolutionary protocols can be increased
by providing more data to the neural network. In Fig. 7 we
show that a neural network provided with both temporal and
microscopic information outperforms both the time- and the
microscopic networks of Fig. 3. Yield can also be increased
by using two neural networks, one after the other, trained
independently [see Fig. 6(c) and Figs. 7(e)–7(h)]. In these
cases the yield of material reaches more than double that
obtained under a slow-cooling protocol. Protocols learned by
these neural networks are distinctly different at early and late
times, suggestive of distinct growth and annealing stages:
After an initial stage of rapid growth under cool and sparse
conditions, networks heat the substrate and make it more
dense, apparently in order to promote error correction.

FIG. 6. We compare trajectories produced by (a) the slowest
cooling rate shown in Fig. 2, (b) the best generation-18 microscopic
network from Fig. 3(d)–3(f), and (c) a generation-12 procedure
using two microscopic networks in sequence; see Fig. 7(e)–7(h). The
neural networks produce better assembly than the cooling protocol
(measured by the 12-gon count, i.e., the number of unit cells of the
desired structure), and do so 50 or 100 times faster. The snapshots
at right are taken at the end of the three trajectories. In (a), the
3.12.12 structure contains many smaller species in its pores. Note
also that some of the larger closed loops in these images are 10-gons
or 14-gons; the polygon representation of Fig. 5 picks out 12-gons
more clearly.

Here we have provided no prior input to the neural net
to indicate what constitutes a good assembly protocol. One
could alternatively survey parameter space as thoroughly as
possible, using intuition and prior experience, before turning
to evolution. In such cases generation-0 assembly would be
better than under randomized protocols. However, we found
that even when generation-0 assembly was already of high
quality, the evolutionary procedure was able to improve it.
In Fig. 8 we consider evolutionary learning using the regular
three-patch disk without patch-type specificity [56,68]. This
disk forms the honeycomb network so readily that the best
examples of assembly using 50 randomly chosen protocols
(generation 0) are already good. Nonetheless, evolution using
the time network or microscopic network is able to improve
the quality of assembly, with the microscopic network again
performing better.

IV. POLYMORPH SELECTION

Controlling the polymorph into which a set of molecules
will self-assemble is a key consideration in industrial proce-
dures such as drug crystallization [21–24]. Here we show that
evolutionary search can be used to find protocols able to direct
the self-assembly of a set of model molecules into either of
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FIG. 7. (a) A neural network that combines temporal and microscopic information outperforms both the time- and microscopic networks
of Fig. 3. Panel (b) shows the yield of the top 5 of 50 trajectories for certain generations; panels (c) and (d) show the associated values of
ε/kBT and μ/kBT , respectively. The protocol learned by this network learned in Fig. 3 but with more pronounced nonmonotonicity: At later
times the substrate is heated and made more dense, which appears to facilitate annealing of the structures grown under cold, sparse conditions.
A generation-18 trajectory of this network is shown in Fig. 2(a) (left). In panels (e)–(h) we show results using a two-step procedure: The best
generation-18 microscopic network from Fig. 3 is applied for time t0, and then a second microscopic network is applied and trained for a period
t0. This procedure identifies a protocol similar to that shown in the upper panels, whose early and late stages are suggestive of distinct growth
and annealing conditions. These strategies produce yield of order twice that obtained under slow cooling; see Figs. 2 and 6.

two competing polymorphs. In doing so, the procedure learns
strategies that provide physical insight into the system under
study.

In Fig. 9 we consider a 4-patch disk with angles π/3 and
2π/3 between patch bisectors. This disk can form a structure
equivalent to the 3.6.3.6 Archimedean tiling (a tiling with two
3-gons and two 6-gons around each vertex), or a rhombic

structure. Particles have equal energy within the bulk of each
structure, and at zero pressure (the conditions experienced
by a cluster growing in isolation in a substrate) there is no
thermodynamic preference for one structure over the other.
Independent trajectories generated under slow cooling (gray
circles) therefore display nucleation of either or both poly-
morphs, in an unpredictable way (see also Fig. 12). The

ngen 0=

(a)

(b)

Δ(μ/kBT )
Δ( /kBT )

n0

n3

··· ···

t/t0
Δ(μ/kBT )
Δ( /kBT )

···ttttttttttttttt

FIG. 8. Evolutionary learning of self-assembly protocols with the regular three-patch disk without patch specificity. This disk forms the
honeycomb network (a) so readily that assembly using 50 randomly chosen protocols (generation-0) is already good; see panel (b), in which
6-gons are colored light blue (gray). Nonetheless, evolution using the time network (c) or microscopic network (d) can improve the quality of
assembly, and, again, the microscopic network is better than the time one. We show the top five trajectories per generation, with the best shown
in blue (dark gray).
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FIG. 9. A 4-patch disk with angles π/3 and 2π/3 between
patch bisectors can form (a) a structure equivalent to the 3.6.3.6
Archimedean tiling or (b) a rhombic structure [68]. The number
of 6-gons (N6) or 4-gons (N4) serve as order parameters for these
structures. (c) Cooling (at the slowest rate shown in Fig. 2) causes
nucleation and growth of the two polymorphs on a timescale of order
20t0 (see Fig. 12). The outcome of 50 such trajectories consists of
either or both polymorphs, in an unpredictable way (gray circles). By
contrast, the evolutionary scheme of Fig. 1 can produce neural net-
works able to select either polymorph with high fidelity. Blue (dark
gray) hexagons [respectively, red (light gray) squares] correspond to
50 trajectories, of length t0, using a single generation-10 microscopic
neural network evolved so as to maximize N6 (respectively, N4); see
Fig. 10.

3.6.3.6 polymorph can be selected by making the patches
chemically selective [68], but here we do not do this. Instead,
we show that evolutionary search can be used to develop
protocols able to choose between these two polymorphs.

In Fig. 10 we consider evolutionary learning of self-
assembly protocols using time- and microscopic networks
instructed to promote either the parameter N4 or the parameter
N6. In both cases we see steadily increasing counts, with gen-
eration, of the required order parameter, with the microscopic
network again performing better. The lower two rows show
the evolution of the strategies chosen by each network, with
time- and microscopic networks learning qualitatively similar
protocols for promotion of a given order parameter.

In Fig. 11 we show in more detail one trajectory per
strategy obtained using generation-10 microscopic neural net-
works. Left-hand panels pertain to a trajectory produced by a
neural network evolved to promote 6-gons, while right-hand
panels pertain to a trajectory produced by a neural network
evolved to promote 4-gons. In each case, neural networks have
learned to promote one polymorph and so suppress the other.
Both examples of assembly display defects and grain bound-
aries, but the specified polymorphs cover substantial parts of
the substrate. In the case considered in Sec. III we already
knew how to promote assembly, by cooling—although the
evolutionary protocol learned to do it more quickly and with
higher fidelity—but here we did not possess advance knowl-
edge of how to do polymorph selection using protocol choice.

In Fig. 11, inspection of the snapshots (a), the polygon
counts (b), and the control-parameter histories (c) provide
insight into the selection strategies adopted by the networks.
To select the 3.6.3.6 tiling (left panels) the network has

induced a tendency for particles to leave the surface (small
μ/kBT ) and for bonds to be moderately strong (moderate
ε/kBT ). The balance of these things appears to be such that
trimers (3-gons), in which each particle has two engaged
bonds, can form. Trimers serve as a building block for the
3.6.3.6 structure, which then forms hierarchically as the chem-
ical potential is increased (and the bond strength slightly
decreased). By contrast, the rhombic structure appears to be
unable to grow because it cannot form hierarchically from
collections of rhombi (which also contain particles with two
engaged bonds): Growing beyond a single rhombus involves
the addition of particles via only one engaged bond, and these
particles are unstable, at early times, to dissociation.

To select the rhombic structure (right panels) the network
selects moderate bond strength and concentrates the substrate
by driving μ/kBT large. In a dense environment it appears
that the rhombic structure is more accessible kinetically than
the more open 3.6.3.6 network. In addition, in a dense en-
vironment there is a thermodynamic preference for the more
compact rhombic polymorph, a factor that may also contribute
to selection of the latter. Note that simply causing μ/kBT to
increase with time is not sufficient to produce the rhombic
polymorph in high yield: Early generation networks adopt just
such a strategy, but high yield for later generations requires a
particular balance of bond strength and chemical potential.

The microscopic network receives information periodically
from the system, but the information it receives—the number
of particles with certain numbers of engaged bonds—does not
distinguish between the bulk forms of the two polymorphs.
Networks must therefore learn the relationships between these
inputs, their resulting actions, and the final-time order param-
eter. The time network learns qualitatively similar protocols,
albeit with slightly less effectiveness, with no access to the
microscopic state of the system.

Returning to Fig. 9(c), we show the results of 50 inde-
pendent trajectories of length t0 carried out using a single
generation-10 microscopic network evolved to promote 6-
gons (blue hexagons), and the results of 50 independent
trajectories of length t0 carried out using a single generation-
10 microscopic network evolved to promote 4-gons (red
squares). In both cases the networks reliably promote one
polymorph and suppress the other, in contrast to slow-cooling
simulations whose outcome is unpredictable. In this case
the conventional nucleation-and-growth pathway induced by
slow cooling provides no control over polymorph selection,
while the pathways induced by the neural networks—one of
which is strongly hierarchical—do. In addition, as in Sec. III,
assembly under the network protocols is much faster than
under slow cooling; see Fig. 12.

V. CONCLUSIONS

We have shown that a self-assembly kinetic yield net
trained by evolutionary reinforcement learning [43–50] can
control self-assembly protocols in molecular simulations.
Networks learn to promote the assembly of desired structures,
or choose between polymorphs. In the first case, networks
reproduce the structures produced by previously known proto-
cols, but faster and with higher fidelity; in the second case they
identify strategies previously unknown, and from which we
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FIG. 10. Evolutionary learning of self-assembly protocols for the 4-patch disk of Fig. 9 using the microscopic network (left two columns)
or the time network (right two columns). Networks instructed to maximize the number of 6-gons (columns 1 and 3) or 4-gons (columns 2 and
4) learn to promote the assembly of the 3.6.3.6 tiling or the rhombic structure. As in the other cases studied, the microscopic network is more
effective than the time network. We show the top five protocols per generation, with the best shown in blue (dark gray).

can extract physical insight. Networks that take as input only
the elapsed time of the protocol are effective, and networks
that take as input microscopic information from the system
are more so. This comparison indicates that this scheme can
be applied to a wide range of experiments, regardless of
how much microscopic information is available as assembly
proceeds.

The problem we have addressed falls in the category of
reinforcement learning in the sense that the neural network
learns to perform actions (choosing new values of the control
parameters) given an observation. The evolutionary approach
we have applied to this problem requires only the assessment
of a desired order parameter (here the polygon count Nα) at
the end of a trajectory. This is an important feature because in
self-assembly the best-performing trajectories at short times
are not necessarily the best-performing trajectories at the
desired observation time; see, e.g., Fig. 4. Self-assembly is
inherently a “sparse-reward” problem. For this reason it is

not obvious that value-based reinforcement-learning methods
[25] are ideally suited to a problem such as self-assembly:
Rewarding “good” configurations at early times may not result
in favorable outcomes at later times. This is only speculation
on our part, however; which of the many ways of doing
reinforcement learning is best for self-assembly is an open
question.

Our results demonstrate proof of principle, and can be
extended or adapted in several ways. We allow networks to
act 1000 times per trajectory, in order to mimic a system in
which we have only occasional control; the influence of a
network could be increased by allowing it to act more fre-
quently. We have chosen the hyperparameters of our scheme
(mutation step size, neural network width, network activation
functions, number of trajectories per generation) using values
that seemed reasonable and that we subsequently observed to
work, but these could be optimized (potentially by evolution-
ary search).
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FIG. 11. Generation-10 trajectories of the microscopic network from Fig. 10, evolved to promote either 6-gons (left column) or 4-gons
(right column). We show (a) time-ordered snapshots, (b) polygon counts, (c) neural network outputs, and (d) neural network inputs. In
snapshots, 6-gons are dark blue (dark gray), 3-gons are light blue (light gray), and 4-gons are red (lighter gray).

We end by noting that the scheme we have used is simple
to implement. The network architectures we have used are
standard and can be straightforwardly adapted to handle an
arbitrary number of inputs (system data) and outputs (changes

of system control parameters). The mutation protocol is sim-
ple to implement. In addition, we have shown that learning
can be effective using a modest number of trajectories (50)
per generation. The evolutionary scheme should therefore be

FIG. 12. (a) Slow cooling of the 4-patch disk of Fig. 9 results in nucleation and growth of either polymorph type, in unpredictable quantities;
see the gray circles in Fig. 9(c). Here both polymorphs appear. In the snapshot, 6-gons are dark blue (dark gray), 3-gons are light blue (light
gray), and 4-gons are red (lighter gray). Note that the unit cells of these polymorphs are smaller and more mechanically rigid than that of the
3.12.12 structure of Fig. 2, and so the 3.6.3.6 and rhombic polymorphs assemble better under slow cooling than does the 3.12.12 structure.
However, there exists no mechanism during slow nucleation and growth to reliably select one polymorph over the other [(b) and (c)]. By
contrast, the non-nucleation mechanisms generated by neural networks evolved to promote 6-gons (b) or 4-gons (c) result in more predictable
outcomes; see the blue (dark gray) and red (light gray) symbols in Fig. 9(c).
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applicable to a broad range of experimental or computational
systems. The results shown here have been achieved with no
human input beyond the specification of which order param-
eter to promote, pointing the way to the design of synthesis
protocols by artificial intelligence.
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APPENDIX: NEURAL NETWORK

Each network is a fully connected architecture with ni input
nodes, nh = 1000 hidden nodes, and no = 2 output nodes.
Let the indices i ∈ {0, . . . , ni − 1}, j ∈ {1, . . . , nh}, and k ∈
{1, . . . , no} label nodes in the input, hidden, and output layers,

respectively. Let wαβ be the weight connecting nodes α and
β, and let b j be the bias applied to hidden-layer node j. Then
the two output nodes take the values

Sk = n−1
h

∑
j

S jw jk, (A1)

where

S j = tanh

(∑
i

Siwi j + b j

)
, (A2)

and Si denotes the input-node value(s). For the time network
we have ni = 1 and S0 = t/t0. For the microscopic network
we have ni = P + 1, where P is the number of patches on
the disk, and Si is the number of particles in the simulation
box having i ∈ {0, 1, . . . , P} engaged patches (divided by
1000). The mixed time-microscopic network of Fig. 7 uses
both t/t0 and the Si as inputs. The output-node values are
taken to be the changes �(μ/kBT ) and �(ε/kBT ), provided
that μ/kBT and ε/kBT remain in the intervals [−20, 20] and
[0,20], respectively.
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petitions: Playing doom from pixels, arXiv:1809.03470 (2018).

[41] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. Van Den Driessche, J. Schrittwieser, I. Antonoglou, V.

Panneershelvam, M. Lanctot et al., Mastering the game of go
with deep neural networks and tree search, Nature 529, 484
(2016).

[42] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A.
Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al.,
Mastering the game of go without human knowledge, Nature
550, 354 (2017).

[43] F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley,
and J. Clune, Deep neuroevolution: Genetic algorithms are a
competitive alternative for training deep neural networks for
reinforcement learning, arXiv:1712.06567 (2017).

[44] J. H. Holland, Genetic algorithms, Sci. Am. 267, 66
(1992).

[45] D. B. Fogel and L. C. Stayton, On the effectiveness of crossover
in simulated evolutionary optimization, BioSystems 32, 171
(1994).

[46] J. Lehman, J. Chen, J. Clune, and K. O. Stanley, Es is more than
just a traditional finite-difference approximator, in Proceedings
of the Genetic and Evolutionary Computation Conference,
GECCO ’18, 15–19 July 2018, Kyoto, Japan (ACM, 2018),
pp. 450–457.

[47] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever,
Evolution strategies as a scalable alternative to reinforcement
learning, arXiv:1703.03864 (2017).

[48] X. Zhang, J. Clune, and K. O. Stanley, On the relationship
between the openai evolution strategy and stochastic gradient
descent, arXiv:1712.06564 (2017).

[49] J. Lehman, J. Chen, J. Clune, and K. O. Stanley, Safe muta-
tions for deep and recurrent neural networks through output
gradients, in Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’18, 15–19 July 2018, Kyoto,
Japan (ACM, 2018), pp. 117–124.

[50] E. Conti, V. Madhavan, F. P. Such, J. Lehman, K. Stanley,
and J. Clune, Improving exploration in evolution strategies for
deep reinforcement learning via a population of novelty-seeking
agents, in Proceedings of the 32nd Conference on Neural Infor-
mation Processing Systems (NeurIPS 2018), Montréal, Canada
(2018), pp. 5027–5038.

[51] Z. Zhang and S. C. Glotzer, Self-assembly of patchy particles,
Nano Lett. 4, 1407 (2004).

[52] F. Romano, E. Sanz, and F. Sciortino, Crystallization of tetra-
hedral patchy particles in silico, J. Chem. Phys. 134, 174502
(2011).

[53] F. Sciortino, E. Bianchi, J. F. Douglas, and P. Tartaglia,
Self-assembly of patchy particles into polymer chains: A
parameter-free comparison between wertheim theory and
monte carlo simulation, J. Chem. Phys. 126, 194903
(2007).

[54] E. Bianchi, P. Tartaglia, E. Zaccarelli, and F. Sciortino, The-
oretical and numerical study of the phase diagram of patchy
colloids: Ordered and disordered patch arrangements, J. Chem.
Phys. 128, 144504 (2008).

[55] G. Doppelbauer, E. Bianchi, and G. Kahl, Self-assembly sce-
narios of patchy colloidal particles in two dimensions, J. Phys.:
Condens. Matter 22, 104105 (2010).

[56] S. Whitelam, I. Tamblyn, T. K. Haxton, M. B. Wieland, N. R.
Champness, J. P. Garrahan, and P. H. Beton, Common Physical
Framework Explains Phase Behavior and Dynamics of Atomic,
Molecular, and Polymeric Network Formers, Phys. Rev. X 4,
011044 (2014).

052604-12

https://doi.org/10.1016/S0022-0248(99)00819-2
https://doi.org/10.1016/S0022-0248(99)00819-2
https://doi.org/10.1016/S0022-0248(99)00819-2
https://doi.org/10.1016/S0022-0248(99)00819-2
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://doi.org/10.1613/jair.3912
https://doi.org/10.1613/jair.3912
https://doi.org/10.1613/jair.3912
https://doi.org/10.1613/jair.3912
http://arxiv.org/abs/arXiv:1801.00690
https://doi.org/10.1007/s10514-009-9120-4
https://doi.org/10.1007/s10514-009-9120-4
https://doi.org/10.1007/s10514-009-9120-4
https://doi.org/10.1007/s10514-009-9120-4
http://arxiv.org/abs/arXiv:1707.06347
http://arxiv.org/abs/arXiv:1606.01540
http://arxiv.org/abs/arXiv:1809.03470
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270
http://arxiv.org/abs/arXiv:1712.06567
https://doi.org/10.1038/scientificamerican0792-66
https://doi.org/10.1038/scientificamerican0792-66
https://doi.org/10.1038/scientificamerican0792-66
https://doi.org/10.1038/scientificamerican0792-66
https://doi.org/10.1016/0303-2647(94)90040-X
https://doi.org/10.1016/0303-2647(94)90040-X
https://doi.org/10.1016/0303-2647(94)90040-X
https://doi.org/10.1016/0303-2647(94)90040-X
http://arxiv.org/abs/arXiv:1703.03864
http://arxiv.org/abs/arXiv:1712.06564
https://doi.org/10.1021/nl0493500
https://doi.org/10.1021/nl0493500
https://doi.org/10.1021/nl0493500
https://doi.org/10.1021/nl0493500
https://doi.org/10.1063/1.3578182
https://doi.org/10.1063/1.3578182
https://doi.org/10.1063/1.3578182
https://doi.org/10.1063/1.3578182
https://doi.org/10.1063/1.2730797
https://doi.org/10.1063/1.2730797
https://doi.org/10.1063/1.2730797
https://doi.org/10.1063/1.2730797
https://doi.org/10.1063/1.2888997
https://doi.org/10.1063/1.2888997
https://doi.org/10.1063/1.2888997
https://doi.org/10.1063/1.2888997
https://doi.org/10.1088/0953-8984/22/10/104105
https://doi.org/10.1088/0953-8984/22/10/104105
https://doi.org/10.1088/0953-8984/22/10/104105
https://doi.org/10.1088/0953-8984/22/10/104105
https://doi.org/10.1103/PhysRevX.4.011044
https://doi.org/10.1103/PhysRevX.4.011044
https://doi.org/10.1103/PhysRevX.4.011044
https://doi.org/10.1103/PhysRevX.4.011044


LEARNING TO GROW: CONTROL OF MATERIAL … PHYSICAL REVIEW E 101, 052604 (2020)

[57] É. Duguet, C. Hubert, C. Chomette, A. Perro, and S. Ravaine,
Patchy colloidal particles for programed self-assembly, C. R.
Chim. 19, 173 (2016).

[58] D. Frenkel and B. Smit, Understanding Molecular Simulation:
From Algorithms to Applications (Academic Press, Orlando, FL,
1996).

[59] D. Klotsa and R. L. Jack, Controlling crystal self-assembly
using a real-time feedback scheme, J. Chem. Phys. 138, 094502
(2013).

[60] X. Tang, B. Rupp, Y. Yang, T. D. Edwards, M. A. Grover, and
M. A. Bevan, Optimal feedback controlled assembly of perfect
crystals, ACS Nano 10, 6791 (2016).

[61] M. Z. Miskin, G. Khaira, J. J. de Pablo, and H. M. Jaeger, Turn-
ing statistical physics models into materials design engines,
Proc. Natl. Acad. Sci. U.S.A. 113, 34 (2016).

[62] A. W. Long, J. Zhang, S. Granick, and A. L. Ferguson, Machine
learning assembly landscapes from particle tracking data, Soft
Matter 11, 8141 (2015).

[63] A. W. Long and A. L. Ferguson, Nonlinear machine learning
of patchy colloid self-assembly pathways and mechanisms, J.
Phys. Chem. B 118, 4228 (2014).

[64] B. A. Lindquist, R. B. Jadrich, and T. M. Truskett, Communica-
tion: Inverse design for self-assembly via on-the-fly optimiza-
tion, J. Chem. Phys. 145, 111101 (2016).

[65] B. A. Thurston and A. L. Ferguson, Machine learning and
molecular design of self-assembling-conjugated oligopeptides,
Mol. Simul. 44, 930 (2018).

[66] A. L. Ferguson, Machine learning and data science in soft
materials engineering, J. Phys.: Condens. Matter 30, 043002
(2017).

[67] N. Kern and D. Frenkel, Fluid–fluid coexistence in colloidal
systems with short-ranged strongly directional attraction, J.
Chem. Phys. 118, 9882 (2003).

[68] S. Whitelam, Minimal Positive Design for Self-Assembly
of the Archimedean Tilings, Phys. Rev. Lett. 117, 228003
(2016).

[69] S. Whitelam, E. H. Feng, M. F. Hagan, and P. L. Geissler, The
role of collective motion in examples of coarsening and self-
assembly, Soft Matter 5, 1251 (2009).

[70] L. O. Hedges, http://vmmc.xyz.
[71] T. K. Haxton, L. O. Hedges, and S. Whitelam, Crystallization

and arrest mechanisms of model colloids, Soft Matter 11, 9307
(2015).

[72] The natural way to measure “real” time in such a system is
to advance the clock by an amount (1 + M )−1 on making
an attempted move. Dense systems and sparse systems then
take very different amounts of CPU time to run. In order to
move simulation generations efficiently through our computer
cluster we instead updated the clock by one unit on making
a move. In this way we work in the constant event-number
ensemble.

[73] S. Whitelam, Strong bonds and far-from-equilibrium conditions
minimize errors in lattice-gas growth, J. Chem. Phys. 149,
104902 (2018).

052604-13

https://doi.org/10.1016/j.crci.2015.11.013
https://doi.org/10.1016/j.crci.2015.11.013
https://doi.org/10.1016/j.crci.2015.11.013
https://doi.org/10.1016/j.crci.2015.11.013
https://doi.org/10.1063/1.4793527
https://doi.org/10.1063/1.4793527
https://doi.org/10.1063/1.4793527
https://doi.org/10.1063/1.4793527
https://doi.org/10.1021/acsnano.6b02400
https://doi.org/10.1021/acsnano.6b02400
https://doi.org/10.1021/acsnano.6b02400
https://doi.org/10.1021/acsnano.6b02400
https://doi.org/10.1073/pnas.1509316112
https://doi.org/10.1073/pnas.1509316112
https://doi.org/10.1073/pnas.1509316112
https://doi.org/10.1073/pnas.1509316112
https://doi.org/10.1039/C5SM01981H
https://doi.org/10.1039/C5SM01981H
https://doi.org/10.1039/C5SM01981H
https://doi.org/10.1039/C5SM01981H
https://doi.org/10.1021/jp500350b
https://doi.org/10.1021/jp500350b
https://doi.org/10.1021/jp500350b
https://doi.org/10.1021/jp500350b
https://doi.org/10.1063/1.4962754
https://doi.org/10.1063/1.4962754
https://doi.org/10.1063/1.4962754
https://doi.org/10.1063/1.4962754
https://doi.org/10.1080/08927022.2018.1469754
https://doi.org/10.1080/08927022.2018.1469754
https://doi.org/10.1080/08927022.2018.1469754
https://doi.org/10.1080/08927022.2018.1469754
https://doi.org/10.1088/1361-648X/aa98bd
https://doi.org/10.1088/1361-648X/aa98bd
https://doi.org/10.1088/1361-648X/aa98bd
https://doi.org/10.1088/1361-648X/aa98bd
https://doi.org/10.1063/1.1569473
https://doi.org/10.1063/1.1569473
https://doi.org/10.1063/1.1569473
https://doi.org/10.1063/1.1569473
https://doi.org/10.1103/PhysRevLett.117.228003
https://doi.org/10.1103/PhysRevLett.117.228003
https://doi.org/10.1103/PhysRevLett.117.228003
https://doi.org/10.1103/PhysRevLett.117.228003
https://doi.org/10.1039/B810031D
https://doi.org/10.1039/B810031D
https://doi.org/10.1039/B810031D
https://doi.org/10.1039/B810031D
http://vmmc.xyz
https://doi.org/10.1039/C5SM01833A
https://doi.org/10.1039/C5SM01833A
https://doi.org/10.1039/C5SM01833A
https://doi.org/10.1039/C5SM01833A
https://doi.org/10.1063/1.5034789
https://doi.org/10.1063/1.5034789
https://doi.org/10.1063/1.5034789
https://doi.org/10.1063/1.5034789

