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Classical Poisson-Boltzmann theory represents a mean-field description of the electric double layer in the
presence of only Coulomb interactions. However, aqueous solvents hydrate ions, which gives rise to additional
hydration-mediated ion-ion interactions. Experimental and computational studies suggest damped oscillations to
be a characteristic feature of these hydration-mediated interactions. We have therefore incorporated oscillating
Yukawa potentials into the mean-field description of the electric double layer. This is accomplished by allowing
the decay length of the Yukawa potential to be complex valued. Ion specificity emerges from assigning individual
strengths and phases to the Yukawa potential for anion-anion, anion-cation, and cation-cation pairs as well as
for anions and cations interacting with an electrode or macroion. Excluded volume interactions between ions
are approximated by replacing the ideal gas entropy by that of a lattice gas. We derive mean-field equations
for the Coulomb and Yukawa potentials and use their solutions to compute the differential capacitance for
an isolated planar electrode and the pressure that acts between two planar, like-charged macroion surfaces.
Attractive interactions appear if the surface charge density of the macroions is sufficiently small.

DOI: 10.1103/PhysRevE.101.052603

I. INTRODUCTION

Ionic interactions in aqueous solution play a pivotal role
in numerous processes of biological and technological rele-
vance. The adsorption of proteins or DNA onto lipid mem-
branes [1–4], the rate of aggregation of colloidal particles
[5,6], the development of efficient methods to desalinate water
[7,8], and the optimization of energy-storage devices [9–12]
are a few among many examples that involve interacting
macroions (or charged interfaces) in aqueous solutions. All
these interactions depend crucially on the formation of a
diffuse layer of co- and counterions, commonly referred to
as the electric double layer [13]. It is thus no surprise that the
electric double layer has been the subject of extensive theo-
retical modeling, leading initially to the development of the
classical Poisson-Boltzmann theory [14,15] and subsequently
to many practical applications [16–21] and extensions that
address the two main shortcomings of the classical model: the
treatment of all ions as pointlike charges and the neglect of
ion-ion correlations [22–24]. These extensions account (often
in an approximate manner) for the shape and steric size of
the ions [25–27], dipolar interactions [28,29], van der Waals
interactions [30], ion-mediated modifications of the dielectric
constant [31], and structure of the solvent [32]. Many of these
modeling efforts are motivated by the difficulty to rationalize
experimentally observed ion-specific effects [33,34].

Ions in aqueous solution experience additional nonelectro-
static interactions, hydration interactions, that are ion-specific,

mediated by the solvent, and rooted in the ion-induced order-
ing of water molecules [35–41]. Solvent-mediated surface-
surface, ion-surface, and ion-ion interactions are soft and
characterized by a decay length roughly equal to the molec-
ular size of water [42]. Furthermore, hydration interactions
often exhibit oscillatory behavior [43] that is affected by the
electrolyte type and concentration, as suggested by the atomic
force microscopy force-distance measurements performed by
Moghaddam and Thormann [44] for coated gold surfaces in
200 mM of NaF and by van Lin et al. [45] for mica surfaces in
various alkali-metal chloride solutions. The oscillatory nature
of the potential is also supported by detailed molecular dy-
namics and Monte Carlo simulations carried out by Dzubiella
and co-workers, who suggest that ion-ion [46] and ion-surface
potentials [47] are short ranged and characterized by damped
electrolyte-dependent oscillations. While the exclusive pres-
ence of oscillating potentials has been studied in the past
[48], no mean-field framework exists yet for their presence
in conjunction with the Coulomb potential.

One specific method of incorporating solvent-mediated
interactions into mean-field electrostatics of the electric dou-
ble layer is by adding a Yukawa potential to the Coulomb
potential between two ions [49–51]. The Yukawa potential is
soft and short ranged, and it connects mean-field electrostatics
to a phenomenological model for solvent-mediated interac-
tions proposed by Marčelja and Radić [52]. A mean-field
formalism was previously proposed [53] and then generalized
[54] that accounts consistently for ion-ion, ion-surface, and
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surface-surface interactions. The nonoscillating Yukawa po-
tential is added to the Coulomb potential in an ion-specific
manner, thus allowing anion-anion, anion-cation, and cation-
cation pairs to interact differently depending on their ability
to affect the solvent structure.

Oscillating Yukawa potentials regularly appear in mod-
eling electrostatic screening effects in plasmas, where they
arise from correlation effects [55–57]. They have not yet
been used to describe nonelectrostatic solvent-mediated in-
teractions between ions in electrolytes, where they appear in
addition to (and not as an effective ion-ion potential instead
of) the long-ranged Coulomb potential. Here only monotonic
Yukawa potentials have been studied [58] and compared with
results from corresponding Monte Carlo simulations [59,60].
Yet, as argued above, available experimental and compu-
tational evidence suggests that solvent-mediated potentials
exhibit damped oscillations. Hence, in the present work,
we extend the use of monotonic Yukawa potentials to non-
monotonic ones by allowing the inverse decay length κ

in the Yukawa potential e−κr/r (where r denotes the ion-
to-ion distance) to adopt complex values. Our goal is to
present a comprehensive model with individualized oscillat-
ing Yukawa contributions to the total anion-anion, anion-
cation, and cation-cation interaction potentials. Our model
also includes ion-specific interactions of ions with surfaces
of macroions that are present in the aqueous solution. We
exemplify possible applications of our model by calculating
the differential capacitance of a single planar electrode and the
pressure between two planar, like-charged macroion surfaces.

II. THEORY

Consider a symmetric 1:1 electrolyte with local volume
fraction φa = φa(r) of anions and φc = φc(r) of cations. The
electrolyte with all its microions takes up a sufficiently large
space of volume Ve so that it forms a bulk solution in all
spatial directions, and it contains one or more macroions of
total volume Vm and surface area A. The combined volume
V = Ve + Vm denotes all space. We assume each individual
anion and cation occupies the same volume ν and we denote
the bulk volume fractions of the anions and cations by φ0,
that is, φ0 = φa(|r| → ∞) = φc(|r| → ∞). Figure 1 shows a
schematic illustration of an electrolyte with two macroions.

Any two ions experience a mutual interaction as a function
of their center-to-center distance r that is composed of an
electrostatic and a hydration-mediated component, where the
latter is modeled as an oscillating Yukawa potential. Specifi-
cally, we express the anion-anion (uaa), anion-cation (uac), and
cation-cation (ucc) pair potentials as

uaa

kBT
= lB

r
+ a

e−κr r

r
cos(κcr + α),

uac

kBT
= − lB

r
+ b

e−κr r

r
cos(κcr + β ),

ucc

kBT
= lB

r
+ c

e−κr r

r
cos(κcr + γ ), (1)

where lB (=e2/4πε0εwkBT ) denotes the Bjerrum length, with
the elementary charge e, vacuum permittivity ε0, dielectric
constant of water εw, Boltzmann constant kB, and absolute

Ve

ion volume ν

m
V

FIG. 1. Schematic illustration of two macroions contained in
a symmetric 1:1 electrolyte. The volume Ve of the electrolyte is
sufficiently large so that a bulk exists in all spatial directions. The
total volume of the macroions is denoted by Vm. All microions
(anions and cations) have the same volume ν.

temperature T . The parameter κ−1
r characterizes the decay

length of the Yukawa potential and 2πκ−1
c the period length

of the oscillation. The Yukawa interaction strengths a, b, and
c as well as the phases α, β, and γ embody the ion specificity
of the hydration-mediated interactions.

Our goal is to develop and analyze a mean-field model
based on the ion-ion pair interactions in Eqs. (1). To this end,
we define three dimensionless potentials 
e(r), 
a(r), and

c(r) at position r anywhere in space. The first one,


e(r) = lB
ν

∫
Ve

d3r′ φc(r′) − φa(r′)
|r − r′| , (2)

is the (real-valued) electrostatic potential and the other two,(

a(r)


c(r)

)
= 1

ν

∫
Ve

d3r′ e
−κ|r−r′ |

|r − r′| Ah

(
φa(r′) − φ0

φc(r′) − φ0

)
, (3)

describe the oscillating Yukawa interactions. In Eq. (3) we
have cast the interaction strengths a, b, and c and phase factors
α, β, and γ into the form of a complex-valued matrix

Ah =
(

aeiα beiβ

beiβ ceiγ

)
=
(

ã b̃

b̃ c̃

)
, (4)

thus introducing the definitions ã = aeiα , b̃ = beiβ , and c̃ =
ceiγ . We have also defined the complex-valued inverse decay
length

κ = κr + iκc, (5)

implying that the two hydration potentials


a = ηa + iτa, 
c = ηc + iτc (6)

are complex valued. In Eqs. (2) and (3) we have ignored any
sources of the potentials 
e(r), 
a(r), and 
c(r) that may be
present at the macroion surfaces; these will be accounted for
below in Eqs. (17).

Equations (2) and (3) can be reexpressed in local form
as partial differential equations: the Poisson equation for the
electrostatic potential

l2∇2
e = φa − φc, (7)
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with the differential operator ∇ (so that ∇2 is the Laplacian)
and l2 = ν/4π lB, and two screened Poisson equations (with
complex-valued screening constant) for the two hydration
potentials (

(∇2 − κ2)
a

(∇2 − κ2)
c

)
= −4π

ν
Ah

(
φa − φ0

φc − φ0

)
. (8)

The total interaction energy U = Uel + Uh is the sum of an
electrostatic contribution

Uel

kBT
= 1

2ν

∫
Ve

d3r 
e(φc − φa) (9)

and a hydration contribution

Uh

kBT
= 1

2ν

∫
Ve

d3r

(
ηa

ηc

)T(
φa − φ0

φc − φ0

)
, (10)

where the superscript T denotes the transpose of a matrix
(here, column vector). Note that because ηa = (
a + 
∗

a )/2
and ηc = (
c + 
∗

c )/2 are real valued (the star superscript
denotes the complex conjugate), the energy Uh is real valued.
Using Eqs. (7) and (8), we can express the interaction energies
Uel and Uh exclusively in terms of the three potentials 
e,

a = ηa + iτa, and 
c = ηc + iτc,

Uel

kBT
= l2

2ν

∫
V

d3r(∇
e)2, (11a)

Uh

kBT
= 1

8π

∫
V

d3r
1

2

[(∇
a

∇
c

)T

A−1
h

(∇
a

∇
c

)

+ κ2

(

a


c

)T

A−1
h

(

a


c

)
+ c.c.

]
, (11b)

where the integrations run over all space and A−1
h denotes the

inverse of Ah. At this point, we assume the inverse exists.
The degenerate case of a vanishing determinant, det Ah = 0,
will be treated in Sec. II. In Eqs. (11) and below we use the
notation +c.c. to denote the complex conjugate of all terms
inside the square brackets, that is, [x + iy + c.c.] = 2x for real
numbers x and y. We note that the interaction energy Uh in
Eq. (11b) can be expressed equivalently as

Uh

kBT
= 1

8π

∫
V

d3r
1

2

⎡
⎣
(∇
∗

a

∇
∗
c

)T(
A−1∗

h + A−1
h

)(∇
a

∇
c

)

+
(


∗
a


∗
c

)T(
κ2A−1

h + κ2∗A−1∗
h

)(
a


c

)⎤⎦, (12)

but for the derivation of the equilibrium ion distribution (as
outlined below) we have found it more convenient to use Uh

in Eq. (11b). To develop our mean-field model we need to
specify an entropy contribution associated with the demixing
of the ions in the electrolyte. While the most simple approach
employs an ideal gas mixing entropy, here we will use a lattice

gas description

S = −kB

ν

∫
Ve

d3r
[
φa ln

φa

φ0
+ φc ln

φc

φ0

+ (1 − φa − φc) ln
1 − φa − φc

1 − 2φ0

]
, (13)

which offers the advantage of limiting the total ion volume
fraction φa + φc � 1 without giving up mathematical conve-
nience [25].

The free energy of the electrolyte F = U − T S, with U
and S according to Eqs. (11) and (13), represents a functional
F [φa, φc, 
e(φa, φc), 
a(φa, φc), 
c(φa, φc)] in terms of the
yet unknown volume fractions φa and φc. The implicit depen-
dences of the potentials on φa and φc in that functional are
specified by the Poisson and screened Poisson equations [see
Eqs. (7) and (8)]. Hence, we can carry out a variation δF of
the free energy F with respect to φa and φc. Vanishing of the
variation δF = 0 determines the distributions that φa and φc

adopt in thermal equilibrium,

φa = φ0

q
e
e−ηa , φc = φ0

q
e−
e−ηc , (14)

where the factor

q = 1 + φ0(e
e−ηa + e−
e−ηc − 2) (15)

ensures the saturation condition φa + φc � 1 of this distribu-
tion, which (as pointed out by Kornyshev [26]) is reminiscent
of a Fermi distribution. We note that φa and φc in Eqs. (14)
are real valued because they depend only on 
e, ηa = (
a +

∗

a )/2, and ηc = (
c + 
∗
c )/2.

Inserting the distributions for φa and φc according to
Eqs. (14) into the Poisson and screened Poisson equations (7)
and (8) results in a set of three coupled differential equations

l2∇2
e = φ0

q
(e
e−ηa − e−
e−ηc ), (16a)

(
(∇2 − κ2)
a

(∇2 − κ2)
c

)
= −4π

ν

φ0

q
Ah

(
e
e−ηa − q

e−
e−ηc − q

)
(16b)

for the potentials 
e, 
a = ηa + iτa, and 
c = ηc + iτc. We
refer to them as the Poisson-Fermi and screened Poisson-
Fermi equations. Note that we follow Kornyshev [26,61] in
using the term “Poisson-Fermi,” which reflects the Fermi-
like distribution that arises from using an underlying lattice
model to approximate the excluded volume of the ions. The
Poisson-Fermi equation (16a) is real valued, whereas the two
screened Poisson-Fermi equations involve the two complex-
valued potentials 
a and 
c as well as the complex-valued κ

and Ah.
Equations (16) must be solved within the space Ve occupied

by the electrolyte. Inside the macroions, the same equations,
yet with vanishing right-hand sides, must be solved. That
is, inside Vm, the potentials fulfill the three decoupled linear
equations ∇2
e = 0, ∇2
a = κ2
a, and ∇2
c = κ2
c. Very
far away from the electrolyte, for |r| → ∞, all three poten-
tials vanish. When crossing the macroion surfaces, the three
potentials remain continuous. If the macroion surfaces contain
sources for the electrostatic or for the Yukawa interactions, the
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derivatives of the potentials change discontinuously. Mathe-
matically, this is expressed through the boundary conditions

−
(

∂
e

∂n

)
Ain

= 4π lB
σe

e
, (17a)

(
∂
a
∂n
∂
c
∂n

)
Aout

−
(

∂
a
∂n
∂
c
∂n

)
Ain

= 4πAh

(
σaeiθa

σceiθc

)
, (17b)

where σe is the electric surface charge density, σa and σc are
the surface densities of sources for the hydration-mediated
interaction, θa and θc are phase factors, ( ∂

∂n )Ain is the nor-
mal derivative at the macroion surface into the direction of
the electrolyte, and ( ∂

∂n )Aout is the normal derivative at the
macroion surface away from the electrolyte into the macroion.
The boundary condition for the electrostatic potential (17a)
also assumes that the dielectric constant inside the macroions
is much smaller than that of water. We emphasize again that
the boundary conditions involving the potentials 
a = ηa +
iτa and 
c = ηc + iτc are complex valued. The four quantities
σa, θa, σc, and θc can be used to define any magnitude and
phase relationship for the interaction of the anions and cations
in solution with the macroion surface.

Upon inserting the distributions for φa and φc according
to Eqs. (14) into the free energy F = U − T S [with U and S
specified in Eqs. (11) and (13)] we obtain

F

kBT
=
∫

A
d2r

⎡
⎣
e

σe

e
+
(

σa

σc

)T(
ηa cos θa − τa sin θa

ηc cos θc − τc sin θc

)⎤
⎦

− 1

ν

∫
V

d3r

⎧⎨
⎩ l2

2
(∇
e)2+ ν

8π

1

2

⎡
⎣(∇
a

∇
c

)T

A−1
h

(∇
a

∇
c

)

+ κ2

(

a


c

)T

A−1
h

(

a


c

)
+ c.c.

⎤
⎦
⎫⎬
⎭

− 1

ν

∫
Ve

d3r[ln q + φ0(ηa + ηc)], (18)

where the first integration runs over the macroion surfaces
A, the second integration runs over the electrolyte and the
macroions, and the third integration runs over the electrolyte
only. The free energy F (
e, 
a, 
c) in Eq. (18) represents a
functional that depends exclusively on the three potentials 
e,

a, and 
c. Vanishing of its variation δF (
e, 
a, 
c) = 0
yields exactly the mean-field equations [the Poisson-Fermi
and screened Poisson-Fermi equations specified in Eqs. (16)]
and the corresponding boundary conditions in Eqs. (17).
Hence, Eq. (18) provides a complete mean-field lattice gas
description of the electric double layer in the presence of
both Coulomb and oscillating Yukawa interactions. This de-
scription is valid for any number of involved macroions,
irrespective of their geometries.

Degenerate case b̃ = ±√
ãc̃

The square matrix Ah in Eq. (4) characterizes the strengths
of the hydration interactions. The choices b = ±√

ac and β =
(α + γ )/2 imply b̃ = beiβ = ±√

ãc̃; this renders the matrix
Ah degenerate (also called noninvertible or singular), with

vanishing determinant, det Ah = 0. Note that positive and
negative b correspond to hydration-mediated repulsion and
attraction, respectively, between an anion and a cation.

If the matrix Ah is degenerate, the two hydration potentials
are no longer independent. It is then appropriate to define
a single complex-valued hydration potential 
h = η + iτ
through


h(r) = (ac)1/4

ν

∫
Ve

d3r′ e
−κ|r−r′ |

|r − r′|
× {√ã[φa(r′) − φ0] ± √

c̃[φc(r′) − φ0]}. (19)

The complex nature of 
h emerges because κ = κr + iκc,
ã = aeiα , and c̃ = ceiγ are complex valued. In Eq. (19) and
below, the upper and lower signs in ± or ∓ refer to b > 0 and
b < 0, respectively. When 
h is inserted into the hydration
interaction energy

Uh

kBT
= 1

2ν (ac)1/4
× 1

2

∫
Ve

d3r {
h(r) ×

× [
√

ã (φa − φ0) ± √
c̃ (φc − φ0)] + c.c.}, (20)

the degenerate case b̃ = ±√
ãc̃ is properly accounted for. As

for the nondegenerate case, we can cast the potential 
h into
a local form

l2
h (∇2 − κ2)
h = −

[(a

c

)1/4
eiα/2(φa − φ0)

±
( c

a

)1/4
eiγ /2(φc − φ0)

]
, (21)

where we have defined the length lh through

l2
h = ν

4π
√

ac
. (22)

Equation (21) constitutes the screened Poisson equation for
the degenerate case. Inserting the screened Poisson equation
into Uh allows us to express the hydration energy exclusively
in terms of the hydration potential,

Uh

kBT
= l2

h

2ν

(
1

2

)∫
V

d3r
{[

(∇
h)2 + κ2
2
h

]+ c.c.
}
. (23)

Minimization of the free energy F = Uel + Uh − T S [with
Uel from Eq. (11a), Uh from Eq. (23), and S according to
Eq. (13)], subject to the Poisson equation (7) and the screened
Poisson equation (21), reproduces exactly the equilibrium
ion distributions in Eqs. (14) [with q specified in Eq. (15)],
yet with

ηa =
(a

c

)1/4(
η cos

α

2
− τ sin

α

2

)
,

ηc = ±
( c

a

)1/4(
η cos

γ

2
− τ sin

γ

2

)
. (24)

In the following we continue to use ηa and ηc and identify
them with the expressions in Eqs. (24). Inserting the equilib-
rium ion distributions for φa and φc from Eqs. (14) into the
Poisson and screened Poisson equations (7) and (21) gives rise
to the Poisson-Fermi and screened Poisson-Fermi equations
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for the degenerate case

l2∇2
e = φ0

q
(e
e−ηa − e−
e−ηc ),

l2
h (∇2 − κ2)
h = −φ0

[(a

c

)1/4
eiα/2

(
e
e−ηa

q
− 1

)

±
( c

a

)1/4
eiγ /2

(
e−
e−ηc

q
− 1

)]
. (25)

They fulfill the boundary conditions

−l2

(
∂
e

∂n

)
Ain

= ν
σe

e
,

l2
h

[(
∂
h

∂n

)
Aout

−
(

∂
h

∂n

)
Ain

]
= νσheiθh , (26)

where the density of sources σh and the corre-
sponding phase factor θh for the hydration-mediated
interaction in the degenerate case are related to
the values σaeiθa and σceiθc for the nondegenerate
case via

eiθhσh =
(a

c

)1/4
ei(α/2+θa )σa ±

( c

a

)1/4
ei(γ /2+θc )σc. (27)

Finally, the free-energy functional F (
e, 
h) that yields the
Poisson-Fermi and screened Poisson-Fermi equations (25) as
well as the corresponding boundary conditions (26) as its
stationary state reads, for the degenerate case,

F

kBT
=
∫

A
d2r

[

e

σe

e
+ σh(η cos θh − τ sin θh)

]

− 1

ν

∫
V

d3r
l2

2
(∇
e)2

− 1

ν

(
1

2

)∫
V

d3r
{

l2
h

2
[(∇
h)2 + κ2
2

h ] + c.c.

}

− 1

ν

∫
Ve

d3r[ln q + φ0(ηa + ηc)]. (28)

This completes our goal of developing a mean-field model
for ion-ion pair potentials that are composed of an electro-
static and an oscillating Yukawa component. The model we
presented is valid for any choices of the hydration interaction
strengths a, b, and c and phase factors α, β, and γ . The local
hydration properties of a macroion surface are fully specified
by the two source densities σa and σc and corresponding
phases θa and θc.

III. RESULTS AND DISCUSSION

To illustrate our general approach, we study two macroions
that have flat parallel surfaces facing each other as shown
in Fig. 2. Each of the two planar macroion surfaces is of
sufficiently large lateral area A so that finite-size effects can
be neglected. They are separated by a distance d and each
carries the same set of sources σe and σh (or σe, σa, and σc

for the nondegenerate case). We assume that the phase of
the hydration source on the electrode surface vanishes θh = 0
(or θa = θc = 0 for the nondegenerate case). Hence not only
are the two macroions like charged, they also have the same

d0
x

FIG. 2. Same system as in Fig. 1, yet with the two macroions
having large planar and parallel faces, located at positions x = 0 and
x = d along the x axis, which points normal to the two flat surfaces.
The system we consider exhibits symmetry across the plane x = d/2.

hydration properties. On the mean-field level, the electrolyte
properties vary only along the direction normal to the two
flat surfaces, which we identify with the x axis of a Cartesian
coordinate system. Differential operators can then be replaced
by corresponding derivatives along the x direction, that is,
∇
e → 
 ′

e(x), etc. The two surfaces are located at positions
x = 0 and x = d (see Fig. 2). Because both macroions are
identical, with the same σe and σh (the same σa and σc for
the nondegenerate case), all potentials are symmetric across
the surface x = d/2.

We are interested in two quantities. The first is the dif-
ferential capacitance Cdiff = dσe/d�0 of an isolated planar
surface, where �0 = 
e(0)kBT/e is the electrostatic surface
potential (measured in volts) of the surface located at x =
0. To this end, we consider the limit d → ∞ and compute
the dimensionless electrostatic surface potential 
e(0) as a
function of σe, with all other parameters being fixed. Note that
in the complete absence of hydration interactions, we recover
the well-known [26] lattice gas result

C̄diff =
√(

1 − e4φ0w2
)(

1 − e4φ0w2 − 4φ0
)

4φ0we4φ0w2 (29)

for the scaled (dimensionless) differential capacitance C̄diff =
lDCdiff/εwε0, expressed in terms of the scaled surface charge
density w = 2π lBlDσe/e, where lD = l/

√
2φ0 denotes the

Debye screening lenght. At a bulk volume fraction φ0 = 1/6
of the ions, Eq. (29) predicts the transition from camel-
shaped (for φ0 < 1/6) to bell-shaped (for φ0 > 1/6) pro-
files. One of our goals is to characterize how the presence
of an oscillating Yukawa potential modifies the result in
Eq. (29).

The second quantity is the pressure P that acts between the
two macroion surfaces as a function of their separation d . To
calculate the pressure, we perform a Legendre transformation
G = F + PV , where V = Ad is the volume enclosed between
the two planar surfaces and F the free energy according to
Eq. (18). Because the functional G does not explicitly depend
on x, we can use the Beltrami identity to identify the pressure
as a constant of integration
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Pν

kBT
= ln q + φ0(ηa + ηc) − l2

2
(
 ′

e)2 − ν

8π

(
1

2

)

×
[(


 ′
a


 ′
c

)T

A−1
h

(

 ′

a

 ′

c

)
−κ2

(

a


c

)T

A−1
h

(

a


c

)
+ c.c.

]
,

(30)

where q is specified in Eq. (15). For the degenerate case, the
same calculation yields

Pν

kBT
= ln q + φ0(ηa + ηc) − l2

2
(
 ′

e)2

− l2
h

2

(
1

2

)[
(
 ′

h)2 − κ2
2
h + c.c.

]
, (31)

where we recall that ηa and ηc are specified in Eqs. (24). The
pressure P can be calculated at any position x between the two
macroion surfaces.

In the following, we study two specific scenarios that both
belong to the degenerate case: a = b = c and a = −b = c.
In the former case, for a = b = c, all anion-anion, anion-
cation, and cation-cation pairs experience the same hydration-
mediated repulsion. In the latter case, for a = −b = c, the
hydration-mediated anion-cation interaction is attractive. In
all of the following we assume vanishing phase factors α =
β = γ = 0.

Throughout this work, we fix the Bjerrum length
lB = 0.7 nm and the bulk ion concentration n0 = φ0/ν =
0.057 nm−3. This produces a Debye screening length of
lD = (8π lBφ0/ν)−1/2 = 1 nm and corresponds to a 100 mM
salt solution. In addition, we choose a density σh = 5 nm−2

for the sources of the hydration interaction on the elec-
trode surface; this reflects roughly the density of water
molecules [58]. Simulation results presented by Dzubiella
and co-workers [46,47] suggest to use the generic values
a = 1 nm, κr = 3.33 nm−1, and κc = 12.5 nm−1 as param-
eters for the oscillating Yukawa potential. These simulations
also provide a rationale for our choice α = β = γ = 0 intro-
duced above. Figure 3 shows the oscillating Yukawa potential
ae−κr r cos(κcr)/r (blue solid line) together with the composite
potential ae−κr r cos(κcr)/r + lB/r (light blue dashed line). To
visualize the role of the oscillatory component, we have added
to Fig. 3 plots that correspond to κc = 0; we show the Yukawa
potential ae−κr r/r (red solid line) and the ensuing composite
potential ae−κr r/r + lB/r (light red dashed line). The main
diagram in Fig. 3 corresponds to anion-anion or cation-cation
pairs. The inset displays the same set of potentials, yet for
an anion-cation pair. The difference between corresponding
dashed and solid lines equals lB/r in the main diagram and
−lB/r in the inset.

Note the two local minima close to r = 0.2 nm of the
composite oscillating potentials (light blue dashed lines in the
main diagram and inset): Anion-anion or cation-cation pairs
exhibit a metastable equilibrium separation and anion-cation
pairs a strongly bound state. In the absence of the oscillatory
component, for κc = 0, anion-anion or cation-cation pairs
always repel each other whereas anion-cation pairs exhibit a
weakly bound state at r = 0.33 nm (light red dashed lines in
the main diagram and inset).

0 0.2 0.4 0.6 0.8 1 1.2
−2

0

2

4

6

8

u

kBT 0 0.2 0.4 0.6 0.8 1 1.2

−5

0

5

r(nm−1)

FIG. 3. Yukawa potential ae−κr r cos(κcr)/r (blue solid line)
and composite potential ae−κr r cos(κcr)/r + lB/r (light blue dashed
line) for anion-anion or cation-cation pairs, with a = 1 nm, κr =
3.33 nm−1, κc = 12.5 nm−1, and lB = 0.7 nm. The two red lines refer
to the Yukawa potential without the oscillatory component ae−κr r/r
(red solid line) and the composite potential ae−κr r/r + lB/r (light red
dashed line). The inset displays the same set of curves as the main
diagram, yet for an anion-cation pair, where the Coulomb potential
−lB/r is attractive.

A. Specific case a = b = c

We aim to compute the two potentials 
e(x) and 
h(x).
They solve the Poisson-Fermi and screened Poisson-Fermi
equations [see Eqs. (25)], which for a = b = c and α = γ = 0
read


 ′′
e = 2φ0

ql2
e−η sinh 
e, (32a)


 ′′
h − κ2
h = −2φ0

l2
h

(
e−η

q
cosh 
e − 1

)
, (32b)

with the factor q = 1 + 2φ0(e−η cosh 
e − 1). While the
Poisson-Fermi equation (32a) is real valued, the screened
Poisson-Fermi equation (32b) is complex valued. Separating
its real and imaginary parts gives rise to the two equations

η′′ − (
κ2

r − κ2
c

)
η + 2κrκcτ = −2φ0

l2
h

(
e−η

q
cosh 
e − 1

)
,

τ ′′ − (
κ2

r − κ2
c

)
τ − 2κrκcη = 0, (33)

whose solution defines the complex-valued potential 
h(x) =
η(x) + iτ (x).

Next we discuss the boundary conditions for Eqs. (32).
Recall that Eqs. (26) specify the boundary condition at the
macroion surfaces for the degenerate case. For our system of
planar symmetry (see Fig. 2), together with θh = 0, these give
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FIG. 4. Local volume fractions of anions φa (dark blue in the left
and dark red in the right diagram) and cations φc (light blue in the left
and light red in the right diagram) as a function of x for three surface
charge densities: σe = 2 e nm−2 (solid lines), σe = 1 e nm−2 (dashed
lines), and σe = 0.1 e nm−2 (dash-dotted lines). Corresponding gray
lines (added gray bullets facilitate recognition of overlapping curves)
mark the complete absence of hydration interactions (a = 0). Dia-
grams refer to the (a) presence (κc = 12.5 nm−1) and (b) absence
(κc = 0) of the oscillatory component in the hydration potential. All
curves are derived for d → ∞ and ν = 1 nm3. Note the logarithmic
scale of the ordinate.

rise to


 ′
e(0) = − ν

l2

σe

e
, (34a)


 ′
h(0) − κ
h(0) = − ν

l2
h

σh. (34b)

Note that Eqs. (34) assume that the macroions are suffi-
ciently thick so that the hydration potential decays to zero
somewhere inside the macroions. This allows us to inte-
grate the equation 
 ′′

h (x) = κ2
h(x) inside each of the two
macroions, leading to Eqs. (34). The boundary condition for
the hydration potential 
h in Eq. (34b) is complex valued.
When separating real and imaginary parts we find

η′(0) − κrη(0) + κcτ (0) = − ν

l2
h

σh,

τ ′(0) − κrτ (0) − κcη(0) = 0. (35)

The symmetry relations 
e(x) = 
e(d − x) and 
h(x) =

h(d − x) entail the two additional boundary conditions

 ′

e(d/2) = 
 ′
h(d/2) = 0.

Before analyzing the differential capacitance and pressure,
we find it useful to present numerical results of the local vol-
ume fractions φa(x) and φc(x) for a few specific examples. To
this end, we focus on a single isolated surface (d → ∞) and
microions of volume ν = 1 nm3. Note that the latter choice
implies a bulk volume fraction φ0 = 0.057 of the anions
and cations. Figure 4 shows φa(x) [dark blue in Fig. 4(a)
and dark red in Fig. 4(b)] and φc(x) [light blue in Fig. 4(a)
and light red in Fig. 4(b)] for three surface charge densities:
σe = 2 e nm−2 (solid lines), σe = 1 e nm−2 (dashed lines),
and σe = 0.1 e nm−2 (dash-dotted lines). Corresponding gray
lines mark the complete absence of hydration interactions
(a = 0). In this case, our model reduces to classical lattice
gas mean-field electrostatics [25]. Figures 4(a) and 4(b) re-

(a)

−4 −2 0 2 4
0.5

1

1.5

2

w

C̄diff

(b)

−4 −2 0 2 4
w

FIG. 5. Scaled differential capacitance C̄diff as a function of the
scaled surface charge density w = 2π lBlDσe/e (a) in the presence
of the oscillating Yukawa potential (κc = 12.5 nm−1, blue lines),
(b) in the presence of the nonoscillating Yukawa potential (κc = 0,
red lines), and (a) and (b) in the absence of hydration-mediated
interactions (a = 0, gray lines). Solid, dashed, and dash-dotted lines
are calculated for ion volumes ν = 3, 1, and 0.1 nm3, respectively.

fer, respectively, to the presence (κc = 12.5 nm−1) and ab-
sence (κc = 0) of the oscillatory component in the hydration
potential.

We first discuss the presence of the oscillatory component
in the Yukawa potential [Fig. 4(a)]. For small σe, we observe
additional damped oscillations of φa and φc when compared
to the classical lattice gas prediction, where hydration in-
teractions are absent (a = 0). The oscillations are caused
mainly by the hydration-mediated ion-surface interactions
and they are in phase because the hydration potential is the
same irrespective of the ion type. We note that the limit
of small σe renders the ion size irrelevant, as it does in
classical Poisson-Boltzmann theory. For large σe, steric and
electrostatic interactions dominate: The anions close to the
surface are densely packed and hydration interactions become
irrelevant. Hence the cases a = 1 nm (solid blue and solid red
curves) and a = 0 (corresponding gray curves) coincide. The
observed counterion saturation for large σe arises because we
have incorporated the lattice gas mixing entropy in Eq. (13)
(instead of an ideal gas mixing entropy) into our mean-field
model [25]. Next we discuss the absence of the oscillatory
component in the Yukawa potential [Fig. 4(b)]. The strictly
repulsive nature of the Yukawa potential can then lead to a
pronounced depletion zone of the ions close to the electrode,
which is reminiscent of a Stern layer [54,58,59]. It does so
for small σe, whereas for large σe the strong electrostatic ion-
surface interactions again render the hydration interactions
irrelevant.

Next we investigate how the scaled differential capacitance
C̄diff = lDCdiff/εwε0 of a single planar electrode (that is, d →
∞) is influenced by the Yukawa potential. Figure 5 displays
C̄diff as a function of the scaled (dimensionless) electrode
surface charge density w = 2π lBlDσe/e in the presence of
oscillating [κc = 12.5 nm−1, blue lines in Fig. 5(a)] and
nonoscillating [κc = 0, red lines in Fig. 5(b)] Yukawa poten-
tials. Solid, dashed, and dash-dotted lines are calculated for
ion volumes ν = 3, 1, and 0.1 nm3, respectively. Gray lines
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in both diagrams mark the absence of hydration-mediated
interactions (a = 0). Recall that these lines are described
by the lattice gas result in Eq. (29), which predicts the
transition from camel-shaped (for φ0 < 1/6) to bell-shaped
(for φ0 > 1/6) profiles. Indeed, φ0 = 1/6 corresponds to an
ion volume of ν = φ0/n0 = 1/(6 × 0.057) nm3 = 2.92 nm3

that separates bell-shaped profiles (for ν = 3 nm3 in Fig. 5)
from camel-shape profiles (for ν = 1 and 0.1 nm3 in Fig. 5).
Adding our oscillating [blue lines in Fig. 5(a)] or nonoscil-
lating Yukawa potential [red lines in Fig. 5(b)] does shift but
does not eliminate the presence of a camel-to-bell shape tran-
sition when ν increases [in Fig. 5(b) it occurs for ν > 3 nm3].
It does however modify the magnitude of Cdiff , especially
for small |σe|. In particular, at σe = 0 we observe Cdiff to be
increased (C̄diff > 1) for the oscillating Yukawa potential and
decreased (C̄diff < 1) for the nonoscillating Yukawa potential.
The increase in the former case is a result of the local mini-
mum of the oscillating Yukawa potential near r = 0.2 nm (see
Fig. 3), leading to an accumulation of counterions near the
electrode (see Fig. 4). The decrease in the latter case reflects
ion depletion near the electrode due to the repulsive nature
of the nonoscillating Yukawa potential. We also note that Cdiff

decreases with ν at σe = 0 for the oscillating Yukawa potential
and increases (to a very minor extent) with ν at σe = 0 for the
nonoscillating Yukawa potential. The tendency in both cases
to approach the result for the absence of hydration interactions
C̄diff = 1 for growing ν originates in the diminished impor-
tance of the Yukawa potential for larger ions. Recall from
Eqs. (1) that the Yukawa potentials are measured center to
center between the ions. No computer simulations have been
performed so far for solvent-mediated oscillating Yukawa
potentials that are present in addition to the bare Coulomb
potential. For the nonoscillating Yukawa potential, however,
recent Monte Carlo simulations qualitatively agree with the
behavior in Fig. 5(b) [54,59,60]. The small increase of C̄diff

with ν at σe = 0 is opposite of what the Stern layer model
predicts and has been interpreted in terms of the larger osmotic
pressure exerted by the larger ions, which pushes them closer
to the electrode surface [54,59,60].

We finally investigate the pressure P that acts between
the two planar macroions (see Fig. 2) as a function of their
separation d . In the limiting case that both macroion surfaces
are uncharged and no salt is present in the solution (σe = 0
and φ0 = 0), the two macroions still exert a pressure onto
each other due to their ability to produce hydration fields.
The hydration potential then satisfies 
 ′′

h = κ2
h, with the
two boundary conditions 
 ′

h(0) − κ
h(0) = −νσh/l2
h and


 ′
h(d/2) = 0. This is solved by


h(x) = νσh

2l2
h κ

e−κ (d/2) cosh

[
κ

(
d

2
− x

)]
. (36)

The pressure can then be calculated from Eq. (31); at position
d/2, we obtain

Pν

kBT
= 1

2

(
νσh

lh

)2

e−κr d cos(κcd ). (37)

Note that we can calculate the pressure in Eq. (37) also
directly from integrating the hydration-mediated interactions

between the two surfaces

Pν

kBT
= −1

2

(
νσh

lh

)2

× d

dd

∫ ∞

0
dr r

e−κr

√
d2+r2

√
d2 + r2

cos(−κc

√
d2 + r2)

= 1

2

(
νσh

lh

)2

e−κr d cos(κcd ), (38)

where d/dd denotes the first derivative with respect to the
separation d between the two macroion surfaces. We point out
that the oscillating, exponentially decaying hydration pressure
is in qualitative agreement with experimental [62] and compu-
tational [63–65] results.

Another limiting case is that of small σe and σh. Here
the potentials 
e(x) and 
h(x) deviate only slightly from
the solution 
e(x) = 
h(x) = 0 that we obtain for σe = σh =
0. Hence, we can linearize Eqs. (32), leading to the two
decoupled equations l2
 ′′

e = 2φ0
e and l2
h (
 ′′

h − κ2
h) =
−2φ0(2φ0 − 1)
h, to be solved subject to the boundary con-
ditions l2
 ′

e(0) = −νσe/e, 
 ′
h(0) − κ
h(0) = −νσh/l2

h , and

 ′

e( d
2 ) = 
 ′

h( d
2 ) = 0. At position d/2, we find, for the two

potentials,


e

(
d

2

)
= νσe

l2e

lD
sinh

(
d

2lD

) ,

h

(
d

2

)
= νσh

l2
h

1

κ cosh
(

d
2 κ̃
)+ κ̃ sinh

(
d
2 κ̃
) , (39)

where we have defined the complex-valued inverse length
κ̃ through κ̃2 = κ2 + 2φ0(1 − 2φ0)/l2

h and where we recall
the Debye screening length lD = l/

√
2φ0 with l2 = ν/4π lB.

Equations (39) can be used to calculate the pressure

Pν

kBT
= φ0


2
e

(
d

2

)
+ l2

h

2

(
1

2

)[
κ̃2
2

h

(
d

2

)
+ c.c.

]

= 1

2

(νσe

le

)2 1[
sinh

(
d

2lD

)]2

+ 1

2

(
νσh

lh

)2 1

2

{
1[

sinh
(

d
2 κ̃
)+ κ

κ̃
cosh

(
d
2 κ̃
)]2 +c.c.

}
.

(40)

In the limit σe = 0 and φ0 = 0 we obtain κ̃ = κ and Eq. (40)
recovers Eq. (37). Furthermore, because electrostatic and hy-
dration contributions decouple in the linear limit, we find for
the scaled differential capacitance of an isolated, uncharged
planar surface simply C̄diff = 1. This is the same result as
for the classical Poisson-Boltzmann model in the limit of a
vanishing surface charge density σe. Hence, hydration inter-
actions do not affect the differential capacitance in the limit of
sufficiently small σe and σh.

Figure 6 presents the (scaled) pressure Pν/kBT as a func-
tion of the separation d between the two macroions for σe =
−0.5 e nm−2 [Fig. 6(a)] and σe = −0.75 e nm−2 [Fig. 6(b)].
Results for the oscillating Yukawa potential (κc = 12.5 nm−1)
are shown in blue and those for the nonoscillating Yukawa
potential (κc = 0) in red. We have added the prediction of
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FIG. 6. Scaled pressure Pν/kBT as a function of the separation d
between the two planar macroion surfaces for (a) σe = −0.5 e nm−2

and (b) σe = −0.75 e nm−2. Results for the oscillating Yukawa
potential (κc = 12.5 nm−1) are shown in blue [with the light blue
dashed line for the linear model according to Eq. (40)] and those for
the nonoscillating Yukawa potential (κc = 0) in red [with the light
red dashed line for the linear model according to Eq. (40)]. Insets
show the counterion volume fraction φc as a function of location x
between the macroions, with d = 3 nm (marked by a black bullet
in the main diagram). All curves are calculated for an ion volume
ν = 1 nm3.

the linearized theory according to Eq. (40) (blue dashed line
for the oscillating Yukawa potential and red dashed line for
the nonoscillating Yukawa potential). The two insets display
the local cation concentration φc(x) for a separation d =
3 nm between the two macroions. Here too solid and dashed
lines refer to the full nonlinear and to the linearized models,
respectively.

Figure 6 demonstrates that the presence of the oscillatory
Yukawa potential leads to oscillations of the pressure P,
whereas the presence of the strictly repulsive, nonoscillatory
Yukawa potential does not. Oscillations may lead to a negative
pressure and thus attractive interactions between the two like-
charged macroion surfaces for certain ranges of d . Increasing
the surface charge density σe strengthens the repulsive compo-
nent of P and may thus turn an initially attractive interaction
into a repulsion. This is indeed the case in Fig. 6, where the
pressure can be negative for σe = −0.5 e nm−2 but always
remains positive for σe = −0.75 e nm−2. We note that the
prediction for P according to the linearized model, as de-
scribed by Eq. (40), is still reasonably close to that of the full
nonlinear model for σe = −0.5 e nm−2, but increasingly fails
as |σe| is increased. In addition, the linearized model is more
accurate for the oscillating Yukawa potential as compared to
the nonoscillating one. This is a consequence of |cos(κcr)| �
1 for the oscillatory component of the Yukawa potential,
which always reduces the impact of the hydration-mediated
interactions and thus the magnitudes of the potentials 
e(x)
and 
h(x). Note finally that the pressure P for the full (nonlin-
ear) model diverges at d = 1 nm for σe = −0.5 e nm−2 and at
d = 1.5 nm for σe = −0.75 e nm−2. Counterions are densely
packed between the two macroion surfaces at d = 2|σe|/eν,
thus preventing any further approach of the two macroions.

The linearized model does not account for these ion packing
considerations.

B. Specific case a = −b = c

Here the hydration-mediated interaction between anion-
cation pairs is attractive, equal in magnitude, and opposite
in sign to the repulsion between anion-anion and between
cation-cation pairs. In the following, we repeat all calculations
carried out in the preceding section, which will allow us
to assess the implications of switching the sign of b. For
a = −b = c and α = γ = 0, the two potentials 
e(x) and

h(x) satisfy the Poisson-Fermi and screened Poisson-Fermi
equations [see Eqs. (25)]


 ′′
e = 2φ0

ql2
sinh(
e − η),


 ′′
h − κ2
h = −2φ0

ql2
h

sinh(
e − η), (41)

with the factor q = 1 + 2φ0[cosh(
e − η) − 1]. Here again
the screened Poisson-Fermi equation is complex valued, with
κ = κr + iκc and 
h(x) = η(x) + iτ (x); its real and imagi-
nary parts can be separated analogously to Eqs. (33). The
boundary conditions for the case a = −b = c are the same as
for a = b = c, given by 
 ′

e(d/2) = 
 ′
h(d/2) = 0 and Eqs. 34

[or, equivalently, Eqs. (35) when separating real and imagi-
nary parts]. As stated above, we use the value σh = 5 nm−2

everywhere in this work. With this choice, however, we no
longer obtain solutions for 
e(x) and 
h(x) that are invariant
upon inverting the sign of σe. The reason for this loss of sym-
metry is the appearance of a minus sign in the expression for
σh according to Eq. (27), that is, σh = σa − σc for our present
case of a = −b = c. Preserving the invariance of 
e(x) and

h(x) upon inverting the sign of σe would require us to choose
σa = σc and thus σh = 0. To obtain σh = 5 nm−2, we may, for
example, choose σa = 2.5 nm−2 and σc = −2.5 nm−2. Ob-
viously then, with different cation-surface and anion-surface
interactions, the system is no longer symmetric with respect
to changing the sign of σe.

As in the preceding section, we first focus on the local
volume fractions φa(x) and φc(x) in the vicinity of a single
isolated electrode (d → ∞) and ions of volume ν = 1 nm3.
Figure 7 shows φa(x) [dark blue in Figs. 7(a) and 7(c) and
dark red in Figs. 7(b) and 7(d)] and φc(x) [light blue in
Figs. 7(a) and 7(c) and light red in Figs. 7(b) and 7(d)] for
the surface charge densities: σe = ±2 e nm−2 (solid lines),
σe = ±1 e nm−2 (dashed lines), and ±σe = 0.1 e nm−2 (dash-
dotted lines). Results for the three positive and negative σe

are displayed in Figs. 7(a) and 7(b) and Figs. 7(c) and 7(d),
respectively. Figures 7(a) and 7(c) and Figs. 7(b) and 7(d)
refer to the presence (κc = 12.5 nm−1) and absence (κc =
0) of the oscillatory component in the hydration potential,
respectively. Gray lines in all four diagrams mark the absence
of hydration-mediated interactions (a = 0).

We first discuss Figs. 7(a) and 7(c), where the oscillatory
component in the hydration potential is present. As in Fig. 4,
oscillations in the volume fractions of the ions are present for
small |σe| but not for large |σe|. High surface charge densities
lead to dense ion packing, which renders hydration-mediated
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FIG. 7. Local volume fractions of anions φa [dark blue in (a) and
(c) and dark red in (b) and (d)] and cations φc [light blue in (a) and
(c) and light red in (b) and (d)] as a function of x for the sur-
face charge densities: σe = ±2 e nm−2 (solid lines), σe = ±1 e nm−2

(dashed lines), and σe = ±0.1 e nm−2 (dash-dotted lines). Results
are shown for (a) and (b) σe > 0 and (c) and (d) σe < 0. Corre-
sponding gray lines in all four diagrams (added gray bullets facili-
tate recognition of overlapping curves) mark the complete absence
of hydration interactions (a = 0). Diagrams refer to the (a) and
(c) presence (κc = 12.5 nm−1) and (b) and (d) absence (κc = 0) of
the oscillatory component in the hydration potential. All curves are
derived for d → ∞ and ν = 1 nm3. Note the logarithmic scale of the
ordinate.

interactions irrelevant. For small surface charge densities we
observe spatial oscillations that are phase shifted so that a lo-
cal maximum volume fraction of one ion type corresponds to
a minimum of the other ion type. This can lead to ion layering,
that is, one or several layers of ions with alternating sign.
The origin of the layering lies in the preferential hydration
interactions of cations as compared to the anions with the elec-
trode surface. Comparing the corresponding lines in Figs. 7(a)
and 7(c) reveals the differences in the ion distributions that
result from inverting the sign of σe: The lack of symmetry
is most visible for the dash-dotted lines (small |σe|), where
hydration-mediated ion-surface interactions dominate. Next
we discuss Figs. 7(b) and 7(d), where no oscillatory compo-
nent is present in the hydration potential. Here we observe a
pronounced influence of the preferential hydration-mediated
interaction of the surface with cations over that with anions.
Cations are attracted to the surface and anions are repelled;
when |σe| is small this leads to similar ion distributions even
when the sign of σe is inverted (compare the dark red and
light red dash-dotted lines in Fig. 7). Even at larger |σe|

−4 −2 0 2 4
0.5

1

1.5

2

2.5

w

C̄diff

−4 −2 0 2 4
w

(a) (b)

FIG. 8. Scaled differential capacitance C̄diff as a function of the
scaled surface charge density w = 2π lBlDσe/e (a) in the presence
of the oscillating Yukawa potential (κc = 12.5 nm−1, blue lines),
(b) in the presence of the nonoscillating Yukawa potential (κc = 0,
red lines), and (a) and (b) in the absence of hydration-mediated
interactions (a = 0, gray lines). Solid, dashed, and dash-dotted lines
are calculated for ion volumes ν = 3, 1, and 0.1 nm3, respectively.

(compare the dark red and light red dashed lines in Fig. 7) the
hydration-mediated anion depletion and cation accumulation
are evident. Only at very large |σe| do the electrostatic ion-
surface interactions dominate over the hydration-mediated
ones (compare the dark red and light red solid lines in Fig. 7).

Next we investigate the scaled differential capacitance C̄diff

of a single planar electrode (d → ∞), which is displayed in
Fig. 8 as a function of the scaled (dimensionless) electrode
surface charge density w = 2π lBlDσe/e in the presence of
oscillating [κc = 12.5 nm−1, blue lines in Fig. 8(a)] and
nonoscillating [κc = 0, red lines in Fig. 8(b)] Yukawa po-
tentials. As in Fig. 5, we show solid, dashed, and dash-
dotted lines that are calculated for ion volumes ν = 3, 1,
and 0.1 nm3, respectively. Gray lines in both diagrams mark
the absence of hydration-mediated interactions (a = 0). An
immediately apparent feature of Fig. 8 is the asymmetry
of C̄diff with respect to inverting the sign of σe. When the
oscillatory component of the Yukawa potential is present
[Fig. 8(a)], the hydration-mediated interactions exert only a
very minor influence on C̄diff . When the oscillatory compo-
nent is absent [Fig. 8(b)], the modifications are substantial. To
rationalize them, we recall that according to σh = 5 nm−2 the
electrode effectively attracts cations and repels anions through
hydration-mediated interactions. At some positive charge
density σe > 0, electrostatic anion attraction and hydration-
mediated anion repulsion will balance each other, shifting the
extremal points (maximum or minimum) of the C̄diff curves
toward positive σe. We observe this shift to be smaller for
larger ions because growing ν renders hydration-mediated in-
teractions less pronounced. When inverting the sign of b from
positive to negative [compare Figs. 5(b) and 8(b)], C̄diff tends
to grow because the reversal of the anion-cation repulsion into
an attraction leads to a more condensed electric double layer.
Note that the transition from camel-shaped to bell-shaped
profiles remains virtually unaffected in the presence of the
oscillatory component of the Yukawa potential but is shifted
to smaller ν in its absence. Both in the presence and in the
absence of the oscillatory component of the Yukawa potential,
increasing the ion size reduces C̄diff .
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FIG. 9. Scaled pressure Pν/kBT as a function of the separation d
between the two planar macroion surfaces for (a) σe = −0.5 e nm−2

and (b) σe = −0.75 e nm−2. Results for the oscillating Yukawa
potential (κc = 12.5 nm−1) are shown in blue and those for the
nonoscillating Yukawa potential (κc = 0) in red. Insets show the
counterion volume fraction φc as a function of location x between
the macroions, with d = 3 nm (marked by a black bullet in the
main diagram). Dashed lines in main diagram and inset refer to
the linearized model. All curves are calculated for an ion volume
ν = 1 nm3.

Recall from the discussion following Eq. (40) that for
a = b = c the differential capacitance remains unaffected
by hydration-mediated interactions in the linearized theory,
where both σh and σe are sufficiently small. For a = −b =
c, we obtain from Eqs. (41) the two linearized equations
l2
 ′′

e = 2φ0(
e − η) and l2
h (
 ′′

h − κ2
h) = −2φ0(
e − η),
which are now coupled. Analytic solutions for the differential
capacitance (and similarly for the pressure) are cumbersome.
Only for the case of the nonoscillating Yukawa potential (κc =
0) can we extract a simple analytic result for the differential
capacitance of an isolated planar electrode,

Cdiff = εwε0
1
ω1

+ 1
ω2

− 1
lDω1ω2

, (42)

where ω1 and ω2 are the two positive roots of the equation

ω4 −
(

1

l2
D

+ κ2
r + 2φ0

l2
h

)
ω2 + κ2

r

l2
D

= 0. (43)

Switching off hydration-mediated interactions by setting
a = 0 implies that l2

h = ν/4πa → ∞ and thus ω1 = κr

and ω2 = 1/lD. This then indeed recovers the classical
Poisson-Boltzmann prediction Cdiff = εwε0/lD (or, equiva-
lently, C̄diff = 1) in the limit of a vanishing surface charge
density σe.

Figure 9 presents the (scaled) pressure Pν/kBT as a func-
tion of the separation d between two planar macroion surfaces
for σe = −0.5 e nm−2 [Fig. 9(a)] and σe = −0.75 e nm−2

[Fig. 9(b)]. As in Fig. 6, results for the oscillating Yukawa
potential (κc = 12.5 nm−1) are shown in blue and those for
the nonoscillating Yukawa potential (κc = 0) in red. The two
insets display the local cation concentration φc(x) for a separa-
tion d = 3 nm between the two macroions. Dashed lines in the
main diagram and inset refer to the linearized model. Note that
the sole difference in Figs. 6 and 9 is the sign of b. As already

observed for the differential capacitance, switching the sign of
b from positive to negative has only moderate consequences
when the oscillatory component of the Yukawa potential is
present (κc = 12.5 nm−1) but drastically reduces the pressure
for κc = 0. An especially notable difference in the latter
case is the maximal cation volume fraction φc close to the
two macroions for b < 0, whereas for b > 0 we recall from
Fig. 4 that cations were depleted from the vicinity of the two
macroions. The reason for these differences is of course that
our choice σh = 5 nm−2 implies preferential cation-macroion
attraction for b < 0, whereas for b > 0 all ions are repelled
from the macroion surfaces (see also our discussion of Fig. 7
above). Despite the differences, Figs. 6 and 9 both predict that
increasing σe changes the interaction between the macroions
from being attractive to being repulsive.

IV. CONCLUSION

The main goal of this work was to develop a mean-field
model for microions and macroions that interact with each
other through composite Coulomb and oscillating Yukawa
potentials. The oscillating Yukawa potentials serve as
simple representations for ion-specific hydration-mediated
interactions in aqueous solutions. The oscillating nature of
the Yukawa potentials is supported by experimental and
computational evidence. Ion specificity arises by equipping
anion-anion, anion-cation, and cation-cation pairs each with
their own interaction strength and phase shift. The interaction
of anions and cations with macroion surfaces is also ion
specific, with individual interaction strengths and phase
shifts. Our model is comprehensive in the sense that it covers
all cases, nondegenerate and degenerate (recall that the latter
case is characterized by a singular interaction matrix Ah). We
have used a lattice gas model to account for the ion size in the
most approximate manner.

We exemplify our general model by calculating the differ-
ential capacitance of a single planar electrode and the pressure
between two interacting planar macroions. Our examples are
based on a few specific sets of parameters: They illustrate
rather than comprehensively analyze the predictions of our
theoretical model. Among those are the asymmetric shapes
of the differential capacitance due to ion-specific effects as
well as the attraction between like-charged macroions and
its regulation through the macroion surface charge density.
Future work may attempt to employ the present model to
rationalize experimental data. Perhaps more important would
be to address the approximations that are still present in our
work, especially the assumption of a uniform dielectric con-
stant and the modeling of the ion entropy through a lattice gas.
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