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Consequences of Dale’s law on the stability-complexity relationship of random neural networks
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In the study of randomly connected neural network dynamics there is a phase transition from a simple state
with few equilibria to a complex state characterized by the number of equilibria growing exponentially with
the neuron population. Such phase transitions are often used to describe pathological brain state transitions
observed in neurological diseases such as epilepsy. In this paper we investigate how more realistic heterogeneous
network structures affect these phase transitions using techniques from random matrix theory. Specifically, we
parametrize the network structure according to Dale’s law and use the Kac-Rice formalism to compute the change
in the number of equilibria when a phase transition occurs. We also examine the condition where the network
is not balanced between excitation and inhibition causing outliers to appear in the eigenspectrum. This enables
us to compute the effects of different heterogeneous network connectivities on brain state transitions, which can
provide insights into pathological brain dynamics.
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I. INTRODUCTION

One of the major difficulties in the study of brain dynamics
and neurological disease is that it is highly patient specific and
varies significantly between individuals. One way of capturing
these heterogeneous differences mathematically is to quantify
different brain connectivities and examine their effects on
brain network dynamics, particularly brain state transitions.
Typically, this directed graph or networked dynamical system
is described using neural mass models where the network
connectivity is either averaged over, losing its individuation,
or via high-dimensional brute-force numerical simulations,
which are not mathematically tractable. An alternative ap-
proach is to study randomly connected neural networks using
mean-field theory [1], where it has been found that there is
a rapid transition to a complex macroscopic chaotic state [2].
Recently, in relation to this, there have been two major devel-
opments. First, this transition has been described microscop-
ically by Wainrib and Toboul [3] as an exponential explosion
in the number of fixed points of the system. Second, Rajan
and Abbott [4] discovered that more anatomically realistic
nonrandom connectivity structures such as Dale’s law change
the uniform density of the eigenspectrum. In this paper we
combine these two seminal papers to show the effects of
more anatomically realistic connectivity statistics on phase
transitions.
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†peterson@unimelb.edu.au

We extend and analyze a random neural network model
as previously studied using dynamical mean-field theory by
Sompolinsky and co-workers [1,5]. This is a first-order neural
model with a discrete spatial field specified by a random
connectivity matrix and can be derived from a neural mass
model by assuming instantaneous synapses. We have also
included a time constant (often set to unity), which we will
see is critical to determining the stability of the system and
the location of the phase transition.

In such a system it was found that the dynamics sharply
transitioned into a macroscopic chaotic regime with the vari-
ance of the connectivity matrix as the order parameter. More
recently, Wainrib and Touboul [3] provided a microscopic
explanation in terms of a transition from a system with a single
equilibrium to a system with exponentially many equilibria.
However, both of these analyses assumed an independent and
identically distributed random network connectivity that is
biologically unrealistic.

Anatomically, neurons connect via Dale’s law [6], which
states that neurons that are excitatory (inhibitory) only output
excitatory (inhibitory) signals. This gives the connectivity
matrix a heterogeneous block structure where each block
represents a neural population that draws from independent
distributions with different means and variances. In a seminal
work by Rajan and Abbott [4], it was shown that when
these distributions have different variances, the eigenspec-
trum usually described by the so-called circular law [7] no
longer has a uniform density. In [8] this structure was further
generalized to a much larger class of connectivity matrices
constructed as a combination of random and deterministic
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matrices incorporating nonrandom aspects of network con-
nectivity. A description of block structured matrices and how
this affects the transition to chaos is also given in [9,10]. It has
also been shown that there are effects when using a nonzero
mean connectivity matrix, which introduces outliers to the
eigenspectrum; this was originally pointed out in [11] for real
symmetric matrices.

This paper is organized as follows. In Sec. II we describe
a mathematical framework of how to incorporate additional
deterministic network structure into the otherwise random
neural network. Specifically, we incorporate Dale’s law into
the connectivity matrix. Importantly, we give a considerably
simplified expression of the result originally presented by
Rajan and Abbott [4]. In Sec. III we combine the work of
Wainrib and Touboul [3] and Rajan and Abbott [4] to explore
how Dale’s law affects the microscopic description of the
stability transition in terms of the number of fixed points. In
Sec. IV we discuss the effects of spectral outliers. Section V
is devoted to a discussion of the results.

II. DALE’S LAW IN NEURAL MODELS

Consider the first-order rate-based neural model for the
evolution of a neural network given by [1]

dxi

dt
= −xi

τ
+

n∑
j=1

Ji jS(x j ), i = 1, . . . , n, (1)

where Ji j is the (random) synaptic connection weight from
the jth to the ith neuron, τ is the membrane relaxation time,
and S is an odd sigmoid function with unit slope at the origin.
More precisely, we assume that S is a smooth and (strictly)
monotonically increasing function with S(0) = 0, S′(0) = 1,
and S(x) → ±1 for x → ±∞.

Knowledge about the structure of the synaptic connectivity
matrix J = Ji j is essential for studies of the evolution of the
dynamical system (1). In particular, the eigenvalue with the
largest real part plays a crucial role in determining whether
the system dynamics is stable or chaotic. The most frequently
used assumption is to take the entries of the connectivity
matrix J = Ji j to be independent and identically distributed
random variables with zero mean, variance σ 2, and finite
fourth moment (Gaussian random variables are often chosen
for simplicity). Under these assumptions, the eigenvalues of
the connectivity matrix are uniformly distributed within a disk
of radius σ

√
n (see the review [7] and references therein)

and importantly there are no outliers in the asymptotic limit.
Using mean-field techniques, it can be shown that this model
has a phase transition into a chaotic regime at στ = n−1/2

in the limit of large neuron populations (n → ∞) [1]. How-
ever, the mean-field approach does not provide an explanation
of the microscopic origin of this phase transition. It has been
argued by Wainrib and Touboul [3] that the phase transition
originates from an explosion in the number of equilibria. More
precisely, one phase is characterized by a scenario in which
the dynamical system (1) has a single stable equilibrium point,
while the other phase is characterized by a scenario in which
the average number of equilibria increases exponentially with
the neuron population n.

Unfortunately, the assumption of independent and iden-
tically distributed entries does not apply to more realistic
neural networks, where known anatomical and physiological
constraints must be imposed. Anatomically, there are broadly
speaking two types of neurons that are either excitatory
or inhibitory. These have different connectivities depending
on the spatial scale. Physiologically, they obey Dale’s law
[6], that is, each neuron only sends out either excitatory or
inhibitory signals depending on what type of neuron it is.
This means that each column (or row) in the connectivity
matrix must have the same sign. Rajan and Abbott [4] stud-
ied the effect of Dale’s law. They split the entries of the
synaptic connectivity matrix into two distributions or blocks
with different means and variances representing excitatory
and inhibitory neurons such that E{Ji j} > 0 for i = 1, . . . , k
(excitatory) and E{Ji j} < 0 for i = k + 1, . . . , n (inhibitory)
for some 0 � k � n. Ahmadian et al. [8] proposed an even
more general connectivity matrix incorporating both random
and deterministic aspects of the form

J = LAR + M. (2)

Here A is a random matrix with entries which are indepen-
dent and identically distributed random variables with zero
mean and unit variance, while L, R, and M are deterministic
matrices incorporating nonrandom aspects of the connectivity
matrix.

Let us consider how to incorporate the effects of Dale’s
law within the structure (2). First, let 0 < f < 1 denote the
fraction of excitatory neurons. Following [4], we want to
represent connections for excitatory (inhibitory) neurons by
random variables with mean μE > 0 (μI < 0) and variance
σ 2

E (σ 2
I ). In order to construct this, we introduce a diagonal

matrix

� = diag(σE , . . . , σE︸ ︷︷ ︸
n f times

, σI , . . . , σI︸ ︷︷ ︸
n(1− f ) times

) (3)

and vectors

u = (1, . . . , 1)T , v = (μE , . . . , μE︸ ︷︷ ︸
n f times

, μI , . . . , μI︸ ︷︷ ︸
n(1− f ) times

)T . (4)

We can now choose the network connectivity matrix (2) with
L = I, R = �, and M = uvT , i.e.,

J = A� + uvT . (5)

It is easily verified that this choice of L, R, and M implies that
Ji j has mean μE (μI ) and variance σ 2

E (σ 2
I ) for j < n f ( j >

n f ), thus creating the desired distinction between excitatory
and inhibitory neurons and implementing Dale’s law.

There is strong experimental evidence that the brain is very
tightly balanced on multiple scales [12,13]. In the above given
framework, balanced is taken to mean that

μE f + μI (1 − f ) = 0 (6)

or, in other words, the combined contribution of excitatory
and inhibitory neurons sums to zero on average. As illustrated
in Fig. 1(a), after incorporating Dale’s law, the vast majority
of the eigenvalues of the connectivity matrix J lies within a
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(a) (b)

FIG. 1. Scatter plots in the complex plane for eigenvalues of
connectivity matrices (a) (5) and (b) (10). Both scatter plots are
generated from random matrices with n = 2000, f = 1/4, μE = 3,
μI = −1, σE = 2, and σI = 1/2. Solid curves shown are circles with
radius given by (7).

circular region with radius

R = σeff
√

n =
√

n
[

f σ 2
E + (1 − f )σ 2

I

]
. (7)

Here we have introduced an effective variance defined as
σ 2

eff = f σ 2
E + (1 − f )σ 2

I . However, we also note that there are
a number of outliers. These outliers do not disappear in the
limit of large neuron populations n → ∞. We will discuss the
importance of such outliers in Sec. IV. The fact that imposing
Dale’s law introduces outliers to the eigenvalue spectrum of
the connectivity matrix was first observed numerically in [4],
while the existence of a unique limiting distribution for these
outliers was proved rigorously in [14].

In order to remove the outliers, Rajan and Abbott [4] intro-
duced an additional zero-sum constraint on the connectivity
matrix, which may be written as

n∑
j=1

(Ji j − Mi j ) = 0. (8)

Put together with the balance condition (6), the zero-sum
constraint (8) states that the ith neuron has a strict input-output
balance. Here “strict” is used to emphasize that the input-
output balance holds not only on average but also in every
realization.

In order to incorporate the zero-sum constraint (8), we
introduce the projection matrix

P = I − uuT

n
, (9)

with u as in (4). We consider a network connectivity matrix

J = A�P + uvT . (10)

This connectivity matrix closely resembles our previous
choice (5), but the projection matrix P enforces the row zero-
sum condition (8). Importantly, it can be shown that this new
connectivity matrix J has spectral radius (7) to leading order
in n; hence there are no outliers (see [14] for a proof in the case
with � = I). Figure 1(b) provides a numerical verification of
this phenomenon.

Due to the projection matrix P in (10), the entries of J
are no longer independent. Nonetheless, it can still be shown
that entries representing excitatory neurons have mean μE and

variance σ 2
E + O(n−1), while entries representing inhibitory

neurons have mean μI and variance σ 2
I + O(n−1). Thus, we

still keep the desired distinction between excitatory and in-
hibitory neurons to leading order of the population size n.

The main difference between this network (10) and the
canonical example (in which the entries of J are indepen-
dent and identically distributed random variables) is that
the eigenvalues are no longer uniformly distributed within
the region of circular support. The global spectral density
for the connectivity matrix (10) was found by Rajan and
Abbott [4], and we have considerably simplified their
expression to

ρRA(z) =
{

1
πnσ 2

I

[
1 − g

2 Hf

(
g |z|2

nσ 2
I

)]
, |z| � σeff

√
n

0, |z| > σeff
√

n,

(11)

with g = 1 − σ 2
I /σ 2

E and

Hf (x) = 2 f − 1 + x + √
1 + x(4 f − 2 + x)√

1 + x(4 f − 2 + x)
. (12)

The derivation of the global spectral density (11) assumes
that 0 < σI � σE and thereby 0 � g < 1, but by symmetry
an equivalent formula holds for σI � σE with σI and σE

interchanged. Equivalency between our expression (11) for
the global spectral density and the expression provided by
Rajan and Abbott in [4] is easily verified using mathematical
software such as Mathematica.

We note that for σE = σI = σ , we have g = 0 and the
eigenvalues are distributed uniformly within a disk with ra-
dius σ

√
n. Thus, from a spectral perspective this situation is

equivalent to the case where J has independent and identically
distributed entries (changing to the rescaled variables ẑ =
zσ

√
n gives the usual situation with support on the unit disk).

Likewise, the spectral density becomes uniform within a disk
with radius σE

√
n if f → 0 and uniform within a disk with

radius σI
√

n if f → 1.

III. COUNTING EQUILIBRIA AS A MEASURE
OF COMPLEXITY

In this section we will be interested in the number of
equilibria (both stable and unstable) for the dynamical system
(1), i.e., the number of solutions to

0 = −xi/τ +
n∑

j=1

Ji jS(x j ), i = 1, . . . , n, (13)

with connectivity matrix J = Ji j given by (10). It is clear
that the number of equilibria is a random variable, since the
connectivity matrix J is a random matrix. We will denote
this random variable by Neq. Since S(0) = 0, a trivial solution
to (13) is provided by x1 = · · · = xn = 0, i.e., the origin is
always an equilibrium.

Naively, we may think of a system with few equilibria as
simple and a system with many equilibria as complex. In order
to make this notion more concrete, we introduce the quantity

C(τ ) = lim
n→∞

1

n
logE{Neq} � 0 (14)
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as a formal measure of complexity. Here E denotes expec-
tation with respect to the connectivity matrix J = Ji j . The
complexity measure (14), henceforth referred to simply as
complexity, plays a role similar to the free energy in statistical
mechanics, and we will say that the system has a phase
transition at τc if C(τ ) is nonanalytic at τ = τc. We will
consider the system as complex if C(τ ) > 0, which implies
that the mean number of equilibria grows exponentially fast
with the neuron population n. If C(τ ) = 0 then we consider
the system as simple. We will see that the neural network
under consideration has a phase transition between a simple
and complex phase and that this phase transition coincides
with the transition predicted using mean-field theory.

The average number of equilibria can be obtained by means
of the multivariate Kac-Rice formula (see, e.g., [15–17])

E{Neq} =
∫
Rn

dnx E

{∣∣∣∣ det
1�i, j�n

[
−δi j

τ
+ Ji jS

′(x j )

]∣∣∣∣
×

n∏
k=1

δ

(
− xk

τ
+

n∑
�=1

Jk�S(x�)

)}
. (15)

For a few models the average number of fixed points may
be calculated exactly (see, e.g., [18,19]), but for the case
considered here an approximation scheme is needed. We will
borrow an approximation scheme suggested by Wainrib and
Touboul [3]. We note that for short relaxation times (i.e., τ →
0) the system (1) has a single (stable) equilibrium located
at the origin or, stated differently, x1 = · · · = xn = 0 is the
only solution to (13). This will not be true for long relaxation
times (i.e., τ → ∞). Let us say the first bifurcation point
happens at τb such that the system has only one equilibrium
for τ < τb and multiple equilibria for τ > τb. Generally, τb

will be a random variable dependent on the realization of the
connectivity matrix J = Ji j taking values in the interval 0 �
τb � τc (by definition we have exponentially many equilibria
for τ > τc, so a bifurcation must have occurred). However, if
the connectivity matrix J has no eigenvalue outliers for a large
neuron population n → ∞ [for our purposes that is the matrix
(10) but not the matrix (5)] then it is believed that the system
(1) will have a single equilibrium up to the critical value
such that τb = τc. This has been shown analytically for some
closely related models [18,19] and it is verified numerically
for the scenario considered here (see the closed data points in
Fig. 3). This assumption will be crucial in a moment.

Let us consider relaxation times in the vicinity of the
first bifurcation τ ≈ τb. For τ < τb the origin will be the
only equilibrium, but as we go beyond τb, say, τ = τb + ε

for some small positive value of ε, the equilibrium at the
origin bifurcates such that we have multiple equilibria (in the
scenario where τb = τc a large number of bifurcations will
occur for a small change in τ ). The deformation is continuous,
so we can find some small domain around the origin in which
all equilibria are contained, for simplicity let us say a ball with
radius rε. Importantly, the radius rε can be as small as we
desire by choosing ε sufficiently small. Thus, in the vicinity of
the first bifurcation τ ≈ τb we may without loss of generality
restrict the integration domain in (15) to a small ball centered
at the origin. Now, due to our regularity assumptions about
the sigmoid function S in the vicinity of the origin, we can

1
2

1 3
2

2

τ/τc

C(τ)

FIG. 2. Complexity as a function of the relaxation time with the
parameters f = 1/4, μE = 3, μI = −1, σE = 2, and σI = 1/2. The
solid curve shows (21), while the dotted curve shows the approxi-
mation (29) valid for τ ≈ τc. The bullet points show numerical data
generated using (17) with matrix dimension n = 1000 and a mean
obtained as an average over 1000 realizations. It can be seen that the
complexity is zero up to the threshold τc, after which it starts to grow.
Numerical and analytical results are in excellent agreement.

replace the integrand in (15) with its first-order approximation
as long as our restricted integration domain is sufficiently
small. Using this approximation yields

E{Neq} ≈ E
{∣∣ det

1�i, j�n
[−δi j + τJi j]

∣∣} (16)

for τ ≈ τb. The first-order approximation (16) to the Kac-Rice
formula (15) can be made arbitrarily good by considering
a sufficiently small integration domain about the origin and
the integration domain can be made arbitrarily small by con-
sidering relaxation times τ belonging to a sufficiently small
neighborhood around τb. This is in essence the same argument
as provided by Wainrib and Touboul [3].

It follows from (14) that the complexity becomes

C(τ ) ≈ lim
n→∞

1

n
logE

{∣∣ det
1�i, j�n

[−δi j + τJi j]
∣∣}. (17)

The right-hand side in (17) only depends on the eigenvalues of
the connectivity matrix J and the parameter τ . This quantity

FIG. 3. Data point are generated using the random matrix ap-
proximation (16) using the parameters n = 1000, f = 1/4, μE = 3,
μI = −1, σE = 4, and σI = 1; the average is performed using 5000
realizations. Closed data points • are made using the connectivity
matrix (10), i.e., without outliers, while open data points ◦ are made
using the connectivity matrix (5), i.e., with outliers. The location of
the transition to the complex region is indicated with a dashed line.
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is self-averaging for large neuron populations (n � 1) and
we may to leading order approximate the complexity with a
spectral integral

C(τ ) ≈
∫
C

μJ (d2z) log |τ z − 1|, (18)

where μJ (d2z) denotes the global spectral measure (i.e., the
limiting eigenvalue distribution) of the random connectivity
matrix J in the limit of large populations n � 1. The caveat is
that the leading-order approximation given by (18) vanishes
for τ < τc (as we show below), making next-to-leading terms
dominant. Thus, in order to apply the approximation (18)
we must assume that τb = τc in the limit of large neuron
populations (n � 1). As argued above (and in Sec. IV), it is
believed that τb = τc when the connectivity matrix J has no
eigenvalue outliers for a large neuron population n → ∞. For
the analytical computation in the remainder of this section,
we will use (18) and thereby the assumption τb = τc (this
assumption is also implicitly used in [3]). If τb < τc, then we
may still use the approximation (17), which may be evaluated
numerically (we return to this scenario in Sec. IV, where we
discuss the effect of spectral outliers).

We consider the connectivity matrix (10) that has a nonuni-
form spectral density given by (11), i.e.,

μJ (d2z) = d2zρRA(z). (19)

As discussed, this corresponds to a more anatomically real-
istic connectivity matrix where the connectivity for different
populations is drawn from different distributions resulting in
a partially random matrix that is block structured.

Since our spectral measure is rotationally invariant in the
complex plane, we can use that, for a ∈ R and b > 0,∫ 2π

0
dθ log |a − beiθ | = 2π log[max(a, b)] (20)

to see that

C(τ ) ≈ 2π

∫ ∞

1/τ

dr ρRA(r)r log(τ r). (21)

In order to evaluate the integral (21), we first recall that the
Rajan-Abbott density (11) only has support on a disk of radius
R = σeff

√
n. It follows that C(τ ) = 0 for τσeff < n−1/2. On the

other the hand, the integral (21) is positive for τσeff > n−1/2,
i.e., C(τ ) > 0. Below we will see that there is phase transition
at τc = 1/σeff

√
n (see Fig. 2) and explore the complexity (21)

in the complex region of phase space. We note that the critical
value τc agrees with the onset of chaos predicted by Aljadeff
et al. in [10] using the more traditional mean-field approach.

To get a better intuition of what happens to the complexity
(21) for τσeff > n−1/2, we expand the Rajan-Abbott density
(11) in the complex regime in powers of g to obtain

ρRA(r) = 1

πnσ 2
I

[
1 − g

2

∞∑
k=0

ak, f

(
g

r2

nσ 2
I

)k
]
, (22)

with coefficients a0, f = 2 f , a1, f = 4 f (1 − f ), a2, f = 6 f (1 −
3 f + 2 f 2), etc. (the explicit expressions for the coefficients
are not really important to us as we will redo the sum later
on). Using this expansion in the formula for the complexity

(21) gives

C(τ ) ≈ 2

nσ 2
I

∫ σeff
√

n

1/τ

dr

[
1 − g

2

∞∑
k=0

ak, f

(
g

r2

nσ 2
I

)k
]

r log(τ r).

(23)

Here and below we have assumed that τ > 1/σeff
√

n, since
(as already discussed) the complexity (21) is zero for τ <

1/σeff
√

n. Now, making a change of variables r̂ = r/σeff
√

n,
we get

C(τ ) ≈ 2
σ 2

eff

σ 2
I

∫ 1

τc/τ

dr̂

[
1 − g

2

∞∑
k=0

ak, f

(
gr2 σ 2

eff

σ 2
I

)k
]

r̂

× log

(
τ r̂

τc

)
, (24)

where for notational simplicity we have used τc = 1/σeff
√

n.
In this expression we may integrate term by term using∫ 1

τc/τ

dr̂ r̂2k+1 log

(
τ r̂

τc

)

= (τc/τ )2k+2 + (2k + 2) log(τ/τc) − 1

(2k + 2)2
. (25)

We recall that our formula for the complexity (21) is only valid
in the vicinity of the critical value τc. Thus, we introduce the
dimensionless parameter

τ̂ = τ − τc

τc
. (26)

For 1 � τ̂ > 0, the right-hand side in (25) simplifies to

(τc/τ )2k+2 + (2k + 2) log(τ/τc) − 1

(2k + 2)2
= τ̂ 2

2
+ O(τ̂ 3), (27)

where the leading-order term is independent of k. This allow
us to write the complexity as

C(τ ) ≈ σ 2
eff

σ 2
I

[
1 − g

2

∞∑
k=0

ak, f

(
g
σ 2

eff

σ 2
I

)k
]
τ̂ 2 + O(τ̂ 3). (28)

By comparison with (22) we see that

C(τ ) ≈
{
πnσ 2

effρRA(σeff
√

n)τ̂ 2, τ̂ > 0

0, τ̂ < 0.
(29)

At first sight it might appear as though the complexity is
proportional to n for τ̂ > 0, but this is merely an artifact of our
normalization. In our present normalization the Rajan-Abbott
density (11) has support on a disk with radius σeff

√
n and

the density is therefore inversely proportional to σ 2
effn. The

normalization in which the connectivity matrix J = Ji j has
support on the unit disk corresponds to

ρ̂RA(z) = nσ 2
effρRA(zσeff

√
n). (30)

In this normalization, the complexity reads

C(τ ) ≈
{
πρ̂RA(1)τ̂ 2, τ̂ > 0

0, τ̂ < 0.
(31)

For a connectivity matrix with independent and identi-
cally distributed entries (i.e., f → 0 or f → 1), we have
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ρ̂RA(1) = 1/π , which is the result presented by Wainrib and
Touboul [3]. In the intermediate region (0 < f < 1) the de-
pendence on τ̂ is the same, but the overall prefactor changes.
The prefactor is given by the global spectral density of the
connectivity matrix evaluated at the edge, which should not
be too surprising. It is important to note that this edge value
depends strongly on the network structure, i.e., the variances
σE and σI as well as the fraction f . We recall that asymp-
totically the complexity is related to the average number of
equilibria by

E{Neq} ∼ enC(τ ), (32)

so the changed prefactor in the complexity corresponds to
an exponential change to the average number of equilibria.
When interpreting (32) it should be noted that our approxima-
tion scheme only gives the leading-order contribution in the
system size n. Thus, it does not exclude error terms which
grow or remain constant for large n. Next-to-leading-order
contributions have been computed in some closely related
systems [18,19].

IV. OUTLIERS AND NETWORK IMBALANCE

The approximation scheme used in Sec. III assumed that
the connectivity matrix J = Ji j had no spectral outliers for
large neuron populations n → ∞. There are two main ways
this assumption may be invalidated in the given framework. In
Sec. II, we saw in Fig. 1 that not imposing the zero-sum con-
straint (8) resulted in a number of spectral outliers scattered
around the circular region which contained the majority of the
eigenvalues. Breaking the network balance condition (6) also
results in a spectral outlier; we will discuss this phenomenon
towards the end of this section.

First, we will discuss the effect on the complexity of
not enforcing the zero-sum constraint (8). We note that the
spectral outliers appearing in the absence of the zero-sum con-
straint [Fig. 1(a)] constitute a lower-order effect in the sense
that the fraction of spectral outliers (compared to the total
number of eigenvalues) tends to zero as the neuron population
tends to infinity (n → ∞). Although not fully mathematically
justified, we believe that the effect on the complexity will also
be a lower-order effect so that there is still a complex region
(where the number of equilibria grows exponentially fast with
n) and a simple region (where the number of equilibria grows
less than exponentially fast with n). The transition between
these two regions appears at the same critical value τc.

The main difference between the scenarios arising from a
connectivity matrix with or without the zero-sum constraint
is present in the simple region; this is due to the fact that
the complexity is zero in this region or, in other words, the
leading-order contribution vanishes in this region, resulting in
the lower-order contribution arising from the outliers becom-
ing dominant. Without outliers there will be one (and only
one) equilibrium up until the critical value τc, after which
there will be an exponential explosion in the number of equi-
libria. With outliers there will still be only one equilibrium for
short relaxation times τ � τc, but we expect that the average
number of equilibria starts to grow as we approach the critical
value τc, since the spectral density is nonzero outside the
disk of radius σeff

√
n (the growth must of course be slower

than exponentially fast in n, since the complexity is zero in
the simple region). Figure 3 illustrates this using the random
matrix approximation (16). In summary, for the system (1)
with the connectivity matrix (10) we expect to find one (and
only one) equilibrium below the critical value τc, while with
the connectivity matrix (5) we expect to find few (but possibly
more than one) equilibria in the same region. In the latter case,
the true number of equilibria would be highly dependent on
the realization of the connectivity matrix J . The possibility of
multiple equilibria can of course have important consequences
for the dynamics.

We emphasize that the result for the case including spectral
outliers should only be trusted qualitatively but not quanti-
tatively. The issue is that the approximation which leads to
(16) is only fully justified in the neighborhood of the first
fixed-point bifurcation. In Sec. III we exploited that, in the
absence of spectral outliers, this neighborhood coincides with
the neighborhood of the critical value τc. In the presence of
spectral outliers, the first bifurcation will typically happen at
some smaller value of τ .

Let us now turn to the effect of breaking the balance
condition (6). In abnormal brain states that are associated
with pathological brain dynamics such as epilepsy, a network
imbalance causes hyperexcitable unstable electrical behavior
called seizures, which are observed as pathological (spike-
wave) oscillations. For this reason, network imbalance is an
important scenario. We include such imbalance by replacing
the balance condition (6) by

μE f + μI (1 − f ) = β. (33)

Here β is a measure of imbalance such that if β > 0 (β < 0)
then the excitatory (inhibitory) neurons dominate the neuron
population; β = 0 restores the balance condition (6). Let us
first examine the eigenvalues of M = uvT . The characteristic
equation reads

0 = det(λI − uvT ) = λn−1(λ − vT u) = λn−1(λ − βn);

(34)

hence M has n − 1 eigenvalues equal to zero and the remain-
ing eigenvalue is equal to βn. It is known that the random
connectivity matrix J will inherit this spectral outlier in the
following sense: The global spectrum of J will still be the
Rajan-Abbott density (11) on the disk of radius σeff

√
n, but

there will also be an eigenvalue in the neighborhood of βn
(this is illustrated in Fig. 4); we will not prove the details here
but refer the reader to [14] for a mathematical description
of this phenomenon. The number of equilibria should be
affected by the eigenvalue with the largest real part (i.e.,
the rightmost eigenvalue), so we would expect an excitatory-
dominated neuron imbalance (β > 0) having essential effects,
but that an inhibitory-dominated neuron imbalance (β < 0)
would inconsequential. It is important to note that the location
of the outlier grows linearly with the neuron population n
(we assume that β is of order unity), while the radius of
the disk containing the global spectrum only grows as

√
n.

Thus, the effect of breaking the network balance happens on
a completely different scale than all other effects discussed in
this paper and even a small imbalance may imply important
effects.
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(a)

(b)

FIG. 4. Scatter plots in the complex plane for eigenvalues of
the connectivity matrix (10). Both scatter plots are generated from
random matrices with n = 1000, f = 1/4, σE = 2, σI = 1/2, μE =
3, and (a) μI = −13/15 (corresponding to β = +1/10) and (b) μI =
−17/15 (corresponding to β = −1/10). Solid curves shown are
circles with radius given by (7), i.e., R ≈ 34.46. The outliers are
located at ≈ βn = ±100 ≈ ±3R, i.e., to the right in (a) and to the
left in (b).

V. DISCUSSION AND OUTLOOK

In this paper we have combined two important results in
the theory of random neural networks to show how a more
anatomically realistic network connectivity in the form of
Dale’s law impacts on the transition to a complex phase. The
transition is affected by the differences in variances between
excitatory and inhibitory neurons (σE �= σI ) and the propor-
tion of each population f . Changes to these variables are
reflected in changes to the effective variance σeff = [ f σ 2

E +
(1 − f )σ 2

I ]1/2. However, it is not just the variances of the
synaptic strength distributions that are the critical element in
determining the dynamics; the time constant is also crucial.
In fact, there is an interplay between the statics (variances of
the synaptic strengths) and the dynamics (the time constant)
that determines the stability of the system and location of the
phase transition. A transition takes place at the critical value
τc = (σeff

√
n)−1. For the case of a connectivity matrix that

has independent and identically distributed Gaussian entries
with zero mean and variance σ , this becomes τc = (σ

√
n)−1,

as originally established by [1]. It is worth noting that a
stability-instability phase transition in a linearized model was
found at the same critical value in [20]; in this latter context it
is often referred to as the May-Wigner transition.

In neural networks where connections are chosen as in-
dependent and identically distributed random variables with
zero mean and variance σ , the eigenvalue spectrum of the
connectivity matrix is uniform on a disk. However, for the case
of a more anatomically realistic connectivity where Dale’s law
is implemented into the structure of the connectivity matrix,
the eigenvalue spectrum is no longer uniform and one of the
results of this paper was to significantly simplify the expres-
sion for the nonuniform spectral density derived in [4]. In our
expression it is very intuitive to see how different population

proportions and variances affect the density as well as how
the expression collapses back into a uniform density when the
population variances are equivalent. Note that if the variances
are not different, then changing the proportion f has no effect
and the spectral density of the eigenvalues remains uniform.

The expression for the nonuniform spectral density was
then used in combination with a random matrix approximation
of the multivariate Kac-Rice formula [3]. Incorporating Dale’s
law (without spectral outliers), we were able to establish
that a phase transition occurs by computing the number of
equilibria (fixed points) or complexity of the system. This
transition divides phase space into two regions: a simple phase
with a single equilibrium and a complex phase where the
number of equilibria grows exponentially with the neuron
population. The dynamics in the simple phase is expected
to be stable, meaning that all trajectories converge towards
the only equilibrium of the system, while the dynamics in
the complex phase is expected to be chaotic. As a naive
mental picture, we might imagine that most trajectories in
the complex phase are bouncing chaotically around between
a large number of unstable equilibria. This mental picture is
consistent with results by Aljadeff et al. [10], where more tra-
ditional measures of chaos (e.g., a numerical evaluation of the
Lyapunov exponent is found in their Supplemental Material)
are computed for a heterogeneous connectivity matrix within
the mean-field framework pioneered by Sompolinsky et al.
[1]. The critical value for the transition to chaos predicted by
Aljadeff et al. in [10] is exactly the same as predicted within
this paper, but our approach is based on a different measure of
complexity and completely different techniques.

The effects on the complexity of incorporating different
connectivity structures via Dale’s law on the phase transition
is encapsulated by Fig. 2. This figure shows how the complex-
ity changes with the ratio τ/τc. Both the transition point τc and
rate at which the complexity increases beyond this transition
point are affected by the variances σE and σI and population
proportions f . However, the critical exponent of the con-
trol parameter τ̂ = (τ − τc)/τc is unaffected and equal to 2,
which is consistent with the common lore regarding phase
transitions in statistical systems. Under more general network
connectivity structures we believe that there will still be a
transition between a simple and a complex phase character-
ized by having few or many equilibria, respectively (“many”
means growing exponentially fast with the neuron population
and “few” means growing less than exponentially fast). We
believe that there is a universal scaling limit connected to
this transition and in particular that the critical exponent 2
is universal. Away from the critical region, the number of
equilibria is still important for the dynamic of the system, but
we do not expect this behavior to be universal. Nor do we
expect the location of the transition to be universal. Here we
understand “universality” as properties being unaffected by
the finer details of the network structure. Thus, understanding
patient-specific network structures is fundamental to defining
when pathological transitions could occur. Alternatively, we
could understand universality as properties being unaffected
by the finer details of the probability weights chosen for the
connectivity given a certain network structure. In this latter
interpretation, the complexity might be universal, but of less
practical value.
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In this work we also discuss eigenvalue outliers (i.e.,
eigenvalues outside the disk with radius σeff

√
n) that are

generated by two sources. The first source is from imple-
menting Dale’s law into the connectivity matrix and can be
eliminated via an input-output condition using a projection
operator (as illustrated by Fig. 1). The outliers are a lower-
order effect of the eigenvalue spectrum (the fraction of outliers
tends to zero as the neuron population tends to infinity) and
their contribution to the complexity is believed to be lower
order as well. Such lower contribution can nonetheless have
fundamental importance for the dynamical properties of the
system. In Sec. IV we argued that spectral outliers would give
rise to multiple equilibria in the simple phase rather than just
one equilibrium as was found in the absence of outliers. It
should be clear that going from one to multiple equilibria may
fundamentally change dynamical properties of the system,
e.g., we might imagine trajectories bouncing between a few
unstable equilibria. In fact, a distinction between having one
or multiple equilibria might be as important as the distinction
between have few and many.

The second source of eigenvalue outliers comes from
breaking the balance condition by introducing an imbalance
parameter β. In this scenario, there is an outlier in the neigh-
borhood of βn. The important observation to be made here
is that the location of this outlier scales with n while the
location of all other eigenvalues (including outliers arising
from introducing Dale’s law without imposing the input-
output condition) scales with

√
n. Thus, the effect of breaking

the network balance happens on a completely different scale
than all other effects discussed in this paper and even a small
imbalance can have significant consequences on the system
dynamics. It is often assumed for pathological behavior such
as those found in epileptic states that the connectivity matrix
is excitatory dominated (β > 0). In this case, the outlier is
the largest (rightmost) eigenvalue and the location of this
eigenvalue determines the onset of the increase in the number
equilibria, which effects the stability of the system. Hence,
a network imbalance condition such as hyperexcitability can
determine the change in the system stability more than the
network structure and nonlinear coupling function.

We note that the neural model used in this research does not
have a direct correspondence to physiology unlike biophysical
spiking models. It is a first-order rate-based neural model
with a discretized spatial field and although it can be derived
from networked neural mass models, it does so at the cost
of sacrificing synaptic dynamics, which are fundamental to
brain dynamics. It would be interesting to expand this model
to a second-order one to give it synaptic dynamics, either
current based or conductance based, and examine the role
of these in combination with different network structures on
stability transitions. This model also assumes a single time
constant, whereas a distribution of values would be more
realistic as well as different parametrizations of the coupling
function. Work using dynamical mean-field theory has shown

that results of this model can be projected onto more physio-
logically realistic spiking models such as leaky integrate-and-
fire models [21], which normally cannot be analyzed in this
way. It would be interesting to see if the results presented here
also hold for these more realistic neural models. Further, it
is currently an open problem to compute the actual number
of fixed points through a large-scale simulation; it would be
good to conclusively verify these results without numerical
approximations.

From a brain dynamics perspective, this paper shows
that when more anatomically realistic network connectivities
are used that have heterogeneous structures, they have a
nontrivial effect on the phase transition of random neural
networks. These connectivities are statistically characterized
with block structures that have different proportions, means,
and variances. In the brain, such connectivity parameters are
regulated by many physiological and anatomical processes
such as modulatory and plasticity mechanisms that are critical
to maintaining and controlling neural circuit dynamics. The
critical element here is the interplay between the effective
variance of the network connectivity distribution and the time
constant of the rate dynamics. Further, it has been experimen-
tally and clinically observed that certain network structures
are more susceptible to a transition into instability [22]. This
becomes especially important as the brain is often considered
to be operating in a critical state, i.e., close to a transition
point [23–28].

If the brain does indeed operate in such a critical regime,
then the network connectivity plays a crucial role in brain
state transitions. The study of brain diseases such as epilepsy
is usually conceptualized as a brain state transition into a
pathological state such as a seizure, which is both hyperex-
citable and hypersynchronized. However, the main problem
here is that such transitions and hence diseases are very
patient specific, depending on the patient’s individual brain
connectivity. This research illustrates that a large class of
network connectivities that can be identified statistically is
more susceptible to such transitions. This could be a way of
classifying certain patient-specific network structures in order
to quantify the susceptibility to a transition to an unstable
pathological state such as a seizure. This susceptibility is often
defined as excitability in epileptogenesis, a clinical term that
describes the underlying process by which a brain develops
seizures, which is currently poorly understood. A quantitative
description of this susceptibility based on an individuals brain
network structure from neuroimaging data could be used to
tailor diagnosis and treatment, which is one of the primary
goals of 21st century precision medicine.
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