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Tug of war in a double-nanopore system
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We simulate a tug-of-war (TOW) scenario for a model double-stranded DNA threading through a double
nanopore (DNP) system. The DNA, simultaneously captured at both pores, is subject to two equal and opposite
forces − �fL = �fR (TOW), where �fL and �fR are the forces applied to the left and the right pore, respectively.
Even though the net force on the DNA polymer � �fLR = �fL + �fR = 0, the mean first passage time (MFPT) 〈τ 〉
depends on the magnitude of the TOW forces | fL| = | fR| = fLR. We qualitatively explain this dependence of 〈τ 〉
on fLR from the known results for the single-pore translocation of a triblock copolymer A-B-A with �pB > �pA,
where �pA and �pB are the persistence length of the A and B segments, respectively. We demonstrate that the
time of flight of a monomer with index m [〈τLR(m)〉] from one pore to the other exhibits quasiperiodic structure
commensurate with the distance between the pores dLR. Finally, we study the situation where we offset the TOW
biases so that � �fLR = �fL + �fR �= 0, and qualitatively reproduce the experimental result of the dependence of the
MFPT on � �fLR. We demonstrate that, for a moderate bias, the MFPT for the DNP system for a chain length N
follows the same scaling ansatz as that for the single nanopore, 〈τ 〉 = (AN1+ν + ηporeN )(� fLR )−1, where ηpore is
the pore friction, which enables us to estimate 〈τ 〉 for a long chain. Our Brownian dynamics simulation studies
provide fundamental insights and valuable information about the details of the translocation speed obtained from
〈τLR(m)〉, and accuracy of the translation of the data obtained in the time domain to units of genomic distances.
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I. INTRODUCTION

Nanopore (NP) sensing is a powerful approach for accu-
rate, fast, and cost-effective detections of biomolecules, such
as single and double stranded DNA, peptides, and proteins
[1]. For almost two decades, research in this area has spurred
continued and increased activities among broad disciplines
of sciences and engineering due to their direct impact on
human health and diseases. Unlike traditional methods, which
require molecular amplification, in a single NP (SNP) based
method [2], a particular DNA segment is analyzed as the
nucleotides make single file translocation through the NP.
Since its original demonstration in α-hemolysin protein pore
[3–6], NP translocation has been studied in other biologi-
cal NPs, nanopores in silicon nitride membranes, and two
dimensional (2D) materials, such as multilayered graphene
NPs. Recently, translocation of a DNA segment has been
extended in double-NP systems after being co-captured by
both the pores [7–11]. Compared to a single NP, double,
or multiple NPs detection methods with adjustable bias and
feedback applied at each pore offer better control of the DNA.
Different variations of this concept, such as double nanopore
(DNP) separated by a nanobridge [12], double-barrel NP [13],
nanoscale preconfinement [14], and entropy driven tug of war
(TOW) [15] have also been reported.

While translocation through a single NP has been studied
quite extensively theoretically, experimentally, and using a
variety of numerical and simulation strategies, theoretical
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studies and modeling translocation in double or multiple NP
system is only directed to explain a specific experimental
system [7].

In this paper, we report Brownian dynamics (BD) simu-
lation studies of a coarse-grained (CG) model homopolymer
translocating through a DNP system. Our model DNP system
in silico is a simplified version of the experimental designs
of DNP systems reported recently [8,9] in which we study
the effects of chain stiffness κ , distance between the pores
dLR, the magnitude of the biases �fL and �fR on the mean first
passage time (MFPT) 〈τ 〉, and on the time of flight (TOF) of
the individual monomers to provide further details of various
aspects of translocation through a DNP. The CG model as
described in the next section does not require detail structures
of the DNA and is sufficient to answer the questions addressed
in this paper. We have chosen dLR � L, the contour length
of the chain, and often used the known results from scaling
theory of polymer translocation [16–18], nonequilibrium ten-
sion propagation (TP) theory of polymer translocation [19],
and prior results for SNP translocation for a stiff chain [20] to
explain the results for DNP translocation in this limit. These
studies provide information to design new experiments with
different parameter sets and develop a theoretical framework
that can be tested by additional simulation studies.

II. MODEL

Our BD scheme is implemented on a bead-spring model
of a polymer with the monomers interacting via an excluded
volume (EV), a finite extension nonlinear elastic (FENE)
spring potential, and a bond-bending potential enabling
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variation of the chain persistence length �p (Fig. 1). The
model, originally introduced for a fully flexible chain by Grest
and Kremer [21], has been studied quite extensively by many
groups using both Monte Carlo (MC) and various molecular
dynamics (MD) methods [22]. Recently, we have generalized
the model for a semiflexible chain and studied both
equilibrium and dynamic properties [20,23]. Comparison of
our BD results with those obtained for very large self-avoiding
chains on a square lattice reveals robustness of the model
for certain universal aspects, e.g., scaling of end-to-end
distance and transverse fluctuations [23–26]. Using our BD
scheme for confined stiff polymers in nanochannels we have
demonstrated and verified the existence of Odijk deflection
length λ ∼ (�pD2)1/3 [26]. More recently, we compared the
evolution of the density profile along the nanochannel axis
obtained from the BD simulation with those obtained from
an approach using nonlinear partial differential equation [27]
with excellent agreement showing the applicability of the
BD simulation method to study nonequilibrium dynamics of
confined polymers. The BD simulation provides a detailed
picture of how a stiff chain folds into a series of nested loops
when pushed by a nanodozer [28]. Last but not the least we
have used the same model earlier to address various problems
in SNP translocation with success [29–32]. The successes of
these prior studies explaining a variety of phenomena provide
assurance that the BD simulation studies will provide useful
information and insights toward a fundamental understanding
of polymer translocation through a model DNP system.

The EV interaction between any two monomers is given by
a short range Lennard-Jones (LJ) potential

ULJ(r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6]
+ ε, for r � 21/6σ,

= 0, for r > 21/6σ. (1)

Here, σ is the effective diameter of a monomer and ε is
the strength of the LJ potential. The connectivity between
neighboring monomers is modeled as a FENE spring with

UFENE(ri j ) = − 1
2 kF R2

0 ln
(
1 − r2

i j/R2
0

)
. (2)

Here ri j = |�ri − �r j | is the distance between the consecutive
monomer beads i and j = i ± 1 at �ri and �r j , kF is the spring
constant, and R0 is the maximum allowed separation between
connected monomers. The chain stiffness κ is introduced
by adding an angle dependent three body interaction term
between successive bonds as (Fig. 1)

Ubend(θi) = κ (1 − cos θi ). (3)

Here θi is the angle between the bond vectors �bi−1 = �ri −
�ri−1 and �bi = �ri+1 − �ri, respectively, as shown in Fig. 1. The
strength of the interaction is characterized by the bending
rigidity κ associated with the ith angle θi. For a homopolymer
chain the bulk persistence length �p of the chain in two
dimensions (2D) is given by [33]

�p/σ = 2κ/kBT . (4)

Each of the two purely repulsive walls consists of one
monolayer (line) of immobile LJ particles of the same diam-
eter σ of the polymer beads symmetrically placed at ± 1

2 dLR.
The two nanopores are created by removing two particles at
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FIG. 1. Schematic of BD simulation model for a chain of length
N = 20 (red). Initial configuration of the chain in between the pores
dlR apart is approximately a straight line. The immobilized walls on
which the two pores are located are created by particles (teal) of the
same diameter. External biases �fL and �fR are applied in each pore in
opposite directions as shown. The box shows the details of the bead-
spring model. The local persistence length �p(i) = −1/ ln〈cos θi〉 is
calculated from the angle θi [Eq. (7)].

the center of each wall. We use the Langevin dynamics with
the following equations of motion for the ith monomer:

m�̈ri = −∇(ULJ + UFENE + Ubend + Uwall ) − �vi + �ηi. (5)

Here �ηi(t ) is a Gaussian white noise with zero mean at tem-
perature T , and satisfies the fluctuation-dissipation relation in
d physical dimensions (here d = 2):

〈�ηi(t ) · �η j (t
′)〉 = 2 dkBT  δi j δ(t − t ′). (6)

We express length and energy in units of σ and ε, respectively.
The stiffness parameter κ is expressed in units of ε and the
parameters for the FENE potential in Eq. (2), kF and R0, are
set to kF = 30ε/σ and R0 = 1.5σ , respectively. The friction
coefficient and the temperature are set to  = 0.7

√
mε/σ 2 and

kBT/ε = 1.2, respectively. The force is measured in units of
kBT/σ . The numerical integration of Eq. (5) is implemented
using the algorithm introduced by Gunsteren and Berendsen
[34]. Our previous experiences with BD simulation suggests
that for a time step �t = 0.01 these parameter values produce
stable trajectories over a very long period of time and do not
lead to unphysical crossing of a bond by a monomer [25,26].
The average bond length stabilizes at bl = 0.971 ± 0.001
with negligible fluctuation regardless of the chain size and
rigidity [25]. We have used a Verlet neighbor list [35] instead
of a link-cell list to expedite the computation.

III. SIMULATION RESULTS

We carried out simulations for chain lengths N = L/σ =
64, 96, 128, 192, 256, 320, and 384 (where L is the cor-
responding chain contour length) for various chain stiffness
κ = 0, 16, 32, 64, as well as for several distances between the
pores dLR for consistency checks, but show only a limited set
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FIG. 2. Local chain persistence length �p(m) as a function of
reduced monomer index m/N for (a) κ = 0.0, (b) κ = 16.0, and (c)
κ = 64.0. The black circles, red squares, blue diamonds, and green
triangles correspond to TOW bias fLR = 1, 3, 5, and 7, respectively.
Panel (d) shows the effect of an increase in chain length N ; black
circles, red squares, and blue diamonds are for N = 64, 128, and 256,
respectively. The orange triangles and the black squares compare
a case where dLR/N = 16/64 = 32/128 = 1

4 for two chain lengths.
Each dashed line is the average �p for the same color. In (a)–(c),
the solid purple line represents �p0 = 2κ/kBT for the unconstrained
chain.

of results dLR/σ = 16 and 32 and mostly for κ = 8 and 16.
The simulation results are averaged over at least 2000 initial
conditions. For the exact tug-of-war situation and for small
biases the computations can be prohibitively large compared
to even a weakly biased situation.

The starting point of our study is a homopolymer already
co-captured by both the pores and placed symmetrically with
the number of beads at the left side of the left pore (nL) and
at the right side of the right pore (nR) the same (Fig. 1), so
that nL + nR + nm = 2nL + nm = N , where nm represents the
number of monomers in between the two pores. Our initial
configuration is a straight chain with dLR = nmσ , which is
then equilibrated with BD simulation time about five times
the Rouse relaxation time τeq ∝ N1+2ν keeping the two beads,
located inside the left and the right pore clamped, where
ν = 0.75 is the Flory exponent in two dimensions [36]. In
simulation the local chain persistence length is calculated
from 〈cos θm〉 via

�p(m) = − ln
1

(〈cos θm〉)
, (7)

where m is the monomer index. Previously we have checked
that the two definitions [Eqs. (4) and (7)] become equivalent
for a free homopolymer chain and that, for a heteropolymer
chain, the calculation of the 〈cos θi〉 provides the correct way
to determine the local chain persistence length [24]. After the
polymer chain is equilibrated with beads inside the left and
right pores at the clamped positions, the chain is allowed to
translocate with biases applied at the left and the right pores
as shown in Fig. 1. We consider both the cases �fL + �fR = 0
and �fL + �fR �= 0.

FIG. 3. (a) MFPT as a function of TOW forces fLR for κ = 0
(black circles), κ = 16 (red squares), and κ = 64 (green diamonds).
The straight lines through the points are least square fits through the
simulation data. (b) MFPT for a triblock copolymer chains A-B-A
(κA = 0.0) as a function of κB. The inset shows the corresponding
�p(m) for κB = 0, 8,16, 32, and 64, respectively.

A. TOW–local chain persistence length �p(m)

First we study the TOW situation where the chain is subject
to two equal and opposite forces �fL and �fR (Fig. 1) at the
left and right pores. Since the net force is zero, the chain
executes diffusive motion until it translocates (exits) either
through the left or through the right pore. However, unlike an
unbiased translocation in a SNP, the persistence length of the
chain segment in between the two pores becomes larger due
to the presence of TOW forces. This causes the effective local
persistence length to be a function of the monomer index m,
so that the average effective persistence length of the entire
chain becomes larger as shown in Fig. 2. We observe that
the effect is most prominent for κ = 0 [Fig. 2(a)], which will
be relevant if similar experiments are performed for a single
stranded DNA. Figures 2(a)–2(c) for κ = 0, 16, and 64 look
qualitatively similar; however, the scales are very different.
Evidently, the effect is less pronounced for a stiffer chain as
the relative increase in the chain persistence length is less for
the same TOW forces fLR.

B. Tug of war and MFPT

One then wonders how does this variation in chain persis-
tence length affect the MPFT? Figure 3(a) shows the variation
of MFPT as a function of the TOW forces fLR. Consistent with
Fig. 2 we observe a noticeable increase in 〈τ 〉 for κ = 0, and
a relatively small increment for chains with κ = 16 and 64.
The result can be understood from a prior result for the single
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pore translocation [20], where it has been shown that the 〈τ 〉
increases with increasing chain stiffness κ . For the DNP, the
TOW forces make the chain segment between the pores stiffer.
The relative degree of increase in persistence length depends
on the original stiffness κ of the chain, measured in terms of
the ratio [�p(N/2) − �p(1)]/〈�p〉, which is about 80%, 20%,
and 7% for κ = 0, 16, and 64 respectively. This explains why,
for the same set of fLR, the relative increase in chain stiffness
for the segment in between the pores is less significant for
κ = 16 and 64, compared to κ = 0. It is worthwhile to note
that for longer chains, when dLR/L → 0, the entropic forces
of the free segments on either side of the pores become the
dominant forces. Thus it is conceivable that the tiny slope
[Fig. 3(a)] observed for κ = 16 and 64 of the TOW for chains
of size N = 128 is a finite size effect. For longer chains 〈τ 〉
will have no dependence on the TOW forces fLR.

C. TOW and a model triblock copolymer A-B-A

We validate our interpretation by performing a separate set
of simulation. We set fL = fR = 0 and study the translocation
of a triblock copolymer of the form (flexible-stiff-flexible)
such that 2nA + nB = N , and nBσ = dLR, where nA and nB are
the length segments of the A and B segments, respectively.
We choose the chain stiffness κB > κA. Keeping κA constant
we calculate the MFPT as an increasing function of κB. As
expected, the translocation time increases as a function of
the chain stiffness κB [Fig. 3(b)]. We should mention that
analogy is valid on an average. The difference with the A-B-A
copolymer and the homopolymer subject to a TOW is that, in
the former case, the persistence lengths along the chain are
fixed, while for the TOW, it depends on the location of the
chain segment with respect to the two pores. A translocating
segment will have an increased persistence length while resid-
ing in the region in between the pores. Thus on an average,
in a TOW situation, the magnitude of equal and opposite
biases at each pore location affects the translocation time for
a homopolymer chain [Fig. 3(b)]. The dependence of MFPT
on � �fLR will be relevant for experiments done with a single
stranded DNA (ssDNA).

D. TOW and the TOF 〈τLR(m)〉
BD simulation provides detail information about the seg-

mental translocation process. One of the key questions in a
TOW situation is how long does a monomer with index m take
to cross the region in between the pores during the translo-
cation [denoted as 〈τLR(m)〉]? Experimentally this quantity is
measured repeatedly in a DNA flossing experiment [10]. The
TOF 〈τLR(m)〉 should be contrasted with the MFPT 〈τ 〉, which
is the average total time of translocation for the entire chain.
Since the TOF 〈τLR(m)〉 can be measured experimentally
[9,10], it can provide further information. The dependence of
the normalized TOF defined as

〈τ̃LR(m)〉 = 〈τLR(m)〉
〈τLR〉 (8)

on fLR and dLR is shown in Fig. 4, where

〈τLR〉 =
∑

m

〈τLR(m)〉. (9)
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FIG. 4. Normalized TOF 〈τ̃LR(m)〉 as a function of the reduced
monomer index m/N . (a) The top three curves are for N = 128 for
four different magnitudes of the TOW forces fLR = 1 (black circles),
fLR = 3 (red squares), fLR = 5 (green diamonds), and fLR = 7 (blue
triangles), respectively. (b) The bottom two curves are for dLR = 16
for chain lengths, N = 128 (yellow triangles), and N = 256 (green
triangles), respectively.

Please note that the plot is made symmetric by com-
bining the data from the left and right translocation (we
checked that the data looks statistically similar with 50%
translocation from left to right and vice versa). In experi-
ments [8,9], the ratio dLR/L � 1. We also show some re-
sults for dLR/L = 0.25 to understand the limit dLR/L � 1
better.

Figure 4(a) shows significant variations in 〈τ̃LR(m)〉. The
almost linear decrease for m/N � 0.75 (or rise m/N < 0.25)
corresponds to the last (first) 32% (25%) monomers exiting
through the right (left) pore when they are subject to only
one of the TOW forces. The monomers m � N/2 can have
a nonzero 〈τ̃LR(m)〉 if they first travel either to the left (right)
pore and then finally exit. Thus the 〈τ̃LR(m)〉 is minimum at
m = N/2.

The monomers which follow the central monomer have
to have an increased 〈τ̃LR(m)〉 until m/N � dLR/Nσ . This
explains the shape of the four 〈τ̃LR(m)〉 for dLR/L = 32/128 =
1/4 in Fig. 4(a). One observes that the shape of the 〈τ̃LR(m)〉 is
independent of the magnitude of the TOW force fLR provided
that the value of the chain stiffness is high enough compared
to other parameters of the system.

What happens in the limit dLR/L → 0? The experiments
are done in this limit. This limit can be predicted from
the shape of the two curves of Fig. 4(b). Here we plot
the corresponding 〈τ̃LR(m)〉 for dLR/L = 16/128 = 0.125 and
dLR/L = 16/256 = 0.0625 so that dLR � L. We notice simi-
lar features at the end and at the center. However, for N = 256
we observe a reasonably flat 〈τ̃LR(m)〉, albeit with a small
amplitude periodic oscillation in units of dLR/L for monomers
satisfying 0.5dLR/L � m/N < (L − dLR)/L. This we believe
is due to the different environment a monomer encounters as
it enters from the region located at the left side of the left pore
→ the region in between the pores → the region located at
the right side of the right pore of width dLR � mσ . The fine
structure of the 〈τ̃LR(m)〉 can possibly be detected from DNA
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FIG. 5. MFPT as a function of � fLR. The black, red, green, and
blue lines refer to chain stiffness κ = 0, 16, and 64, respectively. The
inset at the left shows normalized MFPT where all the plots collapse
onto the same master plot. The inset at the right is the corresponding
plot of the inset at the left on a logarithmic scale.

flossing experiments reported recently [10], where the current
blockade due to a known genomic length segment tagged by
proteins is measured repeatedly by altering the bias between
the pores.

E. Translocation with a net bias

In a TOW situation, the translocation process is diffusive
and hence slow. Thus a more desirable situation is to apply a
net, albeit a small bias � �fLR = �fL + �fR �= 0, so that the DNA
can move slowly. The presence of two forces at each pore
can provide a feedback mechanism to control the movement
of the translocating chain [9]. We define � fLR = ±|� fLR|,
where the ± sign refers to direction of the net force �fLR

[positive (negative) for left (right) to right (left) translocation].
We observe that, for a low bias (|� fLR| < kBT/σ ), the MFPT
initially decreases almost exponentially (Fig. 5), and when
the bias is increased beyond |� fLR|σ � kBT , then the MFPT
decays with a power law 〈τ 〉 ∼ |� fLR|−1. The shape of the
curve from our simulation (Fig. 5) is almost the same as
reported in the DNP experiment by Zhang et al. [9]. Since
the length and time scale of simulation and experimental
scales are different, it seems that this behavior is generic,
independent of the size of the system. The inset of Fig. 5 at
the left shows the normalized 〈τ 〉/〈τ0〉 for several values of κ ,
demonstrating that this is a generic feature for a wide range of
chain stiffness. Here we have chosen the normalization factor
〈τ0〉 to be the MFPT for � fLR = 0.1. This eliminates the chain
length dependence of 〈τ 〉. The inset of Fig. 5 at the right
shows that the 〈τ 〉 ∼ |� fLR|−1 (for 1.0 < � fLR � 3) [20]. We
have checked that for dLR = 16 and 24 and for chain length
N = 64–256 that this trend is the same. Similar dependence
on the force has been observed for SNP translocation [20].

We complete our scaling analysis by studying the chain
length dependence of the MFPT. We find that 〈τ 〉 ∼ N1.5 as
evident from (i) the data collapse of the histogram of the
MFPT and the (ii) two insets of Fig. 6. The slope for each
curve at the inset at the right for � fLR = 1, 2, 3 is 1.5 ± 0.02.
Figure 6 shows this data collapse. Furthermore, combining
these results with 〈τ 〉 ∼ |� fLR|−1 we obtain

〈τ 〉 = A|� fLR|−1N1.5. (10)

FIG. 6. Histogram of the MFPT as a function of τ/N1.5 for two
different net bias �FLR and two chain length N = 128 and 256 which
shows data collapse; teal circles and orange squares correspond to
N = 128 and �FLR = 2 and 3. Green diamonds and blue circles
correspond to N = 256 and �FLR = 2 and 3. The inset at the right
shows plots for 〈τ 〉 ∼ N (log scale) for �FLR = 1 (black circles),
2 (red squares), and 3 (green diamonds). The straight lines in each
case are a linear fit with slope 1.5 ± 0.02. The inset at the left is the
corresponding plot of �FLR〈τ 〉 ∼ N .

The inset at the left of Fig. 6 convincingly shows the data
collapse for two chain lengths N = 128 and 256 for two
values of � fLR = 2 and 3, respectively, verifying Eq. (10).
This power law scaling of Eq. (10) with the value of the ef-
fective translocation exponent α ≈ 1.5 for chain lengths N ∼
100–500 is the same as observed in a biased SNP [30,32,37].
This is discussed in detail below.

The scaling ansatz for the MFPT of a fully flexible chain
in the context of a SNP translocation is given by [16,17]

〈τ 〉 ∼ [AN1+ν + ηporeN]|�FLR|−1 ∼ Nα. (11)

Here A is constant, ν = 0.75 and 0.5888 is the Flory exponent
in 2D and 3D, respectively, and ηpore is the pore friction.
Equation (11) for a self-avoiding fully flexible chain holds for
small to strong stretching force limit (trumpet, stem-flower,
and strongly stretched) regimes [16,17].

Following Cantor and Kardar, the origin of the first term
is 〈τ 〉 ∼ 〈Rg〉/vCM = Nν/N−1 = N1+ν [38], where 〈Rg〉 is the
radius of gyration of the chain. The second term ηporeN in
Eq. (11) is the contribution of the pore friction ηpore and
proportional to the contour length of the chain. When the
chain length is small, then the pore friction term has a sig-
nificant effect on the effective translocation exponent α and
1 < α < 1 + ν [30,32]. This is the reason for the smaller
value of the effective translocation exponent 1.5 for the range
of 100 < N < 500 rather than the α = 1 + ν = 1.75 (2D). In
the long chain limit α → 1 + ν, as the dominant contribution
to the translocation time comes from the friction due to the
movement of the polymer inside the solvent.

When the chain persistent length �p � L, the Flory theory
for the radius of gyration following Nakanishi [39] and Scha-
effer, Pincus, and Joanny [40] is written as√

〈R2
g〉 ∼ �1/d+2

p Nν . (12)

In a previous paper we have shown the regime of L/�p, where
the above relation is strictly valid [25]. Thus, in the limit when
�p � L, a plausible generalization of the scaling ansatz of
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FIG. 7. (a) Plot of 〈τ 〉|� fLR|/N as a function of Nν for |� fLR| =
2 (black circles) and 3 (red squares). The green solid line is a straight
line fit through the points (which are average of black circles and red
squares for each value of N = 128, 192, 256, and 320, respectively)
and enables us to determine A = 0.219 and ηpore = 6.929. The
brown star corresponds to the predicted value for N = 384 from the
extrapolated line (green dashed line), while the black circle and red
square are the data obtained from simulation. (b) Demonstration that
subtracting the pore friction one regains the asymptotic exponent of
1 + ν ≈ 1.75 ± 0.01 for long chains.

Eq. (11) is

〈τ 〉 ∼ [
A′�1/d+2

p N1+ν + η̃pore(�p)N
]|�FLR|−1 ∼ Nα. (13)

The second term η̃pore(�p) is now a function of the chain
persistence length. Thus, for a given persistence length �p,
Eq. (13) reduces to Eq. (11) with A = �1/d+2

p A′, which then
can be used to predict the behavior of longer semiflexible
chains for the cases when �p � L. The MFPT for shorter
chains (still for those chain lengths for which L/�p  1) are
used to numerically obtain A and ηpore(�p), which then can be
substituted into Eq. (11) to predict the MFPT of longer chains.
This scheme is shown in Fig. 7. Equation (11) can be rewritten
as follows:

〈τ 〉|� fLR|
N

= ANν + ηpore(�p). (14)

Thus for a given value of the chain persistence length �p, a plot
of 〈τ 〉|� fLR|/N as a function of Nν will produce a straight line
with the slope A and ηpore as the intercept. Figure 7(a) clearly
shows the validity of the scaling ansatz as in Eq. (11). Here
we have used Eq. (13) and the simulation data for the MFPT
for chain lengths N = 128, 192, 256, and 320 to obtain the
value of the pore friction η̃pore for κ = 8.0 (the correspond-
ing �p = 2κ/kBT = 13.3). The choice of these chain lengths
satisfies 2.2 < L/�p < 3.2, and from our previous work [25]
we confirm that these combinations of L and �p are well in
the two dimensional self-avoiding random walk (2DSAW)

regime and satisfy Eq. (12). A linear regression perfectly fits
the simulation data and the data for different values of the
bias |� fLR| = 2 and 3 collapse on the same master plot with
A = 0.219 and ηpore = 6.929. Substituting these values of A
and ηpore into Eq. (11) (〈τ 〉|� fLR|/N = 0.219Nν + 6.929) we
extrapolate [dashed green line in Fig. 7(a)] to predict the
MFPT for N = 384 (brown star) and check that this point falls
on top of the simulation data for N = 384 (black circles and
red squares). Once ηpore is known, one can also check that
subtracting the pore friction contribution from 〈τ 〉 provides a
slope of 1 + ν. This is shown in Fig. 7(b), where a log-log
plot of 〈τ 〉|� fLR| − ηporeN versus N indeed produces a slope
≈1 + ν (the regression produces a slope 1.75 ± 0.01). This
proves that in the limit dLR/L � 1 the scaling ansatz for the
SNP translocation works for the model DNP system.

It is worth noting that generalizing the scaling ansatz in
three dimensions (3D) will be more challenging as unlike
in 2D, where the Gaussian regime is absent [25], the self-
avoiding random walk (SAW) in 3D (3DSAW) appears at
the end of the Gaussian regime and hence will require much
longer chain lengths. Additionally, it is worth investigating the
scaling ansatz for different regimes (rod, Gaussian, and SAW)
and for larger biases when the additional friction from the
translocated segment of the chain may need to be incorporated
separately [41].

IV. SUMMARY AND CONCLUSION

To conclude, we have studied various aspects of transloca-
tion in a model DNP system. The system we have studied is an
ideal system motivated by recent experiments to answer some
general characteristics of translocation through a DNP in the
limit dLR/L � 1. Our studies of the TOW show that the effect
of the magnitude of the TOW forces will be more prominent
for a ssDNA but likely to be insignificant for long dsDNA
segments used in recent experiments. These conclusions were
verified by studying the translocation of a triblock copolymer
ABA and using the known result that a stiffer polymer translo-
cates slower through a SNP. One of the primary motivations
of recent experiments is to measure the current blockade time
(TOF) for a tagged DNA segment of known length translocat-
ing through a DNP system. If the segment moves through the
DNP with a constant velocity, then the current blockade time
can be readily translated to the corresponding genomic length.
Thus our studies of TOF are directly relevant for DNP experi-
ments where the goal is to extract genomic distances from the
data obtained in the time domain. We demonstrate that the
TOF has a quasiperiodic structure (implicating nonuniform
speed). In the limit when dLR � L by applying a net bias on
the DNP we demonstrate that we recover scaling laws of SNP
translocation. When dLR/L � 1 and the chain is subject to
TOW forces, the entropic contribution from the segment in
between the pore is almost insignificant compared to the total
entropy of the chain. Thus, in this limit, the pore friction term
ηporeN from each pore adds up linearly (so that for the case
of pores of the same width it will simply be proportional to
the number of pores), and one recovers the scaling ansatz for
the SNP translocation. A DNP is an interesting system where
one can create different chain conformations with variable
tension and stiffness for the chain segment in between the
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pores by adjusting �fL, �fL, and dLR. Thus simulation studies
of block copolymers and random heteropolymer translocation
through DNP systems can produce intriguing and exciting re-
sults for studying nonlinear elasticity of biopolymers [42–44].
We hope that these results will provide further insights to
design new experiments, be useful for making a theoretical
framework for multipore translocation, and promote further
work in this direction.
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