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Modeling stochastic gene expression has long relied on Markovian hypothesis. In recent years, however,
this hypothesis is challenged by the increasing availability of time-resolved data. Correspondingly, there is
considerable interest in understanding how non-Markovian reaction kinetics of gene expression impact protein
variations across a population of genetically identical cells. Here, we analyze a stochastic model of gene
expression with arbitrary waiting-time distributions, which includes existing gene models as its special cases.
We find that stationary probabilistic behavior of this non-Markovian system is exactly the same as that of an
equivalent Markovian system with the same substrates. Based on this fact, we derive analytical results, which
provide insight into the roles of feedback regulation and molecular memory in controlling the protein noise
and properties of the steady states, which are inaccessible via existing methodology. Our results also provide
quantitative insight into diverse cellular processes involving stochastic sources of gene expression and molecular
memory.
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I. INTRODUCTION

Gene expression in single cells is inherently stochastic.
This stochasticity is critical for the maintenance of cellu-
lar functions as well as for the generation of phenotypic
variability among genetically identical cells. Quantifying the
contributions of different sources of the gene expression noise
using stochastic models [1–3] is an essential step towards
understanding fundamental intracellular processes and cell-
to-cell variability in gene expression.

Traditionally, modeling stochastic gene expression is based
on the Markovian assumption, i.e., the stochastic motion of
messenger (m)RNA or protein is uninfluenced by previous
states, only by the current state. This memoryless property
implies that the reaction kinetics can be described by Pois-
sonian processes with constant rates, which are characterized
by exponential waiting time distributions [4]. However, gene
products (mRNA or proteins) observed in experiments are,
in general, synthesized not in a single-step manner but in
a multistep manner, creating a memory between individual
events and leading to non-Markovian kinetics [5–8]. More
generally, the dynamics of a given reactant resulting from its
interactions with the environment cannot be described as a
Markovian process [9]. Indeed, molecular memory (MM) in
gene expression has been verified by the increasing availabil-
ity of time-resolved data [10–16].

Given the above experimental facts, an important yet un-
solved question is: How does MM affect stochastic gene
expression? This issue was previously addressed in terms of
statistics [6], but in general a random variable is best char-
acterized by its distribution. Since the Markov theory cannot
translate directly to modeling and analysis of non-Markovian
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processes, this leads to many significant challenges. Here we
develop a technique to analyze a stochastic model of gene
expression with arbitrary intrinsic event waiting-time distribu-
tions (a popular way to characterize MM in the physical field
[17], but different from queuing waiting-time distributions
in queue theory [6]). The key point of this technique is to
introduce an effective transition rate for each reaction involved
and prove that stationary probabilistic behavior of the original
non-Markovian system is exactly the same as that of an
equivalent Markovian system with the same substrates. As
such, we derive analytical results for statistics and stationary
distributions, which provide quantitative insights into diverse
cellular processes involving stochastic sources of gene expres-
sion and MM.

II. MODEL DESCRIPTION

A gene model to be studied is schematically shown in
Fig. 1(a), where different from the previous descriptions of
Markovian models of gene expression [18–24], we adopt
intrinsic event waiting-time distributions [17] to characterize
reaction kinetics. First, assume that the gene promoter has one
active (ON) and one inactive (OFF) states, and each mRNA
degrades instantaneously after producing a protein molecule.
Second, since the chromatin template accumulates over time
until the promoter becomes active [25], the waiting-time
distribution from OFF to ON is, in general, nonexponential
and is denoted by ψ1(t ; n), where n represents the number of
protein molecules. Self-regulation exists if ψ1(t ; n) depends
on n and does not exist otherwise. The promoter switching
from ON to OFF has been reported to occur with essentially
a single rate-limiting step, and thus can be modeled by a
constant switching rate [26], implying that the correspond-
ing waiting-time distribution is exponential, i.e., ψ2(t ; n) =
βe−βt , where β represents the mean switching rate. Third,
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FIG. 1. This paper proves that the stationary behavior of a non-Markovian gene expression system with general waiting-time dis-
tributions ψi(t ; n) (a) is exactly the same as that of an equivalent Markovian gene expression system with exponential waiting-time
distributions Ki(n)e−Ki (n)t (b), where 1 � i � 4, X stands for protein and n for its molecular number, and Ki(n) represents the effective
transition rate (see the main text). (c) It is demonstrated that dynamic behavior of a non-Markovian gene expression system described by

DNA
(μk/�(k))t k−1e−μt

−−−−−−−−−→ DNA + B · X and X
δe−δt−−→ ∅ can be well approximated by that of an equivalent Markovian gene expression system

described by DNA
K1(n)−−→ DNA + B · X and X

K2 (n)=nδe−nδt

−−−−−−−→ ∅, where B represents burst size that is assumed to follow a geometric distribution:
prob{B = i} = bi/(1 + b)i+1, and �(·) is the common Gamma function. In (c), D represents the Kullback-Leibler divergence between two
distributions in the sense of Laplace transform. Parameter values are set as k = 2, μ = 10, δ = 1, and b = 2.

assume that proteins are generated in bursts with burst size (B)
following a distribution, and degrade in a linear manner with
constant rate δ (implying that the corresponding waiting-time
distribution is also exponential, i.e., ψ4(t ; n) = nδe−nδt , where
δ represents the mean decay rate and will be set as 1 without
loss of generality). Finally, we assume that the intrinsic event
waiting-time distribution for protein production, ψ3(t ; n), is
general. If ψ3(t ; n) depends on n, this implies the occurrence
of posttranscriptional or posttranslational regulation. We em-
phasize that the gene model described here includes almost the
existing gene models [19,20,24] (e.g., the common ON-OFF

model of gene expression where all the reaction rates are
assumed to be constants) as its special cases. For convenience,
we denote by Ri (1 � i � 4) four reactions for transitions
from OFF to ON and vice versa, synthesis, and degradation
of proteins, respectively.

Let P0(n; t ) and P1(n; t ) represent the probabilities that
protein has n molecules in OFF and ON states at time t ,
respectively. Let Mi(t ; n) be the memory function for Ri.
According to continuous time random walk theory [27,28],
the chemical master equation (CME) for the gene model
depicted in Fig. 1(a) can be described as

sP̃0(n; s) − P0(n; 0) = −M̃1(s; n)P̃0(n; s) + M̃2(s; n)P̃1(n; s) + (E − I)[M̃4(s; n)P̃0(n; s)],

sP̃1(n; s) − P1(n; 0) = M̃1(s; n)P̃0(n; s) − M̃2(s; n)P̃1(n; s) +
n∑

i=0

gn−iM̃3(s; i)P̃1(i; s) − M̃3(s; n)P̃1(n; s)

+ (E − I)[M̃4(s; n)P̃1(n; s)], (1)

where gn ≡ prob{B = n} is the burst size distribution that
is assumed to follow a geometric distribution given by
prob{B = i} = bi/(1 + b)i+1 with b representing the mean
burst size, E is the step operator, and I is the unit operator.
In Eq. (1), function M̃i(s; n) is the Laplace transform of
memory function Mi(t ; n), which is defined as Mi(t ; n) =
L−1(sϕ̃i(s; n)/(1 − ∑4

k=1 ϕ̃k (s; n))), where L−1 represents the
inverse of the Laplace operator, and ϕ̃i(s; n) is the Laplace
transform of function ϕi(t ; n) where ϕi(t ; n)dt represents the
probability of both the ith reaction happening and the reaction
waiting time being in the inetrval [t, t + dt]. Using the inverse
of Laplace transform, we can obtain differential equations for
Pi(n; t ) (i = 0, 1), but directly solving these equations is, in
general, very difficult since memory functions are implicitly
expressed by waiting-time distributions [17]. Only for some
special cases (e.g., Ref. [29]), can the analytical protein distri-
butions be found.

Below, we assume that stationary protein distribution exists
(in fact, numerical simulation has verified this point, referring
to Fig. 3(a) and is denoted by P(n). Thus, two factorial
stationary distributions, P0(n; t ) and P1(n; t ), also exist due to
P(n) = P0(n) + P1(n).

III. MAIN RESULTS

Before presenting main results, let us define an effective
transition rate for each of four reactions Ri (1 � i � 4) and
derive the analytical formula expressed in terms of waiting-
time distributions. Recall that function M̃i(s; n), which is the
Laplace transform of memory function Mi(t ; n), is defined
according to [5,17]

M̃i(s; n) = sϕ̃i(s; n)

1 − ∑4
i=1 ϕ̃i(s; n)

, 1 � i � 4, (2)
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where ϕ̃i(s; n) is the Lapace transform of function ϕi(t ; n).
Note that if the gene is in the OFF state, reactions R2 and R3

will not happen, implying that ψ2(t ; n) = ψ3(t ; n) = 0, and
if the gene is in the ON state, reaction R1 will not happen,
implying that ψ1(t ; n) = 0. Thus, if we appropriately define
ψ̄i(t ; n) when considering ON and OFF states, then

ϕi(t ; n) = ψ̄i(t ; n)
∏
j �=i

[
1 −

∫ t

0
ψ̄ j (t

′; n)dt ′
]

= ψ̄i(t ; n)
∏
j �=i

∫ ∞

t
ψ̄ j (t

′; n)dt ′. (3)

Also note that
∫ ∞

t ψ̄ j (t ′; n)dt ′ = 1 − ∫ t
0 ψ̄ j (t ′; n)dt ′ repre-

sents the probability that reaction Rj does not happen in the
time interval [0, t], so the product

∏
j �=i [1 − ∫ t

0 ψ̄ j (t ′; n)dt ′]
represents the probability that these reactions does not occur
in this interval. Since.

4∑
i=1

ϕi(t ; n) =
4∑

i=1

ψ̄i(t ; n)
∏
j �=i

[
1 −

∫ t

0
ψ̄ j (t

′; n)dt ′
]

= − ∂

∂t

4∏
j=1

∫ ∞

t
ψ̄ j (t

′; n)dt ′,

we have

1 −
4∑

i=1

∫ ∞

0
e−stϕi(t ; n)dt

= 1 +
∫ ∞

0
e−st

⎛
⎝ ∂

∂t

4∏
j=1

∫ ∞

t
ψ̄ j (t

′; n)dt ′

⎞
⎠dt

= s
∫ ∞

0
e−st

⎛
⎝ 4∏

j=1

∫ ∞

t
ψ̄ j (t

′; n)dt ′

⎞
⎠dt .

Thus, if we define Ki(n) = lim
s→0

M̃i(s; n), then

Ki(n) = lim
s→0

sϕ̃i(s; n)

1 − ∑4
i=1 ϕ̃i(s; n)

= lim
s→0

s
∫ ∞

0 e−stϕi(t ; n)dt

s
∫ ∞

0 e−st
(∏4

j=1

∫ ∞
t ψ̄ j (t ′; n)dt ′)dt

=
∫ ∞

0 ϕi(t ; n)dt∫ ∞
0

(∏4
j=1

∫ ∞
t ψ̄ j (t ′; n)dt ′)dt

.

Using Eq. (3), Ki(n) is explicitly expressed as

Ki(n) =
∫ +∞

0 ψ̄i(t ; n)
[∏

j �=i

∫ ∞
t ψ̄ j (t ′; n)dt ′]dt∫ +∞

0

[∏4
j=1

∫ ∞
t ψ̄ j (t ′; n)dt ′]dt

,

1 � i � 4. (4)

Function Ki(n) will be called the effective transition rate
for reaction Ri (1 � i � 4). Specifically, we have ψ̄i(t ; n) =
ψi(t ; n) (i = 1, 4) and ψ̄k (t ; n) = 0 (k = 2, 3) when calcu-
lating K1(n) according to K1(n) = lim

s→0
M̃1(s; n); ψ̄1(t ; n) =

0, ψ̄i(t ; n) = ψi(t ; n) (i = 2, 3, 4) when calculating K2(n)

or K3(n) according to Kk (n) = lim
s→0

M̃k (s; n)(i = 2, 3); and

(1 � i � 4) when calculating K2(n) according to K4(n) =
lim
s→0

M̃4(s; n).

Interestingly, if ψi(t ; n) is an exponential distribution of
the form ψi(t ; n) = λi(n)e−λi (n)t , where λi(n) should be un-
derstood as the reaction propensity function for reaction Ri,
we have

Ki(n) =
∫ +∞

0 λi(n)e−λi (n)t
[∏

j �=i

∫ ∞
t ψ j (t ′; n)dt ′]dt∫ +∞

0 e−λi (n)t
[∏

j �=i

∫ ∞
t ψ j (t ′; n)dt ′]dt

= λi(n).

This indicates that the effective transition rate for reaction
Ri is equal to the reaction propensity function for this re-
action in this case. Therefore, effective transition rates are
extensions of common reaction propensity functions. If all
waiting-time distributions are exponential, which corresponds
to the Markovian case, Eq. (1) reduces to the common ON-
OFF model in the sense of Laplace transform. We point out
that the introduction of effective transition rates will be a key
to analyze the behavior of the original non-Markovian gene
system.

Based on Ki(n), it is natural to construct an equivalent
reaction network with the same substrates but without MM,
referring to Fig. 1(b). For this network, the reaction process is
Markovian since the corresponding waiting-time distributions
are exponential: ψi(t ; n) = Ki(n)e−Ki (n)t . Importantly, there is
a close relationship between the behaviors of this artificial
system and the original non-Markovian system. First, we can
show that the stationary probabilistic behaviors of these two
systems are exactly the same. In fact, according to the final
value theorem [30], we know lim

s→0
sP̃i(n; s) = Pi(n), where

i = 0, 1. First multiplying s on both sides of Eq. (1) and then
taking the limt with regard to s yield the following common
stationary generalized CME:

−K1(n)P0(n) + K2(n)P1(n) + (E − I)[nP0(n)] = 0,

K1(n)P0(n) − K2(n)P1(n) + (E − I)[nP1(n)]

+
n∑

i=0

gn−iK3(i)P1(i) − K3(n)P1(n) = 0, (5)

where we have used the assumption of δ = 1. This fact not
only reveals the essential characteristic of non-Markovian
reaction kinetics but also lays a solid foundation for further
analyzing the effect of MM. Second, there would be differ-
ences between dynamic behaviors of the two systems. In fact,
if we denote by Q0(n; t ) and Q1(n; t ) the probabilities that
protein has n molecules in OFF and ON states at time t in
the constructed gene system, respectively, we can easily write
the CME for Q0(n; t ) and Q1(n; t ) in the sense of Laplace
transform, whose form is similar to Eq. (1) if M̃i(s; n) is
replaced with Ki(n). Define Q = Q0 + Q1, which represents
the total probability. Let D(s) represent the Kullback-Leibler
divergence between Q̃(n; s) and P̃(n; s), that is,

D(s) =
∞∑

n=0

Q̃(n; s)∑∞
i=0 Q̃(i; s)

ln
Q̃(n; s)

/∑∞
i=0 Q̃(i; s)

P̃(n; s)
/∑∞

i=0 P̃(i; s)
.

Note that t → +∞ corresponds to s → 0. From Fig. 1(c),
we observe that D(s) → 0 as s → 0. This indicates that the
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dynamic distribution in the Markovian case can well approx-
imate that in the non-Markovian case after the time is long
enough. Nevertheless, we only consider stationary behavior
in this paper.

A. Molecular memory can adjust the strength of feedback

Since an Erlang distribution is the convolution of exponen-
tial distributions [31], it can be used to model a multistep pro-
cess. In the following, we analyze two special cases to show
the explicit effect of MM characterized by Erlang distribution.

Case 1: ψ1(t ; n) = [(λ1(n))I1/�(I1)]t I1−1e−λ1(n)t ,
ψ2(t ; n) = βe−βt and ψ3(t ; n) = μe−μt , where λ1(n) is
a feedback regulation function [if λ1(n) is independent
of n, this implies the absence of feedback] and is set as
λ1(n) = α + f1nh1/(Kh1

1 + nh1 ) with f1 representing feedback
strength, h1 being the Hill coefficient and K1 being a threshold
constant. Positive constants α, β, and μ represent average
switching rates from OFF to ON and vice versa, and the
average transcriptional or translational rate, respectively. Note
that I1 = 1 corresponds to the Markovian case whereas I1 > 1
to the non-Markovian case. Therefore, I1 is called memory
index. According to Eq. (4), we can show K2(n) = β,
K3(n) = μ, K1(n) = n(λ1(n))I1/[(ξ1(n))I1 − (λ1(n))I1 ],
where ξ1(n) = n + λ1(n) and K1(0) = λ1(0)/I1. If I1 = 1,
then K1(n) = λ1(n), indicating that feedback is kept
unchanged if f1 �= 0. However, if I1 > 1 then K1(n) will
not be equal to λ1(n). Furthermore, if f1 = 0 (i.e., if the
original non-Markovian system has no feedback), then
K1(n) = n(n + α)I1/[(n + α)I1 − αI1 ], implying that the effect
of MM is equivalent to the introduction of negative feedback
if I1 > 1, e.g., K1(n) = α2/(n + 2α) if I1 = 2. If f1 �= 0
(i.e., if the original non-Markovian system has feedback),
then K1(n) is a monotonically decreasing function of n if
I1 > 1. Moreover, K1(n) with I1 > 1 is always less than K1(n)

with I1 = 1, implying that MM always reduces the feedback
strength. Extremely, feedback regulation disappears if I1 tends
to infinity.

Case 2: ψ1(t ; n) = αe−αt , ψ2(t ; n) = βe−βt , and
ψ3(t ; n) = [(λ3(n))I3/�(I3)]t I3−1e−λ3(n)t , where I3 is a
memory index, and the meaning of λ3(n) is similar
to that of λ1(n) in Case 1. Function λ3(n) will be set
as λ3(n) = μ + f3nh3/(Kh3

3 + nh3 ) with f3 representing
feedback strength, h3 being the Hill coefficient and K3

being a threshold constant. In this case, we can show
K3(n) = (λ3(n))I3 ξ3(n)−λ3(n)

(ξ3(n))I3 −(λ3(n))I3
with ξ3(n) = α + n + λ3(n),

K1(n) = α, and K2(n) = β. Similar to Case 1, MM can
adjust the strength of posttranscriptional or posttranslational
regulation and its effect is equivalent to the introduction of a
negative feedback even if λ3(n) does not depend on n (or is a
constant).

In addition, we can analyze the combination of the above
two cases. In a word, effective transition rates introduced
above not only explicitly decode the memory effect but also
can give us useful information on the underlying system. MM
can adjust the feedback strength as shown above, so it would
not be strange that MM can induce additional dynamics.

B. Stationary protein distributions

Equation (5) is essentially an iterating system, but solving
it is still difficult since Ki(n) is in general a nonlinear function
of n and in particular, initial values Pi(0) (i = 0, 1) are not
known. Here, we develop a technique to derive the explicit
expression of P(n) from Eq. (5). Simply speaking, this tech-
nique first expresses P0(n) and P1(n) as well as P(n) in terms
of P0(0) and P1(0) by applying the mathematical induction,
then shows P0(0) = CP(0) with C being a positive constant
between 0 and 1, and finally determines C by the conservative
condition of probability combined with

−
N∑

n=0

K1(n)P0(n) +
N∑

n=0

K2(n)P1(n) + (N + 1)P0(N + 1) = 0, for any N,

which can be derived from Eq. (5). Interestingly, we find that P(n) can be formally expressed as (see Appendix A)

P(0) = lim
N→+∞

1

1 + ∑N
i=1 (ai − Cbi )

/
i!

, (6)

P(n) = 1

n!
[anP(0) − bnP0(0)] = 1

n!

an − Cbn

1 + lim
N→+∞

∑N
i=1 (ai − Cbi )/i!

, n = 1, 2, · · · , (7)

where C is given by

C = lim
N→+∞

K2(0) + ∑N
i=1 [(ai + ci )K2(i) + ciK1(i)]

/
i!

K1(0) + K2(0) + ∑N
i=1 [(bi + di )K2(i) + diK1(i)]/i!

. (7a)

In Eq. (6), we have a0 = 1, b0 = 0 and a1 = b1 = b
1+bK3(0), and the other an and bn are expressed as

an = 1

n

n−1∑
k=0

K3(k)

k!

(
b

1 + b

)n−k
⎡
⎣ak +

k−1∑
i=1

K2(i)ai

k−1∏
j=i+1

( j + K1( j) + K2( j))

⎤
⎦ + K2(0)

n

n−1∑
k=1

K3(k)

k!

(
b

1 + b

)n−k

×
k−1∏
i=1

(i + K1(i) + K2(i)) (7b)
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and

bn = 1

n

n−1∑
k=0

K3(k)

k!

(
b

1 + b

)n−k
⎡
⎣bk +

k−1∑
i=1

K2(i)bi

k−1∏
j=i+1

( j + K1( j) + K2( j))

⎤
⎦ + 1

n

n−1∑
k=1

K3(k)

k!

(
b

1 + b

)n−k

×
k−1∏
i=0

(i + K1(i) + K2(i)), (7c)

implying that all an and bn can be iteratively given. After having determined an and bn, we can further determine cn and dn in
Eq. (7a), according to the following relations:

cn =
n−1∑
i=1

K2(i)ai

n−1∏
j=i+1

( j + K1( j) + K2( j)) + K2(0)
n−1∏
i=1

(i + K1(i) + K2(i)), (7d)

dn =
n−1∑
i=1

K2(i)bi

n−1∏
j=i+1

( j + K1( j) + K2( j)) +
n−1∏
i=0

(i + K1(i) + K2(i)). (7e)

We emphasize that the formulas above are exact although
they look complicated.

It is worth pointing out that the above method (or see the
Supplemental Material of this paper wherein the complete
mathematical details are given and more numerical results
are demonstrated) can be used to derive the formal expres-
sion for gene-product distribution in the common ON-OFF
model of gene expression with feedback of arbitrary forms
(including linear or nonlinear feedback, posttranscriptional
or posttranslational regulation, etc.). This is because Ki(n)
(i = 1, 2, 3) may be arbitrary functions of n. In addition,
known distributions for gene expression models in the existing
literature can be reproduced via Eq. (6). In fact, for the com-
mon ON-OFF model for which the waiting-time distributions
are given by ψ1(t ; n) = αe−αt , ψ2(t ; n) = βe−βt , ψ3(t ; n) =
μe−μt , we can show P(0) = 1F1(α; α + β; −μ), P0(0) =

β

α+β 1F1(α; α + β + 1; −μ), and C = β

α+β
1F1(α,α+β+1;−μ)

1F1(α,α+β;−μ) . Ac-
cording to Eq. (7), we find that the stationary protein distribu-
tion is given by (see Supplemental Material [37])

P(n) = μn

n!

(α)n

(α + β )n
1F1(α + n, α + β + n; −μ),

where 1F1(a, b; z) is the Kummer confluent hypergeomet-
ric function. Similarly, for this gene model, if feedback is
considered, e.g., if ψ1(t ; n) = (α + n f )e−(α+n f )t , ψ2(t ; n) =
(β + ng)e−(β+ng)t , and ψ3(t ; n) = μe−μt are set, then we can
show that the stationary protein distribution is given by

P(n) = P(0)

(n)!

(
μξ

η2

)n (a)n

(b)n
1F1

(
n + a, n + b; − μ

η2

)
,

where P(0) = [1F1(a, b; −μ/η2)]−1, ξ = 1 + f , η = 1 + f +
g, a = α

ξ
, b = β

ξ
+ μg

η2 . These are all known distributions for
gene expression [24,32].

More importantly, based on the equations or relations
above, we can establish an effective algorithm to calculate
stationary protein distributions. Here we list the main steps
for this algorithm below.

Step-0: Input parameter values and N (a larger positive
integer, e.g., N = 200), and calculate a1 = b1 = K3(0), and
K1(0), K2(0);

Step-1: Set n = 1;
Step-2: Calculate Ki(n) (1 � i � 3), an and bn according to

Eqs. (7b) and (7c), cn and dn according to Eq. (7d) and (7e);
Step-3: Update n + 1 → n. If n � N , go to Step-2 and turn

to the next step elsewhere;
Step-4: Calculate C according to Eq. (7a), and P(n) accord-

ing to Eqs. (6) and (7), where n = 0, 1, 2, · · · , N ;
Step-5: Output P(n).
If burst size is not considered, then by a series of matem-

atical operations, we can show that Eqs. (7a) and (7b) reduce,
respectively, to (see Appendix B for derivation)

an+1 = K3(n)(n − 1 + K1(n − 1) + K2(n − 1) + K3(n − 1))

K3(n − 1)

× an − K3(n)(n − 1 + K1(n − 1))an−1 (8a)

and

bn+1 = K3(n)(n − 1 + K1(n − 1) + K2(n − 1) + K3(n − 1))

K3(n − 1)

× bn − K3(n)(n − 1 + K1(n − 1))bn−1, (8b)

where n � 2. Note that a1 = K3(0) and a2 =
K3(1)(K3(0) + K2(0)), b1 = K3(0) and b2 =
K3(1)(K3(0) + K2(0) + K1(0)). These iterarive formulas
are much simpler than Eqs. (7b) and (7c).

We point out that since positive series
∑∞

n=0 (an − Cbn)/n!
is convergent, implying that (an − Cbn)/n! tends to zero
as n → +∞, we can have the approximation C ≈ an/bn

as n is sufficiently large. Numerical simulation verifies
that the rate an/bn rapidly approaches a stable value with
the increase of n, referring to Fig. 2. In other words,
the value of C is easily obtained by numerical calcula-
tion. After having determined C in such a manner, we can
adopt the following method to calculate the stationary dis-
tribution. First, we set yn = an − Cbn, where n = 2, 3, · · · ,
y2 = K3(1)(K3(0) + K2(0))(1 − C) − CK3(1)K1(0), and y1 =
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FIG. 2. Convergence of series
∑∞

n=1 an/n! and
∑∞

n=1 bn/n!, where bursts are not considered. (a), (b) K̃1(n) = α̃, K̃2(n) = β̃, and K̃3(n) =
μ̃, where α̃ = 1, β̃ = 10, μ̃ = 10 for α + β > 2δ; α̃ = 1, β̃ = 1, μ̃ = 10 for α̃ + β̃ = 2; and α̃ = 0.1, β̃ = 0.5, μ̃ = 10 for α + β < 2δ.
(c), (d) K̃1(n) = α̃ + f̃ nh

Kh+nh , K̃2(n) = β̃ + g̃ nh

Kh+nh , K̃3(n) = μ̃, where α̃ = 1, β̃ = 10, μ̃ = 10, f̃ = 1.2, g̃ = 1, h1 = h2 = 2, K1 = K2 = √
10

for α̃ + f̃ + β̃ + g̃ > 2; α̃ = 0.5, β̃ = 0.5, μ̃ = 10, f̃ = 0.5, g̃ = 0.5, h1 = h2 = 2, K1 = K2 = √
10 for α̃ + f̃ + β̃ + g̃ = 2; and α̃ = 0.1,

β̃ = 0.1, μ̃ = 10, f̃ = 0.2, g̃ = 0.2, h1 = h2 = 2, K1 = K2 = √
10 for α̃ + f̃ + β̃ + g̃ < 2. The tilde bar represents the normalization by δ,

e.g., K̃1(n) = K1(n)/δ. Note that the barred parameters are actually the same as the corresponding unbarred parameters since δ = 1 has been
set.

K3(0)(1 − C). Then, according to Eqs. (7a) and (7b), we have

yn+1 = K3(n)(n − 1 + K1(n − 1) + K2(n − 1) + K3(n − 1))

K3(n − 1)

× yn − K3(n)(n − 1 + K1(n − 1))yn−1, (9)

which is an iterative system, where n = 2, 3, · · · . Note that
P(n) can be expressed directly by yn due to Eq. (7).

Finally, we point out that the above method actually gives
the formal expressions of stationary gene-product distribu-
tions in general gene models with feedback of arbitrary (linear
or nonlinear) forms including positive or negative feedback of
arbitrary forms as well as posttranscriptional or posttransla-
tional feedback of arbitrary forms (i.e., K1(n), K2(n) and K3(n)
may be arbitrary functions of n). The corresponding result
itself is interesting since the distributions in models of gene
expression with nonlinear feedbacks have not been derived.

C. Noise tunability

While dynamics of a stochastic variable (e.g., the protein
number in our case) is best characterized by the probability
mass function, statistics such as noise intensity (defined as the
ratio of the variance over the squared mean) can give more
intuitive characteristics of randomness. Noise tunability has
been extensively studied [1,2,6–8,10,19,20], but how memory
index fine tunes the protein noise remains elusive.

Although Eq. (4) gives the stationary protein distribution
through which we can, in principle, calculate the mean protein
level and the protein noise, one cannot clearly see how MM
affects the protein expression since the resulting expressions
for the statistics are rather formal. Based on Eqs. (6) and (7),
however, we can derive an effective approximation for the
mean protein level, which is given by

〈X 〉 = b
K1(0)K3(0)

K1(0) + K2(0)
. (10)

Apparently, this expression is exact in the absence of MM
due to K1(0) = α, K2(0) = β and K3(0) = μ in this case.
However, 〈X 〉 is in general a function of memory index in
the presence of MM. In fact, if we consider Case 1 with
λ1(n) = α, then K1(0) = α/I1, K2(0) = β and K3(0) = μ in
this case. Therefore, 〈X 〉 = bμ α/I1

α/I1+β
, which is a monotoni-

cally decreasing function of I1, implying that MM reduces the
mean protein level. Similarly, for Case 2 with λ3(n) = μ, we
have K1(n) = α, K3(0) = αμI3

(α+μ)I3 −μI3
, and K2(n) = β. There-

fore, 〈X 〉 = αb
(1+α/μ)I3 −1

, which is a monotonically decreasing
function of I3, implying that MM also reduces the mean
protein level.

Furthermore, if the protein noise is denoted by ηX , then it
can be approximated as

ηX = 1 + b

〈X 〉 + K2(0)

K1(0)

1

1 + K1(0) + K2(0)
, (11)
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FIG. 3. Effects of molecular memory on protein expression. This is the case where burst is not considered, where solid lines represent the
results obtained by theoretical prediction, whereas circles represent the results obtained by the Gillespie algorithm [34]. Parameter values are
set as: β = 5, b = 1 (i.e., burst is not considered), and δ = 1. Other parameters are determined by relations: α = 5I1, μ = 10I3, f1 = 0.2I1,
f3 = 0.2I3. Here we set λ1(n) = α + n f1 and λ3(n) = μ + n f3.

where b represents the mean burst size. Equation (11) actually
gives a decomposition formula for the protein noise, which
includes two parts: the internal noise and the promoter noise
[33], which correspond to the first and second terms in ηX ,

respectively. If we consider Case 1, then K1(0) is a mono-
tonically decreasing function of I1. Therefore, MM reduces
the mean protein level but amplifies the protein noise if the
mean protein level is fixed, referring to Figs. 3(b) and 3(c).
Similarly, if ψ3(t ; n) is an Erlange distribution of order I3

and ψ1(t ; n) is an exponential distribution, then I3 reduces
the mean protein level but amplifies the protein noise, also
referring to Figs. 3(b) and 3(c).

D. Memory-induced bimodality

Bimodality has important biological implication [35], but
whether molecular memory can induce bimodal protein dis-
tributions is unclear. Here we address this issue by mod-
eling the time evolution of the protein concentration x as
a hybrid switching ordinary differential equation, a special
class of the so-called piecewise deterministic Markov process
[36]. With this approximation, the time evolution of the con-
structed Markovian system [referring to Fig. 1(a)] is governed
by the Kolmogorov forward equation (see Appendix C for
derivation):

∂

∂t
p0(x; t ) = −K1(x)p0(x; t )+K2(x)p1(x; t )+ ∂

∂x
[xp0(x; t )],

∂

∂t
p1(x; t ) = K1(x)p0(x; t ) − K2(x)p1(x; t )

− b
∂

∂x
[K3(x)p1(x; t )] + ∂

∂x
[xp1(x; t )], (12)

where the assumption of δ = 1 has been used. In Eq. (12),
Ki(x) (1 � i � 3) and b all depend, in principle, on the system
size [36], but we omit for notation simplicity. Note that the
stationary probabilistic behavior of the constructed Markovian
reaction network is exactly the same as that of the original
non-Markovian reaction network, where effective transition
rates in the former system has incorporated the effect of
molecular memory in the latter system. This implies that
the stationary distributions of the two systems are also the
same. In the following analysis, we will therefore focus on
Eq. (12) at steady state. In order to numerically solve the
corresponding stationary equations, we adopt a simple yet
effective approximate approach, the core idea of which is to

use a piecewise deterministic equation group to the stochastic
behavior of the system described by Eq. (12) (see Ref. [36]
for details).

Set p(x) = p0(x) + p1(x), which represents the total pro-
tein probability. By adding the two equations of Eq. (12)
and considering the steady state, we can obtain the following
relationship:

p1(x)= x

bK3(x)
p(x). (13)

Furthermore, we have

p0(x) = p(x) − p1(x) =
[

1 − x

bK3(x)

]
p(x). (14)

Substituting Eqs. (13) and (14) to the second equation of
Eq. (12) at steady state yields[

K1(x) − xK1(x) + xK2(x)

bK3(x)

]
p(x) − d

dx

[
xp(x)

]

+ 1

b

d

dx

[
x2

K3(x)
p(x)

]
= 0,

from which we can obtain the following expression of steady-
state protein distribution:

p(x) = N exp

{∫ x K1(y) − 1

y
+ K2(y) − 1

y − bK3(y)

+ y
[
ln K3(y)

]′

y − bK3(y)
dy

}
, (15)

where N is a normalized factor, and [ln K3(y)]′ is the derivative
of the argument with respect to y. If K3(x) = μ, then

p(x) = N exp

{∫ x [
K1(y) − 1

y
+ K2(y) − 1

y − bμ

]
dy

}
. (16)

Furthermore, if K1(x) = α and K2(x) = β, then

p(x) = �(α + β )w1−α−β

�(α)�(β )
xα−1(w − x)β−1, (17)

where 0 < x < bμ with w = bμ being the maximum protein
concentration. Eq. (17) indicates that the steady-state protein
number follows a β distribution.

In the following, we separately consider two special non-
Markovian cases.
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FIG. 4. (a) Molecular memory can induce bimodal protein ex-
pressions: Case 1, where empty circles represent the results obtained
by a numerical method [36] whereas the solid curves represent the
results obtained by theoretical prediction. (b) Dependence of the
peaks of stationary distribution on memory index I1, where blue
symbols correspond to the left peak (i.e., the peak at x = 0) whereas
orange symbols to the right peak [(i.e., the peak at x = bμ)]. In (b),
the vertical dashed line represents the boundary of unimodality and
bimodality, and the solid curves conduct numerical results (since
analytical results cannot be given for some I1). In (a) and (b), we
set λ1(n) = α, α = 2.2, β = 0.8, μ = 2, b = 2, δ = 1.

(1) Assume that K1(x) = xαI1

(α+x)I1 −αI1
with K1(0) = α

I1
(this

corresponds to the switching reaction from OFF to ON is
non-Markovian), K2(x) = β and K3(x) = μ. In this case, the
steady-state protein distribution can be bimodal but cannot be
trimodal. For example, if I1 = 2, then the steady-state protein
distribution takes the form

p(x) ∼ xα/2−1(w − x)β−1(2α + x)−α/2, (18)

which is bimodal.
(2) Assume that K1(x) = α, K2(x) = β and K3(x) =
μI3 (α+x)

(α+μ+x)I3 −μI3
. In this case, the steady-state protein distribution

can be bimodal. In fact, we have

y − bK3(y) = H (y)

(α + μ + y)I3 − μI3
,

where H (y) = y(α + μ + y)I3 − yμI3 − bμI3 (α + y). Note
that the algebraic equation H (y) = 0 has one positive root if
I3 > 1. Therefore, the stationary protein distribution takes the
form

p(x) ∼ xA(x − x1)B(x + x2)C, (19)

where A, B, and C are constants depending on the system
parameters, x1 and x2 are positive constants.

Next, we perform numerical calculations using the numer-
ical method mentioned above. For clarity, we only consider
Case 1. In this case, numerical simulation shows that the
stationary protein distribution is bimodal for an appropriate I1,

although the distribution corresponding to I1 = 1 is unimodal,
referring to examples shown in Fig. 4(a). Note that in the
case of the occurrence of bimodality, one peak corresponds
to x = 0 whereas the other peak to x = bμ. For example,
if we set λ1(x) = α and I1 = 2, then p(x) takes the form
p(x) = Nxr−1(w − x)β−1(2α + x)−r , which is apparently
bimodal, where r = α/2 and 0 < x < w with w = bμ being
the maximum protein concentration.

IV. CONCLUSION AND DISCUSSION

In this paper, we have developed a stochastic gene model
that integrates key features of gene expression regulation
such as molecular memory, bursting, promoter switching and
feedback regulation, and derived the analytical expression
of the stationary protein distribution. The analytical results
derived, which generalize or extend previous results obtained
in the literature, provide insights into the effect of MM in
inducing bimodal protein distributions and fine-tuning noise
in gene expression as well as the role of feedback regulation
(including posttranscriptional or posttranslational regulation)
in controlling gene expression noise. Furthermore, the results
obtained here can provide guidelines for synthetic biologists
to design functional modules of gene expression.

We emphasize that most previously obtained results (in
particular, analytical stationary gene-product distributions ob-
tained) for ON-OFF models of gene expression (including
those with or without linear or nonlinear autoregulation) can
be reproduced via our method stated above. This is mainly
because effective transition rates Ki(n) in the Markovian re-
action case reduce to common reaction propensity functions.
In addition, the Supplemental Material [37] of this paper
provides more analytical and numerical results, which further
verify the qualitative conclusions obtained above.

It is worth noting that the effective transition rates in-
troduced above, which explicitly decode MM, can be easily
extended to other more complex biological reaction systems
with MM. As such, the stationary probabilistic behavior of
these non-Markovian systems can be converted to that of the
corresponding Markovian systems as done above. This will
open a direction for studying various non-Markovian reaction
processes on networks, and would lead to discovery of new
biological knowledge as shown above.
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APPENDIX A: DERIVATION OF EQ. (7)

For Eq. (5) in the main text, summing up two equations
yields

(n + 1)P(n + 1) − nP(n) = K3(n)P1(n)−
n∑

i=0

gn−iK3(i)P1(i),

n = 0, 1, 2, · · · .

Further, summing up both sides of the equation over n yields

P(n) = 1

n

n−1∑
k=0

K3(k)P1(k) − 1

n

n−1∑
k=0

k∑
i=0

gk−iK3(i)P1(i),
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which can be rewritten as

P(n) = 1

n
K3(0)P1(0)

(
1 −

n−1∑
i=0

gi

)
+ 1

n

n−1∑
k=1

K3(k)P1(k)

(
1 −

n−k−1∑
i=0

gi

)
, (A1)

where n � 1. From the first equation of Eq. (5) in the main text in combination with P1(n) = P(n) − P0(n), we have

P0(n) = n − 1 + K1(n − 1) + K2(n − 1)

n
P0(n − 1) − K2(n − 1)

n
P(n − 1). (A2)

In the following, we will take P(0) and P0(0) as parameters. Then, P0(n) can be explicitly expressed by P(0) and P0(0). For
this, we first establish the following lemma:

Lemma 1. If xn = anxn−1 + bn, n = 1, 2, · · · , then xn = x0

n∏
i=1

ai +
n∑

i=1
bi

n−1∏
j=i

a j+1, where we define
n−1∏
j=n

a j+1 ≡ 1.

Using this lemma, P0(n) can be expressed as

P0(n) = 1

n!
P0(0)

n−1∏
i=0

(i + K1(i) + K2(i)) −
n−1∑
i=0

K2(i)

i + 1
P(i)

n−1∏
j=i+1

j + K1( j) + K2( j)

j + 1
, (A3)

where we define
n−1∏
i=n

f (i) = 1 for function f (i), and n = 1, 2, · · · . Therefore, we have

P1(n) = P(n) − P0(n) = P(n) +
n−1∑
i=0

K2(i)
i+1 P(i)

n−1∏
j=i+1

j+K1( j)+K2( j)
j+1 − 1

n! P0(0)
n−1∏
i=0

(i + K1(i) + K2(i)).

Simultaneously, Eq. (A1) becomes

P(n) = 1

n
K3(0)P1(0)

(
1 −

n−1∑
i=0

gi

)
+ 1

n

n−1∑
k=1

K3(k)P(k)

(
1 −

n−k−1∑
i=0

gi

)
+ 1

n

n−1∑
k=1

K3(k)
k−1∑
i=0

K2(i)

i + 1
P(i)

×
k−1∏

j=i+1

j + K1( j) + K2( j)

j + 1

(
1 −

n−k−1∑
i=0

gi

)
− 1

n

n−1∑
k=1

K3(k)
1

k!
P0(0)

k−1∏
i=0

(i + K1(i) + K2(i))

(
1 −

n−k−1∑
i=0

gi

)
. (A4)

Then, by the mathematical induction, we can prove Eq. (7) in the main text.
Using the expression of P(n) given by Eq. (7) in the main text, P0(n) can formally be expressed as

P0(n) = 1

n!
[−cnP(0) + dnP0(0)], (A5)

where n � 1, and

cn =
n−1∑
i=1

K2(i)ai

n−1∏
j=i+1

( j + K1( j) + K2( j)) + K2(0)
n−1∏
i=1

(i + K1(i) + K2(i)), (A5a)

dn =
n−1∑
i=1

K2(i)bi

n−1∏
j=i+1

( j + K1( j) + K2( j)) +
n−1∏
i=0

(i + K1(i) + K2(i)). (A5b)

Meanwhile, P1(n) can formally be expressed as

P1(n) = 1

n!
[(an + cn)P(0) − (bn + dn)P0(0)], (A6)

where n = 1, 2, · · · .
The left question is how we determine P(0) and P0(0). Summing up the first equation of Eq. (5) in the main text over all n

from 0 to N yields

−
N∑

n=0

K1(n)P0(n) +
N∑

n=0

K2(n)P1(n) + (n + 1)P0(n + 1) = 0.

Using the expressions of P0(n) and P1(n) given above and assuming lim
n→∞ nP0(n) = 0, we know that there is a relationship

between P0(0) and P(0)

P0(0) = CP(0), (A7)
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where

C = lim
N→+∞

K2(0) + ∑N
i=1 [(ai + ci )K2(i) + ciK1(i)]

/
i!

K1(0) + K2(0) + ∑N
i=1 [(bi + di )K2(i) + diK1(i)]

/
i!

(A7a)

is a positive constant. In combination with the probability conservative condition,

1 =
∞∑

m=0

P(m) = P(0) +
∞∑

m=1

1

m!
[amP(0) − bmP0(0)] = P(0) + P(0)

∞∑
m=1

1

m!
(am − Cbm),

we can thus determine P(0) and P0(0), which are formally given by

P(0) = lim
N→+∞

1

1 + ∑N
i=1 (ai − Cbi )/i!

, P0(0) = lim
N→+∞

C

1 + ∑N
i=1 (ai − Cbi )/i!

. (A8)

To that end, the stationary probability distribution is formally expressed as

P(n) = 1

n!
[anP(0) − bnP0(0)] = 1

n!

an − Cbn

1 + lim
N→+∞

∑N
i=1 (ai − Cbi )/i!

, n = 1, 2, · · · . (A9)

APPENDIX B: DERIVATION OF EQS. (8A) AND (8B)

First, note that a1 = b1 = K3(0), a2 = K3(1)(K3(0) + K2(0)), and b2 = K3(1)(K3(0) + K2(0) + K1(0)). Then, note that for
n � 3, we have

K2(n)an
n∏

i=1
(i + K1(i) + K2(i))

= K3(n − 1)K2(n)

(n + K1(n) + K2(n))K2(n − 1)

K2(n − 1)an−1

n−1∏
i=1

(i + K1(i) + K2(i))

+
K3(n − 1)K2(n)

n−2∏
i=1

(i + K1(i) + K2(i))

n∏
i=1

(i + K1(i) + K2(i))

×
n−2∑
i=1

K2(i)ai

i∏
j=1

( j + K1( j) + K2( j))

+
K3(n − 1)K2(0)K2(n)

n−2∏
i=1

(i + K1(i) + K2(i))

n∏
i=1

(i + K1(i) + K2(i))
.

That is,

K2(n)an
n∏

i=1
(i + K1(i) + K2(i))

= K3(n − 1)K2(n)

(n + K1(n) + K2(n))K2(n − 1)

K2(n − 1)an−1

n−1∏
i=1

(i + K1(i) + K2(i))

+ K3(n − 1)K2(n)

(n + K1(n) + K2(n))(n − 1 + K1(n − 1) + K2(n − 1))

n−2∑
i=1

K2(i)ai

i∏
j=1

( j + K1( j) + K2( j))

+ K3(n − 1)K2(n)K2(0)

(n + K1(n) + K2(n))(n − 1 + K1(n − 1) + K2(n − 1))
.

If we denote An = K2(n)an∑n
i=1 (i+K1(i)+K2(i)) and Sn =

n∑
i=1

An, then

An = K3(n − 1)K2(n)

(n + K1(n) + K2(n))K2(n − 1)
An−1 + K3(n − 1)K2(n)

(n + K1(n) + K2(n))(n − 1 + K1(n − 1) + K2(n − 1))
Sn−2

+ K3(n − 1)K2(n)K2(0)

(n + K1(n) + K2(n))(n − 1 + K1(n − 1) + K2(n − 1))
.

Therefore

Sn−2 = (n + K1(n) + K2(n))(n − 1 + K1(n − 1) + K2(n − 1))

K3(n − 1)K2(n)
An − (n − 1 + K1(n − 1) + K2(n − 1))

K2(n − 1)
An−1 − K2(0)
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and

An+1 = K3(n)K2(n + 1)K2(0)

(n + K1(n) + K2(n))(n + 1 + K1(n + 1) + K2(n + 1))
+ K3(n)K2(n + 1)

(n + 1 + K1(n + 1) + K2(n + 1))K2(n)
An

+ K3(n)K2(n + 1)

(n + K1(n) + K2(n))(n + 1 + K1(n + 1) + K2(n + 1))
(An−1 + Sn−2).

Furthermore, we have

An+1 =
[

K3(n)K2(n + 1)

(n + 1 + K1(n + 1) + K2(n + 1))K2(n)
+ K3(n)K2(n + 1)(n − 1 + K1(n − 1) + K2(n − 1))

K3(n − 1)K2(n)(n + 1 + K1(n + 1) + K2(n + 1))

]
An

+ K3(n)K2(n + 1)

(n + K1(n) + K2(n))(n + 1 + K1(n + 1) + K2(n + 1))

[
1 − (n − 1 + K1(n − 1) + K2(n − 1))

K2(n − 1)

]
An−1

− K3(n)K̃2(n + 1)K2(0)

(n + K1(n) + K2(n))(n + 1 + K1(n + 1) + K2(n + 1))
+ K3(n)K2(n + 1)K2(0)

(n + K1(n) + K2(n))(n + 1 + K1(n + 1) + K2(n + 1))

= K3(n)K2(n + 1)(n − 1 + K1(n − 1) + K2(n − 1) + K3(n − 1))

K3(n − 1)K2(n)(n + 1 + K1(n + 1) + K2(n + 1))
An

− K3(n)K2(n + 1)(n − 1 + K1(n − 1))

(n + K1(n) + K2(n))(n + 1 + K1(n + 1) + K2(n + 1))K2(n − 1)
An−1.

Also note that

K2(n + 1)an+1

n+1∏
i=1

(i + K1(i) + K2(i))

= K3(n)K2(n + 1)(n − 1 + K1(n − 1) + K2(n − 1) + K3(n − 1))

K3(n − 1)K2(n)(n + 1 + K1(n + 1) + K2(n + 1))

K2(n)an
n∏

i=1
(i + K1(i) + K2(i))

− K3(n)K2(n + 1)(n − 1 + K1(n − 1))

(n + K1(n) + K2(n))(n + 1 + K1(n + 1) + K2(n + 1))K2(n − 1)

K2(n − 1)an−1

n−1∏
i=1

(i + K1(i) + K2(i))

.

That is, Eq. (8a) in the main text holds. In a similar way, we can derive Eq. (8b) in the main text.

APPENDIX C: DERIVATION OF EQ. (12)

Let � represent the system size. If � is large enough, then we can introduce continuous variable x ≈ n/�. Denote qi(x, t ) =
pi(x · �, t ), (i = 0, 1), K̄j (x) = Kj (x · �), ( j = 1, 2, 3). Then, the CME for the constructed Markovian reaction network can be
expressed as

∂q0(x, t )

∂t
= −K̄1(x)q0(x, t ) + K̄2(x)p1(x, t ) + (x · � + 1)q0

(
x + 1

�
, t

)
− x · �q0(x, t ),

∂q1(x, t )

∂t
= K̄1(x)q0(x, t ) − K̄2(x)q1(x, t ) + (x · � + 1)q1

(
x + 1

�
, t

)
− x · �q1(x, t ) +

n∑
i=0

giK̄3

(
x − i

�

)
q1

(
x − i

�
, t

)

− K̄3(x)q1(x, t ), (C1)

where we have used the assumption of δ = 1. Using the approximations of

f

(
x ± i

�
, t

)
≈ f (x, t ) ± i

�

∂ f (x, t )

∂x
,

and neglecting higher-order small quantities as done in Ref. [36], we can have

∂q0(x, t )

∂t
≈ −K̄1(x)q0(x, t ) + K̄2(x)q1(x, t ) + ∂

∂x
[xq0(x, t )],

∂q1(x, t )

∂t
≈ −K̄1(x)q0(x, t ) + K̄2(x)q1(x, t ) + ∂

∂x
[xq1(x, t )] +

(
n∑

i=0

gi − 1

)
K̄3(x)q1(x, t ) −

(
n∑

i=0

igi

)
1

�

∂

∂x

[
K̄3(x)q1(x, t )

]
.

(C2)
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Furthermore, using approximations
∑n

i=0 gi ≈ 1 and
∑n

i=0 igi ≈ b, which are reasonable for sufficiently large n, and normalizing
b by the system size, we can immediately obtain Eq. (12) in the main text except for notations.
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